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INTRODUCTION 
 

Type 2 diabetes is a chronic metabolic disorder 

characterized by progressive insulin resistance that is 

often accompanied by a collection of comorbid 

conditions, many of which are also progressive. 

Common comorbid conditions include retinopathy, 

micro- and macro-vascular disease, peripheral 

neuropathy, and nephropathy. Previous studies have 

also found significant cognitive and neural deficits in 

people with type 2 diabetes. Specific cognitive domains 

affected include memory, attention, and executive 

functioning, with effect sizes ranging from 0.25–0.5 [1, 

2], although moderate to large effect sizes have been 

found in people over 65 years-old [3], suggesting these 

decrements increase with aging. Studies focusing on the 

neurological impact of type 2 diabetes have shown 
widespread impact, including deficits in grey matter 

volume and white matter integrity [1, 4–7], with some 

studies linking these declines to cognitive outcomes and 
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ABSTRACT 
 

Type 2 diabetes is known to negatively affect higher order cognition and the brain, but the underlying 
mechanisms are not fully understood. In particular, glycemic control and common comorbidities are both thought 
to contribute to alterations in cortical neurophysiology in type 2 diabetes, but their specific impact remains 
unknown. The current study probed the dynamics underlying cognitive control in older participants with type 2 
diabetes, with and without additional comorbid conditions (i.e., cardiovascular disease, nephropathy, peripheral 
neuropathy, retinopathy), using a task switching paradigm and a dynamic functional brain mapping method based 
on magnetoencephalography (MEG). We hypothesized that neural dynamics would be differentially impacted by 
the level of glycemic control (i.e., diabetes itself) and the burden of additional comorbid conditions. Supporting 
this hypothesis, our findings indicated separable, but widespread alterations across frontal, parietal, temporal and 
cerebellum regions in neural task-switch costs in type 2 diabetes that were differentially attributable to glycemic 
control and the presence of comorbid conditions. These effects were spatially non-overlapping and the effects 
were not statistically related to one another. Further, several of the effects that were related to the presence of 
comorbidities were associated with behavioral performance, indicating progressive deficits in brain function with 
extended disease. These findings provide insight on the underlying neuropathology and may inform future 
treatment plans to curtail the neural impact of type 2 diabetes. 
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an increased risk for dementia [6, 8]. Likewise, 

functional imaging studies have shown alterations in 

resting state functional connectivity and task-based 

neural responses across widespread networks, including 

the default mode and frontal-parietal networks [9–12]. 

Increased numbers of white matter hyperintensities and 

greater cerebrovascular damage have also been noted in 

people with type 2 diabetes [1, 10, 13]. 

 

Executive functioning is one cognitive domain 

particularly affected in type 2 diabetes [1, 2]. One task 

known to tap executive function is task switching, 

which requires participants to flexibly adjust goal sets 

and behavior to match contextual cues [14]. 

Behaviorally, switching rule sets requires longer 

reaction times relative to stay or no switch trial types, 

revealing a consistent behavioral switch cost [15]. 

These paradigms have generally been found to elicit 

activity across the frontal-parietal and cingulo-opercular 

networks [16]. Previous EEG studies have also shown 

greater alpha, beta and theta recruitment in switch, 

relative to same set trials, reflecting neural switch costs 

[17, 18]. An MEG study has also found a role for 

gamma in switch tasks, where neural switch costs were 

greater across frontal-parietal and cingulate regions 

[19]. However, such neural dynamics have not yet been 

probed in the context of type 2 diabetes. 

 

While studies have shown that type 2 diabetes affects 

executive function, whether the driving force behind 

these deficits is primarily related to dysglycemia or the 

increased number of comorbid conditions in those with 

type 2 diabetes remains to be elucidated. Studies have 

found mediating effects of high body mass index, age, 

microvascular damage, and hypertension, as well as 

glycated hemoglobin (HbA1c) and other metrics of 

glycemic control on the cognitive decrements associated 

with type 2 diabetes [1, 12, 20]. Insulin resistance, a 

hallmark of the disease, has a direct impact on the brain. 

Insulin receptors are found across the cortex and 

subcortical structures including the hippocampus, 

hypothalamus, and amygdala [21, 22], and insulin 

signaling has been implicated in several cognitive 

processes, most notably episodic memory performance 

[22]. Both glycemic clamp and insulin administration 

studies show immediate improvement in cognition with 

normalized glucose levels, especially within the 

memory domain [23–25]. 

 

In the current study, we used a task switching paradigm 

[19] and MEG to probe the neural dynamics and 

circuitry serving this essential component of executive 

function in a cohort of older adults with type 2 diabetes, 
about half of whom had common comorbidities. We 

hypothesized that both glycemic control and comorbid 

conditions would alter oscillatory activity across 

relevant networks, including occipital, parietal, and 

prefrontal regions, suggesting an accelerated aging 

phenotype with worse glycemic control and the 

presence of comorbidities. We further posited that the 

effects of glycemic dysregulation and comorbidities 

would be separable and that some effects would relate 

to behavioral switch costs.  

 

RESULTS 
 

Demographic, behavioral and disease status results 
 

Four participants had to be excluded due to MEG 

technical issues or artifactual MEG data. Two additional 

participants were excluded due to behavioral 

performance at or near chance levels on the task 

switching paradigm (see Figure 1A). This resulted in a 

sample of 48 participants (25 with significant 

comorbidities, 23 without). See demographics and 

blood panel values in Table 1. Groups did not differ by 

age (p = 0.497), sex (p = 0.951), race (p = 0.845), 

education (p = 0.132), handedness (p = 0.502), BMI (p 

= 0.180), and HbA1c (p = 0.205). Of those with 

comorbidities, 11 had nephropathy (GFR 45–60, ACR 

41.45–375), five had retinopathy (mild), 14 had 

peripheral neuropathy (generally mild, limited to 

specific extremities), and six had cardiovascular disease 

(three stents, three bypasses), with nine (36%) of these 

participants having two or more of these conditions. 

Participants performed well, with an average accuracy 

of 95.5 ± 3.6%, average reaction time of 1527.67 ± 

216.02 ms, and an average behavioral switch cost, or 

the difference in reaction times between conditions, of 

79.27 ± 96.37 ms. Accuracy did not differ between 

groups (t46 = −0.88, p = 0.381), but there was a trend for 

behavioral switch costs differences by group (t46 = 1.79, 

p = 0.080, see Figure 1B), as those without 

comorbidities were less affected by the switch. 

 

Sensor level results 
 

To identify significant oscillatory responses for 

dynamic imaging, t-tests between the active and 

baseline periods per time-frequency bin were computed 

across all participants and both conditions, which were 

then corrected for multiple comparisons using 

nonparametric permutation testing. Significant time-

frequency windows were found in alpha (8–12 Hz) from 

350–1050 ms and in gamma (40–52 Hz, 62–74 Hz) 

from 150–650 ms (p < 0.001; Figure 2). To study early 

and late dynamics of task switch processing, alpha was 

imaged from 350–700 and 700–1050, while both 

gamma frequency bins were imaged from 150–400 and 
400–650 ms. To identify the anatomical origins of these 

oscillatory responses, images per response window 

were grand averaged across conditions and participants 
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Table 1. Task switch: demographics and laboratory tests. 

 
Type 2 diabetes with 

comorbidities 
Type 2 diabetes without 

comorbidities 

N 25 23 

Age (years) 64.0 ± 4.8 62.7 ± 5.1 

Sex 10 Males; 15 Females 8 Males; 15 Females 

Handedness 24 Right; 1 Left 21 Right; 2 Left 

Disease duration (years) 14.1 ± 2.0 10.0 ± 7.5 

HbA1c (mmol/mol) 59 ± 11.7 55 ± 9.2 

HbA1c (%) 7.52 ± 1.07 7.16 ± 0.84 

Creatinine (mg/dL) 0.84 ± 0.22 0.83 ± 0.23 

Glucose (mg/dL) 119.52 ± 22.75 121.91 ± 41.01 

Albumin/Creatinine (ugAL/mgCR) 45.08 ± 81.41 17.17 ± 13.40 

Thyroid-stimulating hormone (mcIU/mL) 2.72 ± 1.72 1.77 ± 0.86 

B12 (pg/mL) 451.45 ± 361.81 343.08 ± 222.00 

Values depict means ± SD. 

 

and this revealed that alpha responses originated in 

parieto-occipital regions throughout the task period, 

while both low (40–52 Hz) and high (62–74 Hz) gamma 

were strongest in bilateral occipital cortices (Figure 2). 
 

Source level results 

 

Neural switch cost differences by patient groups 

In order to examine neural switch cost effects, whole 

brain subtraction maps were computed (switch – no-

switch) and these maps were compared using 

independent-sample t-tests to identify group effects 

(patients with comorbidities vs. patients without 

comorbidities). As shown in Figure 3, our results 

revealed high gamma (62–74 Hz) differences from 150–

400 ms in the left cerebellum (t45 = 3.32, p = 0.002), left 

inferior frontal (t45 = 3.78, p < 0.001), left superior 

frontal (t45 = 3.70, p < 0.001), and right inferior parietal 

(t45 = 3.76, p < 0.001) cortices. In the later 400–650 ms 

window, high gamma group differences were found in 

 

 
 

Figure 1. Task switch paradigm and behavioral switch costs. (A) A fixation cross was presented for 2700 ± 100 ms, followed by a 

number (possible values: 1–4, 6–9) surrounded by a square or diamond, indicating the rule set for that trial, presented for 2500 ms. For 
trials with a number within a square, participants had to respond by button press as to whether the number was below (index finger) or 
above (middle) 5. For trials with a number within a diamond, participants had to answer whether the number was odd (index finger) or 
even (middle) by button press. Trials were pseudorandomized such that 50% of trials were the same rule set as the previous trial (No 
Switch) and 50% were a different rule set from the previous trial (Switch). All analyses were relative to the difference between these 
conditions, or switch costs. (B) Accuracy did not differ by group (not shown), but there was a trend for group differences in behavioral 
switch costs (t46 = 1.79, p = 0.080), where those with type 2 diabetes and additional comorbidities (shown in green) had longer reaction 
times relative to those without comorbidities (shown in blue). # denotes 0.050 < p < 0.100. 
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the left precentral (t45 = 4.55, p < 0.001), left occipital 

(t45 = 3.53, p < 0.001), left cerebellum (t45 = 3.68, p < 

0.001), and right parieto-occipital (t45 = −3.03, p = 

0.004) regions. In all cases except the right parieto-

occipital, the group with comorbidities exhibited 

stronger high gamma oscillations during task 

performance (Figure 3). No group differences were 

detected in low gamma. As per alpha, a significant 

group difference in neural switch cost was found in the 

right parietal lobe during the 350–700 ms time window 

(t44 = −3.42, p = 0.001) such that those with 

comorbidities had greater switch costs in this region, 

while no group differences were found in the later 

alpha time window. Notably, none of these effects 

were associated with HbA1c level (ps from 0.436 to 

0.797). 
 

Neuro-behavioral switch cost associations 

Peak values were extracted from each of the significant 

group difference clusters and correlations with behavior 

 

 
 

Figure 2. Task switch spectrograms. Left: Grand-averaged time-frequency spectrograms are shown, derived from representative 

parieto-occipital MEG sensors. Time is shown on the x-axis in seconds, frequency is shown on the y-axis in Hz. Spectrograms are shown 
from 4–30 Hz (bottom), 30–60 Hz (middle), and 60–90 Hz (top). The colors reflect power increases (red) and decreases (blue) relative to the 
baseline, with the scale bar shown to the right of each time-frequency plot. Time-frequency windows for source imaging (beamforming) 
were derived from statistical analysis of the sensor-level data across all participants (ps < 0.001). A clear alpha (8–12 Hz) decrease can be 
seen throughout the task period, as well as a lower gamma (40–52 Hz) and a higher gamma (62–74 Hz) synchronization during the task 
period. Right: Grand average images from each time-frequency bin show the alpha dynamics in parietal and occipital regions, and gamma 
dynamics largely restricted to bilateral occipital cortices. 
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were computed. Significant correlations across both 

groups were found between neural and behavioral 

switch costs. Specifically, in the early high gamma 

window, a significant relationship between the left 

cerebellar peak and behavioral switch cost was apparent 

(r45 = 0.34, p = 0.020; Figure 4A), such that as the 

behavioral switch cost became larger, so too did the 

neural switch costs in this region. In the later high 

gamma window, a significant inverse relationship 

between the right parieto-occipital peak and behavioral 

switch cost emerged (r45 = −0.35, p = 0.016), as 

increased behavioral switch cost was associated with 

reduced neural switch costs (Figure 4B). Because of the 

differing trajectories of these responses across time, we 

probed the relationship between neural switch costs in 

these two regions and found a significant reciprocal 

effect, whereby increased switch costs in one region 

tracked with decreased switch costs in the other.  

To determine whether this reciprocal pattern was related 

to group, a repeated-measures ANCOVA was computed 

to determine the relationship between neural and 

behavioral switch costs and group identity. In this 

model, a significant interaction between neural switch 

costs at each peak and behavioral switch cost was again 

apparent (F1,43 = 4.31, p = 0.044). Further, controlling 

for the effect of behavior, there was a significant 

interaction of peak by group, such that each group 

tended to have greater neural switch costs in one peak 

over the other to complete the task (F1,43 = 5.52, p = 

0.024, see Figure 4C). In this case, participants with 

type 2 diabetes and comorbidities tended to have higher 

switch costs in the early bin left cerebellum peak and 

lower switch costs in the late bin right parieto-occipital 

peak, whereas participants with type 2 diabetes and no 

comorbidities tended to have higher switch costs in the 

late bin right parieto-occipital peak and lower switch 

costs in the early bin left cerebellum peak. No significant 

interaction of group by behavioral switch costs (F1,43 = 

0.12, p = 0.735), nor peak by group by behavioral switch 

cost (F1,43 = 0.04, p = 0.851) was found. These findings 

suggest a differential impact of comorbidities on neural 

oscillatory responses serving higher order cognition in 

type 2 diabetes, but group membership did not 

specifically predict behavioral outcomes. 

 

 
 

Figure 3. Neural switch costs differ by comorbidity status. Left: Significant group effects on neural switch costs were found in both 

time bins of high gamma, including the left cerebellum, left inferior (not shown) and superior frontal regions and the right parietal cortex in 
the early high gamma window, and left precentral, left occipital, left cerebellum, and right parieto-occipital regions in late high gamma 
activity. Right: Greater neural switch costs in early bin parietal alpha activity were found in type 2 diabetes patients with additional 
comorbidities, relative to those without comorbidities.  These effects show the impact of comorbidities on neural switch costs across the 
spectrum. Images are thresholded from p < 0.01 to p < 0.001, with a minimum cluster size of 20 4 mm3 voxels. 
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Neural switch cost correlations with clinical metrics 

To investigate the relationship between switch costs 

and glycemic control, we ran whole brain correlations 

on the neural switch cost maps. Several areas 

correlated with HbA1c level in the late high gamma 

window including the left parietal (r45 = 0.48, p < 

0.001), left lateral occipital (r45 = 0.48, p < 0.001), right 

inferior occipital (r45 = 0.46, p = 0.001), and left 

inferior temporal (r45 = 0.40, p = 0.005) regions. These 

effects were such that as HbA1c increased, high gamma 

switch costs also increased in each region (Figure 5A–

5D). A significant correlation with HbA1c was also 

apparent in the early low gamma window in the left 

occipital cortex (r45 = −0.52, p < 0.001), such that as 

HbA1c levels increased, low gamma switch costs 

decreased (Figure 5E). None of these effects differed 

by comorbidity distinction (ps from 0.386 to 0.965). 

These results suggest largely distinct effects of 

glycemic dysregulation and the presence of comorbid 

conditions. 
 

DISCUSSION 
 

We found that glycemic dysregulation and the presence 

of comorbid conditions have largely distinct effects  

on the neurophysiological activity underlying task 

switching in a sample of older adults with type 2 

diabetes. The impact of comorbid conditions was 

largely an increase in behavioral switch costs, as well as 

an increase in the strength of oscillations in the high 

gamma range across multiple brain regions, including 

the left superior and inferior frontal regions, left 

precentral gyrus, left cerebellum, and bilateral occipital 

areas. Comorbidities were also associated with 

aberrations in right parietal alpha oscillations. Such 

accentuated neural switch costs across frontal-parietal 

network regions suggests that comorbidities may affect 

hub regions involved in cognitive control, as well as 

cerebellar activity that has been linked to error 

monitoring and conflict resolution [26, 27], all of which 

are subprocesses contributing to task switching 

performance. Similarly, inhibitory control has also been 

shown to be diminished in type 2 diabetes [28, 29], so it 

follows that the underlying neural correlates would be 

impacted. Regarding glycemic control, increased HbA1c 

levels were associated with larger neural switch costs 

(i.e., stronger neural oscillations) in the high gamma 

range within superior parietal, lateral occipital, inferior 

temporal, and ventral occipital cortices, as well as 

smaller neural switch costs in medial occipital cortex in 

the lower gamma range. Thus, the brain regions most 

strongly affected by glycemic dysregulation were 

largely independent of those associated with significant 

comorbidities. Below, we discuss the implications of 

these findings for understanding the neural aberrations 

often seen in those with type 2 diabetes, especially 

regarding how these relate to decrements in task 

switching. 

 

Some of our key findings were that comorbid conditions 

were associated with increases in the strength of high 

gamma oscillations across the left superior and inferior 

 

 
 

Figure 4. Neural and behavioral switch cost correlations. Significant correlations between neural and behavioral switch costs were 
apparent in the early high gamma left cerebellar peak ((A) r45 = 0.34, p = 0.020) and the late high gamma right parieto-occipital peak ((B) r45 
= −0.35, p = 0.016). In the left cerebellum, greater neural switch costs were associated with greater behavioral switch costs, while in the 
right parieto-occipital lower neural switch costs were related to greater behavioral switch costs. This distinct pattern of neural responses 
leading to differential behavioral outcomes was further investigated, and this analysis showed group-specific recruitment of each region 
((C) F1,43 = 5.52, p = 0.024), whereby those with comorbid conditions (shown in green) had greater switch costs in left cerebellum, while 
those without comorbidities (shown in blue) had greater switch costs in the right parieto-occipital region. *p < 0.05, **p < 0.01, ***p < 0.001. 
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frontal regions, left precentral gyrus, left cerebellum, 

and bilateral occipital areas, as well as right parietal 

alpha. The frequency specificity of these findings likely 

reflects the underlying processes directly affected by 

comorbid conditions associated with type 2 diabetes. 

Specifically, frontal and occipital gamma responses 

have previously been implicated in tasks probing 

executive functioning and cognitive control [30–32]. 

These gamma responses have also been implicated in a 

wide range of functions including attention, working 

and long-term memory, and feature binding [33, 34]. 

Parietal alpha has an important role in the dorsal 

attention network, where it has been linked to the top-

down direction of attention toward task goals [35]. 

While the widespread nature of effects also suggests a 

more global impact of comorbid conditions in type 2 

diabetes, the relatively large number of findings in the 

gamma band may suggest effects on specific 

mechanisms underlying inhibitory processes, such as 

gamma-aminobutyric acid (GABA) signaling. GABA is 

one of the key receptors known to be downregulated in 

the insulin resistant brain [36]. Gamma dynamics are 

thought to regulated by local GABA-ergic inhibitory 

circuitry [37, 38]. Indeed, in previous studies in people 

with type 2 diabetes, GABA levels in occipital and 

prefrontal cortices were shown to be significantly 

altered, with some effects directly associated with 

cognitive task performance [39–42]. These alterations 

in GABA could be a critical mechanism underlying 

many of our findings in the current study, as many 

effects in our task switching paradigm were in the 

gamma range. Future studies should further examine 

GABA-gamma links in this population using combined 

MEG and MRI-based GABA spectroscopy. 

 

We also showed significant associations between neural 

and behavioral switch costs. In this case, greater neural 

switch costs in the left cerebellum’s early gamma 

 

 
 

Figure 5. Glycemic control and neural switch cost associations. Significant correlations between neural switch cost dynamics and 

glycemic control level were apparent in the late high gamma and late low gamma windows. Specifically, gamma responses in the left lateral 
occipital ((A) r45 = 0.48, p < 0.001), left parietal ((B) r45 = 0.48, p < 0.001), right inferior occipital ((C) r45 = 0.46, p = 0.001), and left inferior 
temporal ((D) r45 = 0.40, p = 0.005) regions exhibited greater neural switch costs in the context of higher HbA1c levels. Interestingly, greater 
neural switch costs were associated with lower HbA1c levels in the left occipital region’s late low gamma response ((E) r45 = −0.53, p < 
0.001). These results show a differential impact of glycemic control level on neural switch costs, with separable effects from those seen in 
differences by comorbidity status. *p < 0.05, **p < 0.01, ***p < 0.001. 
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response was associated with greater behavioral switch 

costs, while smaller neural switch costs in the right 

parieto-occipital cortex’s late gamma response was 

associated with greater behavioral switch costs. Further, 

these relative switch costs were separable by group, 

reflecting the unique impact of comorbidities in type 2 

diabetes. Of note, participants with comorbidities 

generally exhibited more aberrant activity in the left 

cerebellum, where greater neural switch costs led to 

greater behavioral switch costs. On the other hand, 

participants without comorbid conditions tended toward 

the more compensatory pattern, where increased right 

parieto-occipital activity led to less behavioral switch 

costs. These patterns of findings suggest that the 

additional comorbidities lead to an inefficient system 

underlying cognition and behavior. Previous studies 

have also shown that the presence of comorbidities, 

particularly those affecting vascular integrity, have 

strong detrimental effects on the brain and cognition [1, 

3, 43, 44], albeit without the frequency specificity of 

neural effects we were able to discern in the current 

study. 

 

Importantly, the peak neural differences between those 

with and without comorbidities did not spatially overlap 

with those that varied based on level of glycemic 

control, as measured by HbA1c. Further, comorbidity 

status associated effects did not relate to HbA1c level 

and glycemic control findings did not differ by 

comorbidity status. Instead, neural switch costs in 

several other brain regions were found to significantly 

correlate with HbA1c, including the left occipital cortex 

in the late low gamma window and left lateral occipital, 

left parietal, left inferior temporal, and right inferior 

occipital regions in late high gamma window. Higher 

HbA1c levels were associated with larger neural switch 

costs in the high gamma peaks, and weaker neural 

switch costs in the low gamma range. Higher HbA1c has 

been previously shown to have worse cognitive 

outcomes [45, 46], although some studies suggest that 

the relationship is weak, only accounting for about 10% 

of the variance in measured decrements [47]. While it is 

generally true that worse glycemic control generally 

leads to greater incidence of comorbidities, from our 

findings, the effects of glycemic control and the 

presence of comorbid conditions differentially impact 

the brain and behavior. Further, neural switch cost 

differences by comorbidity status related more closely 

to behavior, where in general, greater neural switch 

costs lead to worse behavior in those with comorbid 

conditions. Taken together, the relative impact of both 

worse glycemic control and the presence of 

comorbidities seems to be widespread, suggesting that 
better disease management may prevent worse cognitive 

and neural outcomes. These findings suggest that it is 

important to separate the effects specific to the disease 

processes from those that are due to comorbid 

conditions, particularly since the effects relative to 

comorbidity status showed specific relationships with 

behavior. 

 

While this study advances the field’s understanding of 

the impact of type 2 diabetes and associated comorbid 

conditions on higher order cognition and the underlying 

neurophysiology, some limitations need to be 

acknowledged. These include the characterization of 

comorbid conditions (yes/no) and the use of HbA1c as a 

coarse measure of glycemic control. Future studies 

should examine these variables more in depth to further 

clarify their causal links to the neural deficits observed. 

In closing, we found distinct effects of comorbid 

conditions and glycemic control level on neural switch 

costs during an executive function task in people with 

type 2 diabetes. The dynamics of these response 

differences were largely found within the gamma band, 

with aberrations in higher frequency dynamics linked to 

both comorbid conditions and worse glycemic control, 

although in different brain regions. Neural switch cost 

differences were related to behavioral switch costs, with 

the directionality of effects separable by comorbidity 

status. 

 

These findings add to the growing body of literature 

illustrating the cognitive decrements and neural 

dysfunction associated with type 2 diabetes, but are 

novel in that they identify the separable 

neurophysiological signatures of comorbidity status and 

glycemic control level. Future studies should expand on 

the nature of these effects, including examining whole 

brain connectivity dynamics, cross-frequency 

interactions, and structure-function relationships, which 

may further elucidate the complex nature of how type 2 

diabetes affects the brain. Examining individual 

differences in disease management, comorbid 

conditions, age, BMI, and other relevant factors and 

their independent and synergistic effects on the brain 

may also inform future studies, as the heterogeneity of 

pathological features and expression may impact 

cognitive and neural outcomes. 

 

METHODS 
 

Participants 

 

Fifty-four participants with type 2 diabetes (25 without 

and 29 with significant comorbid conditions) were 

recruited from the Diabetes Clinic at the University of 

Nebraska Medical Center (UNMC; age range: 55–73 

years, 33 females). Participants had to be formally 

diagnosed with type 2 diabetes for at least 1 year prior 

to entering the study. Participants with additional 

complications and comorbidities were considered as 
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such if any of the following conditions were met: (1) 

nephropathy, as characterized by glomerular filter rate 

of 45–60 and/or microalbuminuria of 30–300, (2) 

retinopathy, excluding proliferative retinopathy, (3) 

peripheral neuropathy, confirmed by documented 

symptoms or monofilament testing, and/or (4) 

cardiovascular disease, except recent major 

cardiovascular events (heart attack, stroke) in the 

previous 6 months from enrollment. Exclusionary 

criteria included: (1) any medical diagnosis affecting 

brain function (e.g., psychiatric and/or neurological 

disease), (2) known brain neoplasm or lesion, (3) 

history of cerebrovascular events (i.e., CVA, stroke, 

TIA) based on previous diagnosis and chart review, (4) 

history of significant head trauma, seizures or epilepsy, 

(5) current substance use disorder within the past 6 

months, (6) pregnancy or lactation, (7) hospitalization 

within the previous 90 days, (8) any type of cancer 

diagnosis or treatment in the past 5 years, except skin 

cancer, (9) uncontrolled hypertension, with blood 

pressures greater than 140/90 or 160/100 if currently on 

medication treatment, (10) body mass index of greater 

than or equal to 40, (11) liver disease (AST or ALT > 

3× normal), (12) any untreated thyroid or B12 

deficiencies, (13) history of brain radiation, (14) 

treatment with antipsychotics, antidepressants, and 

related medications known to affect brain function, with 

the exception of as-needed antidepressants following a 

24 hour washout period, and (15) ferromagnetic 

implants. 

 

To study the long-term effects of type 2 diabetes on the 

brain in a more controlled manner, relative euglycemia 

(70 to 200 mg/dl) in these participants at the time of 

study was a prerequisite for participation, measured by 

point-of-care device prior to study commencement. 

Written informed consent was obtained from each 

participant following the guidelines of UNMC’s 

Institutional Review Board, who approved the study 

protocol, in accordance with the Declaration of 

Helsinki. 

 

Prior to MEG, participants underwent a panel of blood 

tests according to the standards of care described by the 

American Diabetes Association [48]. Furthermore, 

demographic and medical history data were collected. 

For full lab results and general characteristics of the 

patient groups, see Table 1. Participants then completed 

cognitive tasks while undergoing MEG, to probe the 

neurophysiological changes related to essential 

cognitive processes in this sample. 

 

Task switch paradigm 

 

During the MEG session, participants were seated in a 

nonmagnetic chair and instructed to fixate on a 

crosshair presented centrally for 2600–2800 ms. 

Following fixation, participants were shown a single 

centrally-presented integer from 1–4 or 6–9 for 2500 

ms, surrounded by either a square or a diamond shape 

which cued the participant to the appropriate rule set for 

the trial. If the number was surrounded by a square, the 

participant had to respond by button press whether the 

number was less than (index) or greater than (middle) 

five. If the number was surrounded by a diamond, the 

participant had to respond by button press whether the 

number was odd (index) or even (middle). Each rule set 

occurred 50% of the time, with a pseudo-randomized 

trial order to have about 50% of all trials repeat the 

previous rule set (No-Switch) and the remaining trials 

change rule set from the previous trial (Switch). This 

ensured participants could not anticipate whether any 

particular trial would switch or not from the previous 

rule set. Each trial was 5200 +/− 100 ms, with a total of 

200 trials (see Figure 1A). This task has been previously 

validated by our group [19]. Behavioral metrics were 

collected concurrently with MEG data, including 

reaction time and accuracy. Behavioral switch costs, or 

the difference (i.e., increase) in reaction time between 

Switch and No-Switch conditions, were computed to 

characterize the cognitive control component of the task 

more directly. 

 

MEG methods and analyses 

 

MEG acquisition and analysis methodology followed 

standardized pipelines, corresponding to MEG studies 

previously published by our group [19]. Briefly, MEG 

data were recorded using a 306-sensor Elekta 

Neuromag MEG system (Elekta/MEGIN, Helsinki, 

Finland), sampled at 1 kHz with an acquisition 

bandwidth of 0.1 – 330 Hz. Each participant’s data were 

corrected for head motion and subjected to noise 

reduction using the signal space separation method with 

a temporal extension [49]. Each participant’s MEG data 

were then coregistered with structural T1-weighted MRI 

data. Blink and cardiac artifacts were removed by 

signal-space projection [50]. 

 

The continuous time series was divided into 5000 ms 

epochs, with a 400 ms baseline directly preceding 

stimulus onset (−400 to 0 ms). Epochs were rejected 

using a fixed threshold method, supplemented with 

visual inspection. The distribution of amplitude and 

gradient was examined per participant across all trials, 

and the epochs with highest extrema amplitude and/or 

gradient values relative to that individual’s distribution 

were rejected with fixed amplitude and gradient 

thresholds. Cutoffs were determined individually so as 
to minimize bias due to head size, sensor proximity, and 

related variables that influence the signal amplitude, 

since magnetic field strength decreases exponentially 
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with distance from the source. When appropriate, 

artifact-free trials in some participants were randomly 

omitted to balance the total number of trials across 

groups and/or conditions, which ensures results are not 

confounded by signal-to-noise ratio differences arising 

from imbalances in the number of trials. Only correctly 

answered trials were included in final analyses and 

participants with poor performance (i.e., near chance 

accuracy) were excluded from final analyses. The 

resulting artifact-free trials were transformed in the 

time-frequency domain using complex demodulation, 

and the resulting spectral power estimations per sensor 

were averaged over trials to generate time-frequency 

plots of mean spectral density. Sensor-level data were 

normalized by dividing the power of each time-

frequency bin by the mean baseline power. Statistical 

analysis of the sensor-level spectrograms comparing the 

active window relative to the baseline period across the 

array of gradiometers during the task period were then 

computed to determine time-frequency windows to be 

examined in source-space. 

 

Each data point in the spectrogram was initially 

evaluated using a mass univariate approach based on 

the general linear model (GLM), and then corrected for 

multiple comparisons in stage two. First, t-tests were 

conducted on each data point against the mean baseline 

value at that frequency and the output spectrograms of 

t-values were thresholded at p < 0.05 to define time-

frequency bins containing potentially significant 

oscillatory deviations across all participants. In stage 

two, time-frequency bins that survived the threshold 

were clustered with other significant temporally and/or 

spectrally neighboring bins, and a cluster value was 

derived by summing the t-values of all data points in 

the cluster. Nonparametric permutation testing was 

then used to derive a distribution of cluster-values and 

the significance level of the observed clusters were 

tested directly using this distribution [51, 52]. From 

these analyses, time-frequency windows with 

significant oscillatory responses across all participants 

and conditions were then imaged at a 4.0 × 4.0 × 4.0 

mm resolution using a linearly-constrained minimum 

variance vector beamformer [53, 54], as implemented 

in the Brain Electrical Source Analysis (BESA) 

software (v 7.1). This beamformer method uses spatial 

filters in the time-frequency domain to calculate source 

power for the entire brain volume. Following 

convention, we computed noise-normalized source 

power per voxel in each participant using active (i.e., 

task) and passive (i.e., baseline) periods of equal 

duration and bandwidth. As mentioned above, the 

passive period was defined as the 400 ms pre-stimulus 

baseline period (i.e., −400 to 0 ms). The resultant 

images are referred to as pseudo-t maps, with units that 

reflect noise-normalized power differences at each 

voxel. Each participant’s functional MEG images were 

transformed into standardized space using the 

transform that was previously applied to the structural 

images and spatially-resampled. 

 

Oscillatory responses that were longer than the baseline 

in duration (>400 ms) were broken down into non-

overlapping time windows of 400 ms or less and 

imaged separately using the same baseline. These 

images were then averaged across all relevant windows 

comprising the oscillatory response to derive a single 

map per oscillatory response per participant. These 

whole brain maps were then averaged across all 

participants to determine the anatomical basis of the 

oscillatory responses identified in the sensor-level 

analyses. Next, the whole brain maps of activity were 

subtracted (switch – no-switch) per individual to 

compute neural switch costs, or the increased amount of 

recruitment required to switch rule sets, per oscillatory 

response. T-tests for differences between patients with 

and without comorbid conditions were computed for 

each time-frequency window and all output statistical 

maps of the neural switch cost were thresholded at p < 

0.01, using a spatial extent threshold (i.e., cluster 

restriction; k = 20 4 mm3 voxels) based on the theory of 

Gaussian random fields [55]. Significant peaks from 

these t-tests were extracted for post-hoc analyses that 

focused on correlations with behavioral switch costs. A 

follow-up analysis of covariance (ANCOVA) was also 

computed to test the interaction between neural and 

behavioral switch costs by group, to determine whether 

the directionality of effects was driven by the presence 

or absence of comorbid conditions. Further, to examine 

the specific effects of glycemic control level on task 

switching in the brain, a whole brain correlational 

approach was used, with HbA1c as our measure of 

glycemic control. 
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