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ABSTRACT

Genome-wide association studies (GWAS) have
identified numerous genetic loci underlying human
diseases, but a fundamental challenge remains to
accurately identify the underlying causal genes and
variants. Here, we describe an arrayed CRISPR
screening method, Genome engineering-based Inter-
rogation of Enhancers (GenIE), which assesses the
effects of defined alleles on transcription or splic-
ing when introduced in their endogenous genomic
locations. We use this sensitive assay to validate the
activity of transcriptional enhancers and splice reg-
ulatory elements in human induced pluripotent stem
cells (hiPSCs), and develop a software package (rge-
nie) to analyse the data. We screen the 99% credible
set of Alzheimer’s disease (AD) GWAS variants iden-
tified at the clusterin (CLU) locus to identify a subset
of likely causal variants, and employ GenIE to under-
stand the impact of specific mutations on splicing ef-
ficiency. We thus establish GenIE as an efficient tool
to rapidly screen for the role of transcribed variants
on gene expression.

INTRODUCTION

Human genetics analysis such as genome-wide association
studies (GWAS) and the rise of population scale biobanks
are revealing a growing list of genetic loci associated with
disease, with >177 000 associations in the GWAS catalog
(1). However, due to correlations between genetic variants,
known as linkage disequilibrium, the underlying genes and
regulatory elements involved are often difficult to ascertain.
In most cases, the genetic variants implicated reside within
the non-coding genome, and presumably act to regulate
gene expression. Statistical colocalisation with expression

quantitative trait loci (eQTL) can indicate potential target
genes; however, in many cases no colocalised eQTLs are
identified (2), while in others multiple genes are implicated
(3). Similarly, overlap with epigenomic annotations such as
chromatin accessibility, modification or folding can narrow
down the list of putative variants. However, none of these
methods directly demonstrate causality of a specific variant.
Massively parallel reporter assays allow high-throughput
assessment of enhancer variants, but are not performed in
the endogenous genomic context, and therefore do not re-
capitulate all of the regulatory features of the native gene
(4). Genome engineering approaches in model cell systems
circumvent many of these issues and allow the identifica-
tion of the true causal variants (5). However, the generation
and study of isogenic pairs of cell lines is time consuming
and there is significant variability during clonal isolation
and differentiation that confounds analysis (6), especially
of common variants that often have small effect sizes. Thus,
there is a pressing need for sensitive and reliable methods to
screen for the functionality of large numbers of non-coding
variants in their native context.

Here, we develop an arrayed CRISPR screening system,
GenIE, that addresses these limitations, and allows inves-
tigation of the effect of specific genetic variants and small
deletions on gene expression in an endogenous context. We
demonstrate that GenIE can assay intronic transcriptional
enhancers and splicing regulatory elements in hiPSCs, apply
it to screen variants involved in Alzheimer’s disease (AD) at
the clusterin (CLU) locus, and perform saturation editing
across a splice site to quantify the effects of point mutations
on splicing.

MATERIALS AND METHODS

Ethics approval and consent

iPSC lines were generated as part of the HipSci project
(KOLF2, Cambridgeshire 1 NRES REC Reference
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09/H0304/77) or (corrected A1ATD iPSCs, Hertfordshire
NRES REC Reference 08/H0311/201) and work on these
is covered under HMDMC 14/013.

GenIE method

The rgenie package for R implements the statistical analysis
and visualisations reported herein, beginning from aligned
amplicon sequence data. It is available at https://github.
com/jeremy37/rgenie. Details of regions targeted with Ge-
nIE are in Supplementary Table S2. All guide sequences,
HDR oligo sequences, and primer sequences used herein
are detailed in Supplementary Tables S3–S5. A summary of
statistical results for each targeted SNP is in Supplementary
Table S6. Details of all GenIE replicates are in Supplemen-
tary Table S7. A single replicate was excluded (out of 696),
for MUL1 (rs6700034 locus) due to low read count.

Experimental design

The GenIE method requires the SNP of interest to be within
the transcribed unit, i.e., coding, UTR or intronic and that
this gene is transcribed (TPM >1) in the cells to be assayed.
We chose the guide with a cut site closest to the SNP of
interest which had either a NGG PAM (for SpCas9) or a
NGA PAM (for VRQR SpCas9). Off-target cutting of the
guides was checked using WGE (https://www.sanger.ac.uk/
htgt/wge/) and guides with multiple off-target cutting with
a mismatch of 1 or 2 nucleotides were not used if there was
another suitable guide near (within ∼10 bp of) the SNP. Off-
target effects are less critical in a GenIE experiment as only
the gene of interest is assayed, although guides which cut
the genome multiple times can be toxic and therefore were
avoided if possible. Full-length chemically synthesised and
modified sgRNAs (Synthego) were used. An HDR oligo
(100 bp Ultramer, IDT) containing the SNP of interest was
designed and the sense of the oligo that was used was depen-
dent on the position of the cut site of the guide relative to the
SNP (7) (if cut site was to the right of the SNP a sense oligo
used, and vice versa). For SNPs that were heterozygous in
KOLF2-C1 hiPSCs, we designed a second-site mutation in
between the SNP and the cut site of the guide, so that we
could distinguish the edited allele from the non-edited al-
lele. If the guide did not cover the SNP, or the SNP was the
N within the PAM, then we designed a second site mutation
to avoid recutting of the guide after HDR. For experiments
that required a second-site mutation, we designed an HDR
oligo that included the second-site mutation and SNP mu-
tation together, and another HDR oligo that included the
second-site mutation alone. We mixed these oligos together
(70:30 molar ratio respectively) when carrying out the edit-
ing to generate appropriate alleles to assay any effect of the
second-site mutation.

Primers were designed to amplify the region surround-
ing the SNP of interest and contained adaptor sequences
for the addition of barcodes for Miseq (Supplementary Ta-
ble S3) (8). The amplicons were less than 295 bp (ideally
around 200 bp) to allow sequencing using a 150 paired-end
Miseq run. For the analysis of splicing events using GenIE
we designed primers within the neighbouring exons to am-
plify from mature RNA. All primers were unique in BLAT
searches.

A primer for gene-specific reverse transcription was also
designed for each SNP of interest in the opposite direction
to the direction of the transcription of the gene and about
30–50 bp outside of the amplicon primers. Using such a
primer in the reverse transcription reaction increased sen-
sitivity and allowed better amplification of nascent RNA.

hiPSC cell culture

Human KOLF2-C1 (HIPSCI, www.hipsci.org) or corrected
A1ATD iPSCs (9) were grown in feeder-free conditions in
TeSR-E8 medium (Stemcell Technologies) on Synthemax
(Corning) (final amount 2 �g/cm2) and routinely passaged
1:10 every 5 days using Gentle Cell Dissociation Reagent
(Stemcell Technologies).

Arrayed CRISPR–Cas9 editing

hiPSCs were edited by nucleofection of RNP complex (con-
taining full-length guide RNA and SpCas9), along with an
ssODN repair template (10). Briefly, SpCas9 and the VRQR
variant (11) were expressed and purified from E.coli using
a His-tag. The purified protein was diluted to 4 �g/�l in
storage buffer (10 mM Tris–HCl pH 7.4, 300 mM NaCl,
0.1 mM EDTA, 1 mM DTT). Full-length guides (Synthego)
were resuspended in TE (200 �M) and diluted to 45 �M in
duplex buffer (IDT). Diluted SpCas9 (1 ul, 4 �g, 24.2 pmol)
was mixed with diluted guide (1 �l, 45 pmol) and left at RT
for 10–20 min for RNP complexes to form. The ssODN re-
pair template was added (1�l, 100 pmol) to the RNP com-
plex just before the nucleofection. Cells were washed once
with PBS, and a single-cell suspension was harvested us-
ing accutase (8 min at 37◦C). Cells were washed in TeSR-
E8 plus ROCK inhibitor, counted and resuspended in P3
buffer. Screening of up to 16 SNPs at once was possible us-
ing small nucleofection cuvettes (V4XP-3032 Lonza) with
final amounts per nucleofection 2 × 105 cells, 20 �l P3
buffer, 1 �l (4 �g) SpCas9, 1 �l (45 pmoles) sgRNA and 1 �l
(100 �M) HDR oligo. Cells were electroporated using 4D-
Nucleofector on program CA137. After nucleofection cells
were plated onto a 6-well dish coated with Synthemax (5
�g/cm2) with TeSR-E8 supplemented with Rock inhibitor.
After 24 h, the media was exchanged for TeSR-E8 and after
5–7 days cells were split to 10 cm dishes.

Editing of a smaller number of SNPs was carried out us-
ing large cuvettes (V4XP-3024 Lonza), with the same con-
ditions except the final amounts per nucleofection were 1 ×
106 cells, 100 �l P3 buffer, 5 �l (20 �g) SpCas9, 5 �l (225
pmol) sgRNA and 5 �l (500 pmol) HDR oligo. After nu-
cleofection the cells were plated onto 10 cm dishes.

Cells were grown to ∼80% confluence in a 10 cm dish (5–
7 days) and then harvested by accutase. Cell pellets were
washed once in PBS before flash freezing on dry ice and
stored at –80◦C. Routinely six identical cell pellets, each
containing 2 × 106 cells were harvested from a single 10 cm
dish.

Genomic DNA isolation

Genomic DNA was prepared using the MagAttract HMW
Kit (Qiagen, 67563). The frozen cell pellets were resus-
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pended in 180 �l Buffer ATL and 20 �l proteinase K, trans-
ferred to a 2 ml eppendorf and lysed for 1 h at 65◦C at
900 rpm. gDNA was then extracted from the lysate follow-
ing the manufacturer’s protocol and eluted from the beads
in 100 �l DNase-free water. PCR was carried out using
PowerUp SYBR Green Master Mix (Applied Biosystems)
with 5 �l gDNA (250–500 ng) template and 0.4 �M final
concentration forward and reverse primers in a 50 �l reac-
tion. The PCR reaction mixture was split into four tubes
(12.5 �l) for amplification to avoid founder biases and then
repooled ready for barcoding PCR. Typically four PCRs
were carried out from a gDNA preparation.

95◦C 10 min 1 cycle
95◦C 15 s
57◦C 15 s 30 cycles
62◦C 30 s
62◦C 5 min 1 cycle

RNA isolation and reverse transcription

RNA was extracted using the Direct-zol RNA Miniprep
kit (Zymo R2071) following the manufacturer’s protocol. It
was important to use a trizol-based extraction method to al-
low the successful purification of nascent nuclear RNA. We
used 300 �l TRI-Reagent to resuspend the frozen cell pellets
straight from dry ice. We carried out the optional in-column
DNase digest and RNA was eluted from the column in 50
�l DNAse/RNAse-free water. We then performed a further
DNase treatment of the RNA using TURBO DNA-free kit
(Thermo-Fisher) as the manufacturer’s protocol. We made
cDNA from 1 �g RNA using Superscript IV (Thermo-
Fisher) according to the manufacturer’s protocol. Impor-
tantly we used a gene-specific reverse transcription (RT)
primer (final concentration: 0.1 �M) to prime the reverse
transcription as this increased sensitivity when amplifying
from low abundance, nascent RNA. Typically two reactions
of cDNA synthesis (20 �l each) and a control lacking the
RT enzyme were carried out using these conditions.

50◦C 10 min
55◦C 10 min
60◦C 10 min
80◦C 10 min

PCR was carried out using PowerUp SYBR Green Mas-
ter Mix (Applied Biosystems) with 5 �l cDNA template and
0.4 �M final concentration forward and reverse primers in
a 50 �l reaction. The PCR reaction mixture was split into 4
tubes (12.5 �l) for amplification to avoid founder biases and
then repooled. Typically, 8 PCRs were carried out from one
RNA preparation.

95◦C 10 min 1 cycle
95◦C 15 s
57◦C 15 s 30 cycles
62◦C 30 s
62◦C 5 min 1 cycle

The PCR products were analysed on a 2% agarose gel,
stained with ethidium bromide, alongside the minus RT
controls before the barcoding PCRs were carried out.

CCDC6 splice site mutagenesis

To perform the saturation mutagenesis experiment, HDR
templates were designed for each base alteration, and were
mixed together in equimolar amounts before nucleofection.
Two nuclefections were carried out to ensure high enough
levels of HDR (>1%) for each event, with nucleofection 1
altering 17 bases and nucleofection two altering 16 bases.
A common HDR template was also added to both nucle-
ofections to allow for a comparison between them. The fi-
nal amounts per nucleofection were 1 × 106 cells, 100 �l
P3 buffer, 5 �l (20 �g) SpCas9, 5 �l (225 pmol) CCDC6
sgRNA and 5 �l (500 pmol) of the mixture of HDR oligos.

Sequencing

In order to add the Miseq indices (8) we performed a second
PCR using 1 �l PCR1 (from gDNA and cDNA), PowerUp
SYBR Green Master Mix (Applied Biosystems), and 0.4
�M final concentration forward and reverse primers in a
25 �l reaction.

ATAC-seq

We carried out ATAC-seq on KOLF2-C1 iPSCs (three sam-
ples, cultured as above) and also on iPSC-derived cortical
neurons.

Differentiation of iPSC-derived cortical neurons was car-
ried out as described in Shi et al. (12). Briefly iPS cells were
induced to form a monolayer of NPCs by addition of dual
SMAD inhibition and by WNT signalling inhibition for 12
days. After 16 days NPCs were dissociated with accutase
and plated a low density on laminin to form neurons. ATAC
samples were taken at Day 35 from three independent dif-
ferentiations.

ATAC-seq was performed as described in Kumasaka
et al. (13). Briefly, a single cell suspension of iPSCs or iPSC-
derived cortical neurons was made using accutase, and nu-
clei were extracted before undergoing tagmentation using
the Illumina Nextera kit. Each ATAC sample was made
from 100 000 cells. After PCR amplification and size selec-
tion the ATAC libraries were sequenced on Hiseq 4000 with
an average of ∼100 million reads per sample.

We downloaded 9 microglial ATAC-seq datasets based
on the study by Gosselin et al. (14). We aligned ATAC-seq
reads for the three hiPSC samples, three neuronal samples,
and nine microglial samples to GRCh38 with bwa 0.7.15.
We prepared bigWig files from alignments by using bedtools
genomecov, followed by bedGraphToBigWig. For display
purposes (Figure 2) we combined all samples within each
cell type.

hiPSC QTL fine-mapping

To identify candidate causal variants in hiPSCs, we used
summary statistics for gene eQTLs and sQTLs from a large
study of hiPSCs (15), and for each of these QTL types fil-
tered to retain genes with at least one tested SNP having
association P < 1 × 10−5. We used the Wakefield method
(16) to determine SNP approximate bayes factors from
summary statistics, and then applied WTCCC-style fine-
mapping (17) assuming a single causal variant per QTL
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to determine SNP posterior probabilities. For gene-level
eQTLs this identified >470 SNPs with greater than 99%
probability each of causally affecting gene expression. We
examined the top few candidates to identify transcribed
SNPs within ATAC-seq peaks in hiPSCs, and selected SNPs
in MUL1 (rs6700034) and ABHD4 (rs8011143) for GenIE
editing. For sQTLs, we additionally annotated SNPs with
their score from SpliceAI (18), and from among the many
SNPs with both high causal probability and high SpliceAI
score we selected SNPs in TAF1C (rs4150126) and SDF4
(rs60252802) for editing. To generate the plots in Figures
2A and 3A, we obtained anonymised sample genotypes and
normalised gene expression or splice junction usage values
from the i2QTL consortium data (15), and plotted values
by genotype using the ggbeeswarm R package.

Selection of CLU SNPs and GenIE experiments

SNPs in CLU associated with Alzheimer’s disease were
identified previously, as described in Schwartzentruber et al.
(19). The locus likely contains two causal variants, one in
PTK2B and one in CLU. Mean fine-mapping probabilities
for SNPs in the CLU region are given in Supplementary Ta-
ble S1.

The 11 CLU SNPs were processed in three separate Ge-
nIE batches, which had differing numbers of cDNA and
gDNA replicates: batch A was done as 3 cDNA or gDNA
preparations followed by three PCR replicates for each ex-
traction, for a total of 18 replicates; batch B was done iden-
tically, except that nine PCR replicates were done from the
first gDNA preparation, and three from each of the other
two; batch C was done with two cDNA preparations fol-
lowed by four PCR replicates each, and one gDNA prepa-
ration followed by four PCR replicates. To make all SNPs
comparable, we downsampled the experiments with more
replicates (batches A and B) to match batch C by selecting
eight cDNA and four gDNA replicates for each SNP, which
were balanced across the cDNA and gDNA preparations.
Supplementary Table S7 provides details of the replicates
used. In all cases, the downsampled results were compara-
ble (very similar effect size estimates) to those obtained us-
ing all performed replicates.

Read alignment and quality control

Since all amplicons were smaller than 300 bp, we first
merged the overlapping 150-bp paired-end reads using
FLASH v1.2.11 (20) to improve alignment of Cas9-induced
deletions. As input to FLASH we specified a minimum over-
lap of 10 bp, fragment size as the amplicon size, fragment
standard deviation of 20, and maximum mismatch density
of 10%, and used the –allow-outies parameter. A mean of
94% of reads could be successfully merged, with standard
deviation of 8%. We aligned merged reads to a human ref-
erence containing the sequences of all amplicons using bwa
mem v0.7.17 (21), with lenient parameters to allow aligning
Cas9-induced deletions (-O 24,48 -E 1 -A 4 -B 16 -T 70 -k
19 -w 200 -d 600 -L 20 -U 40).

For each replicate (cDNA or gDNA) at each locus, the
rgenie software extracts reads mapping to the targeted re-
gion from the aligned BAM file. Different analyses were

done to quantify the effects of targeted SNP changes (HDR
events) vs. deletions. For HDR analysis, no reads were dis-
carded, and we used ‘grep’ to identify reads with either the
HDR or WT allele, requiring a match of 6 nt on each site of
the altered site. For deletion analyses, reads were discarded
if they had any insertions, if they did not span the site of
SNP change, if they aligned to <30 bp of the amplicon,
or if they had a mismatch fraction >5%. The read cigar
string was used, along with read start coordinates, to iden-
tify whether a read matched the HDR or WT allele at the
SNP site (with no requirement to match in a specific window
around this apart from the above filters), or to identify po-
sitions in the amplicon where the read had a deletion. Dele-
tion reads were never considered as HDR or WT. Reads
were considered to have a Cas9-induced deletion if they had
any deletion that spanned the window ±20 bp from the cut
site. Deletion reads were represented internally as a ‘unique
deletion profile’ (UDP), such that reads with identical dele-
tions but one or more mismatches were considered to be the
same allele.

Statistical analysis

To identify gene expression differences for an allele X (ei-
ther HDR or deletion allele), we first determine for each
replicate the ratio of the read count of X to that of the WT
allele:

r = read count X
read count WT

(1)

This normalisation ensures that we can accurately esti-
mate the fold-change effect of allele X (relative to WT) even
when either X or WT represents a large or small propor-
tion of total reads. (Note that while in principle the WT
read count could be zero, in practice we would not ana-
lyze an experiment where this is the case, and we recom-
mend only considering experiments / replicates where ≥5–
10% of reads are WT.) We thus have ratios {rC

1, rC
2, . . . ,

rC
N} for N cDNA replicates, and ratios {rG

1, rG
2, . . . , rG

M}
for M gDNA replicates. We use these ratios, rather than di-
rect counts, because following PCR and deep sequencing
there will likely be duplicate reads from individual DNA
molecules. Note also that because cDNA and gDNA are
extracted separately, followed by independent PCRs, there
is no pairing between individual cDNA and gDNA repli-
cates. Therefore, we separately compute the mean ratio in
cDNA, rC = 1

N

∑N
i=1 rC

i , and the mean ratio in gDNA,

r G = 1
M

∑M
i=1 r G

i . If allele X alters the expression level of
the gene in which it appears (relative to WT), then the ratios
will differ between cDNA and gDNA, i.e. rC �= r G . Since
the variance of gDNA replicates tends to be lower, we use
a two-tailed unequal variances (Welch’s) t-test to test for a
difference in this ratio.

We define the effect size � as:

β = rC

r G
(2)

This effect size represents the fold change in expression
of an allele, relative to the WT allele, normalizing for the
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prevalence of the allele within the DNA of the cell pop-
ulation. Note that rather than testing for a difference in
means, rC �= r G , a nearly equivalent test would be � �=1. In
practice, the test for a difference in means is more straight-
forward, and for significance testing, we report P values
from this test. However, for visualization we report ef-
fect size estimates �, and determine 95% confidence in-
tervals as follows. We denote the standard deviation of

the cDNA ratios rC as σC =
√

1
(N−1)

∑N
i=1 (rC

i − rC)
2
, with

standard error of the mean (rC) as SEC = σC/
√

N. The cor-
responding values for gDNA are defined similarly: σG =√

1
(M−1)

∑M
i=1 (r G

i − r G)
2
, and SEG = σG/

√
M. To deter-

mine a confidence interval for �, we first determine the un-
certainty (standard deviation ��) of the estimate � using the
propagation of uncertainty formula for a ratio � = A/B:

σβ
2 ≈ β2

[(σA

A

)2
+

(σB

B

)2
− 2

σAB

AB

]
(3)

where A = rC, �A is the standard deviation of A, B =
r G , and �B is the standard deviation of B. Note that be-
cause A and B in this ratio are the estimated means, the
uncertainty in these means is their standard error. That is,
σA = SEC = σC/

√
N, and σB = SEG = σG/

√
M. We take

the covariance �AB to be zero since the replicates are inde-
pendent. (This is conservative, since a nonzero value for the
covariance would reduce the uncertainty.) We estimate the
degrees of freedom for an unequal variances t-test using the
Welch–Satterthwaite equation:

ν ≈
(

σC
2

N2 + σG
2

M2

)2

σC
4

N2(N−1) + σG
4

M2(M−1)

(4)

We then determine the 95% confidence interval of � as:

95%CI = [β − t0.975 ∗ σβ, β + t0.975 ∗ σβ ]. (5)

where t0.975 is the the 0.975 quantile of the t distribution with
degrees of freedom v.

Variance components analysis

To determine the variance attributable to different exper-
imental factors, we performed GenIE at eight intronic
SNPs within different genes, using multiple repeats at dif-
ferent stages of the process: one round of Cas9 editing,
three repeats each of genomic DNA extraction and RNA
extraction/reverse transcription, three replicates of PCR
each for gDNA and cDNA, two repeats of barcoding, and
two repeats of sequencing (separate Miseq runs), for a to-
tal of 576 replicates (Supplementary Figure S4). One region
did not edit successfully, and so was excluded (72 total repli-
cates). For each sequenced replicate we determined the frac-
tion of reads representing each unique allele (‘unique dele-
tion profile’, UDP), relative to the total number of reads.
We then used the variancePartition R package (22), with
all replicates at a given locus, to determine variance compo-
nents attributable to each factor (cDNA/gDNA extraction,
PCR, barcoding, and sequencing) for the fraction of reads

for each allele. These are displayed separately for cDNA and
gDNA replicates (Supplementary Figure S4).

Power analysis

To estimate the power of a GenIE experiment to identify ef-
fects of specific alleles, we used the presence of multiple dif-
ferent unique deletion alleles present at different fractions.
For each allele, we determined its fraction, relative to all
reads in the replicate, and computed the mean (f) and the
coefficient of variation (CV, standard deviation divided by
the mean) of this fraction across replicates. In general, the
coefficient of variation is higher for alleles with lower abun-
dance. We then fit a curve to predict CV from the mean allele
fractions separately for cDNA and gDNA (Supplementary
Figure S3a), and found that the following form gave a rea-
sonable fit:

CV = a + b√
f

(6)

Here, a and b are parameters that are fit for a given ex-
periment. We restricted the alleles considered to those with
>0.1% frequency. Using the fit, we can estimate the CV ex-
pected in either cDNA or gDNA for a given allele frac-
tion, and consequently, the standard error (SE) of the es-
timate as CV /

√
N. We then use the propagation of uncer-

tainty formula for a ratio (Eq. 3) separately to determine
the standard error of the cDNA estimate rC = (fA / fWT),
the gDNA estimate rG = (fA / fWT), and the standard devi-
ation of the effect size � = rC / rG, at any given allele fre-
quency fA and number of cDNA replicates N and gDNA
replicates M. Because the power to detect an effect of a
given allele depends on the variability in the WT quantifi-
cation as well, we used the observed CV of the WT allele
(separately in cDNA and gDNA) in all power calculations.
The t score is then determined as t = |� – 1|/��, and the
power is 1 – 2*P(–|t|) with degrees of freedom estimated as
for the Welch t-test (Eq. 4) based on the chosen number of
replicates. For power estimates reported in the main text,
we computed power separately at each of 13 targeted re-
gions (MUL1, ABHD4, TAF1C and 10 CLU SNPs which
excludes CLU 4-rs4236673 since editing failed at that SNP),
based on the variability of allelic estimates within those re-
gions, and assumed eight cDNA and four gDNA replicates.
These values are in Supplementary Table S8, and we re-
ported the minimum power across the 13 regions.

RESULTS

Genome engineering based interrogation of enhancers (Ge-
nIE)

Whereas only 6% of GWAS lead SNPs alter protein-coding
sequence, nearly 70% of disease-associated variants are
within transcribed regions, the majority of which are in-
tronic (Figure 1A) (1). Building on our previous work (23),
we developed the GenIE assay to assess the effects of single
nucleotide variants residing within intronic regions on ei-
ther gene expression or splicing using versatile hiPSC-based
model systems.
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Figure 1. GenIE overview. (A) Proportion of GWAS lead SNPs in different genomic regions; 69% fall in transcribed regions (introns/exons/splice
sites/UTRs/ncRNAs). (B) Deletion profiles from Cas9 editing at MUL1 intronic SNP rs6700034 in hiPSCs, assayed in genomic DNA (gDNA, left)
and complementary DNA (cDNA) generated from RNA (right). (top row) count of sequencing reads having a deletion at each nucleotide position relative
to the cut site; (bottom row) profile of each unique Cas9-induced deletion. (C) Schematic of GenIE assay. Edited pools of cells contain a mixture of WT,
edited point mutation (SNP) and a variety of deletion alleles (indel 1, 2, etc.), expression from each of which can be quantified by amplicon sequencing of
cDNA and gDNA extracted from the same population of cells.

We first deliver Cas9 ribonucleoprotein along with a
∼100 nt ssDNA oligonucleotide homology directed re-
pair (HDR) template into hiPSCs (10). This generates a
mixed population of cells containing unedited (WT) alle-
les, the desired genetic variant and a large number of dis-
tinct small insertions and deletions (Figure 1B, C). Next,
we extract genomic DNA (gDNA) and RNA from this cell
population, and perform multiple replicates of PCR us-
ing an amplicon spanning the edited site in both gDNA
and cDNA, followed by high-throughput sequencing. Gene
expression of each allele (or collections of alleles) is cal-
culated as the ratio of sequencing reads in cDNA rela-
tive to gDNA. Within each replicate, the expression of a
given allele is normalised to the unedited (WT) reads to
identify any change in gene expression relative to WT. By
adjusting the PCR primers used for the assay, it can be
adapted to measure gene expression or specific splicing
events.

We optimised GenIE for lowly-expressed intronic se-
quences (Supplementary note, Supplementary Figures S1,
S2, Methods) and applied it across 13 intronic SNPs. Based
on the variability of allele quantification in gDNA and
cDNA, we estimate that we can detect a 1.2-fold change

in expression for alleles present at ∼1% frequency with
>70% power when using 12 PCR replicates (8 cDNA and
4 gDNA) (Supplementary Figures S2–S4, Methods and
Supplementary Table S8). We also developed an R pack-
age (rgenie, https://github.com/Jeremy37/rgenie) that auto-
mates analysis of experiments, including statistical assess-
ment of HDR and small deletions, quality control, and
analysis of the deletion repertoire (Figure 2, Supplementary
Figures S5–S9, S12, S14).

Intronic enhancers

We performed fine-mapping of hiPSC eQTLs (15) to iden-
tify candidate variants with a high probability of causally
influencing hiPSC gene expression. We applied GenIE to
a variant in the 5′ UTR of MUL1 (rs6700034) and a sec-
ond variant in the first intron of ABHD4 (rs8011143), both
of which overlapped with accessible chromatin regions de-
fined by ATAC-seq (Figure 2B). For MUL1, GenIE esti-
mated elevated expression of the A allele relative to C (2.1×,
P = 4.5 × 10−5, Welch’s t-test) (Figure 2C), consistent
with the eQTL effect (Figure 2A). Interestingly, small dele-
tions spanning rs6700034 showed a similar upregulation of

https://github.com/Jeremy37/rgenie
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Figure 2. GenIE identifies effects of intronic enhancer elements. (A) Violin plots of eQTLs for MUL1 and ABHD4 in hiPSCs. (B) (left) Genomic position of
targeted SNPs within MUL1 and ABHD4 enhancer elements; (right) pie chart showing the corresponding editing rates. (C) Barplots of GenIE-measured
expression of alternative alleles (HDR-introduced allele or deletion alleles) in hiPSCs, relative to WT allele. (D) CLU gene region, showing ATAC-seq
profiles from hiPSCs, hiPSC-derived neurons, and primary microglia, with positions of 11 targeted SNPs indicated. (E) GenIE-measured expression of
HDR-introduced alleles or deletions, relative to the WT allele in hiPSCs. Effect sizes (fold change) of significant results are shown above each bar. (F)
GenIE expression for CLU SNPs 6–8, relative to WT, with editing in an hiPSC line homozygous for the opposite haplotype; for each SNP, the edit was in
the opposite direction to the edit in panel (c). All error bars represent 95% confidence intervals.

MUL1 expression (2.4×, Figure 2C, Supplementary Fig-
ures S5 and S6), suggesting that this region may normally
bind a repressor which is disrupted by either deletions or by
the A allele. Indeed slightly longer deletions show a larger
upregulation, suggesting that there is an extended binding
site (Supplementary Figures S6 and S7). This demonstrates
how the analysis of the deletion repertoire generated in a
GenIE experiment can provide useful information about
the mechanism of action of the variant of interest. We re-
peated the experiment with a second Cas9 single guide RNA

(sgRNA) and obtained a very similar effect (Supplementary
Figure S7), showing that the results were independent of the
sgRNA identity.

For the ABHD4 eQTL, the intronic rs8011143-C geno-
type correlates with decreased ABHD4 expression in hiP-
SCs (Figure 2A). As expected, conversion of the T>C geno-
type gave a decrease in expression in the GenIE experiment
(0.4×, P = 3.3 × 10−4, Welch’s t-test, Figure 2B). Deletions
showed a similar yet smaller decrease in ABHD4 expression
(0.8×, Supplementary Figure S8 and S9).
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Figure 3. GenIE identifies splicing regulatory elements. (A) Violin plots of splicing QTLs for TAF1C (usage of junction 1, chr16:84184989–84186901) and
SDF4 (junction 1, chr1:1228946–1231892) in hiPSCs. (B) (left) Genomic region showing differential splicing at TAF1C and SDF4 loci; (right) fraction of
reads for HDR, deletion (NHEJ) and wild-type (WT) alleles for TAF1C and SDF4. (C) GenIE-measured expression of targeted SNP alleles. (D) Deletion
profiles of the top 16 alleles by read count from GenIE targeting of rs1171830. Shown on the right is the expression of each allele relative to the WT
(reference) SNP allele, coloured by whether the canonical splice site motif is retained (blue) or disrupted (red). (E) GenIE-measured expression for dense
mutagenesis near the CCDC6 exon1-intron1 splice site. All error bars represent 95% confidence intervals. (F) (top) Sequence logo showing that GenIE
recapitulates the consensus splice site motif, with letter size proportional to the inverse of the GenIE effect size when mutated to that nucleotide (relative to
the WT/consensus, set to 1); (bottom) Scatter plot showing correlation between GenIE-measured effect size and SpliceAI score for donor splice site loss.



PAGE 9 OF 11 Nucleic Acids Research, 2020, Vol. 48, No. 22 e131

We next applied GenIE to screen 11 variants at the clus-
terin (CLU) locus that form the 99% confidence set of cred-
ibly causal variants identified by fine mapping of an AD
GWAS (19). The CLU gene has been implicated in AD pro-
gression, likely due to an effect on amyloid beta aggregation
or clearance (24), and CLU knockout is neuroprotective in
rodents (25–27) and in hiPSC neurons (28). All 11 variants
were located within the transcribed unit (Figure 2D, Supple-
mentary Table S1), and included several within putative en-
hancers as defined by ATAC-seq, along with a synonymous
variant in exon 5. The 11 regions showed a substantial vari-
ability in overall editing efficiency and HDR rates (Figure
2E), although there was only one case (#4) where the rates
of editing were too low (<1%) to interpret a result. As previ-
ously observed (29), high editing rates were often associated
with regions of accessible chromatin as identified by ATAC-
seq, which makes these gene regulatory elements particu-
larly amenable to GenIE analysis. Four SNPs showed a sig-
nificant (P < 0.01, technical replicates, Welch’s t-test) reduc-
tion in gene expression (0.8–0.9×), three of which (variants
6, 7, 8) sit within a single ATAC peak in intron 3 that is
present in hiPSCs and neurons (Figure 2D, Supplementary
Figure S10). This set of three SNPs also showed an effect
of small deletions (P < 0.01, technical replicates, Welch’s
t-test), with deletions at one of these showing increased ex-
pression, the opposite effect direction relative to SNP in-
troduction. To further investigate this result, we performed
GenIE on these three SNPs (variants 6, 7 and 8) within the
intron 3 ATAC peak using an hiPSC line that was natu-
rally homozygous for the opposite haplotype at this locus.
As expected, deletions over variants 6 and 7 showed the
same result as before. However in this case there was no ef-
fect at variant 8 (Figure 2F). We also observed no signifi-
cant changes in expression upon introduction of variants 7
and 8 in this haplotype. This may be explained by biolog-
ical effects such as interactions with other variants within
this haplotype, but also may indicate that for small effect
sizes identified in a GenIE screen, additional repeats may
be necessary to confirm screening results. When effect sizes
are small, the power to detect a change in expression is mod-
est (e.g. at most 75% power at 5% expression change, Sup-
plementary Figure S3). Detection of small effects may also
be more dependent on subtle biological differences in cell
state between experiments, or to technical factors, such as
the specific genome edits that occur or the alignment of se-
quencing reads. Thus, statistical significance, effect size and
editing rates should be considered when interpreting the re-
sults of a GenIE screen. Nevertheless, and consistent with
our previous result, a C>T conversion at variant 6 showed a
significant upregulation in expression, opposite in direction
to the effect of a T>C conversion in the alternative haplo-
type (Figure 2F) and highlighting this variant as worthy of
further investigation.

Taken together, these data show the effectiveness of Ge-
nIE in identifying causal effects of individual SNPs in
UTRs and introns on gene expression.

Splicing analysis

A large number of transcribed variants are predicted to
have a role in regulating alternative splicing or alternative

polyadenylation (30). We postulated that by judicious po-
sitioning of primer pairs either within or outside exons, we
could use GenIE to detect changes in splicing by either a
gain or loss of the spliced or unspliced isoforms (Supple-
mentary Figure S11).

To identify candidate variants likely to affect splicing,
we performed fine-mapping of splice quantitative trait loci
(sQTLs) in hiPSCs. The rs4150126 variant in the 5′ UTR of
TAF1C showed a strong sQTL effect, whereby the A allele
was associated with more frequent usage of a downstream
splice acceptor site (Figure 3A, junction 1). We placed one
PCR primer within the alternatively spliced region and the
second in the common part of exon 2. Therefore, if the up-
stream splice site (junction 2) was used, both primers would
be within the same exon, but if the downstream splice accep-
tor (junction 1) was used, one primer would be within intron
1, and thus only detect nascent (pre-spliced) transcripts, re-
sulting in an apparent reduction in expression. GenIE anal-
ysis showed that conversion of rs4150126 G>A resulted in a
strong reduction in expression (0.3×), whereas small dele-
tions around rs4150126 had no effect (Figure 3B, C, Sup-
plementary Figure S12). These results are consistent with a
mechanism whereby the A allele creates a novel splice ac-
ceptor site (Figure 3B, junction 1), in which case deletions
would not be expected to have any effect. Importantly, it
also demonstrates a causal effect of rs4150126 within this
haplotype.

As a second example we examined SDF4, where
rs60252802 (T>C) associates with gain of a splice donor site
and an extension of exon 1. To assay this effect, we placed
one PCR primer in the extended region of exon 1 and a sec-
ond in exon 2 (Figure 3B). Thus, extension of exon 1 results
in both primers being in the mature transcript, whereas oth-
erwise only one primer would be within the spliced mRNA.
As this amplicon would be too large to amplify from ge-
nomic DNA, we used an additional nearby primer to as-
sess the frequency of alleles in the genomic DNA (Figure
3B). This design does not allow interpreting the effects of
deletions (which will not be seen in the RNA amplicon)
but is highly sensitive for detecting a SNP effect on splic-
ing. The hiPSC line we used for GenIE was heterozygous
at rs60252802, and consistent with this, we observed the ex-
tension of exon 1 in a proportion of RNA-seq reads (Sup-
plementary Figure S13). To assay the effect of rs60252802
independent of haplotype effects, we introduced two HDR
templates during Cas9 editing, namely, the two alleles of
rs60252802 (C or T, in bold) in conjunction with a com-
mon, nearby second-site mutation (C>G). Thus, in one Ge-
nIE experiment we could determine the effect of the haplo-
type (CG to TG, 25× upregulation), the effect of the SNP
and second-site mutation together (CC to TG, 30x upreg-
ulation), and the effect of the second-site mutation alone
(TC to TG, downregulation) with respect to the T haplo-
type (Figure 3C, Supplementary Figure S13).

We reasoned that we could also apply GenIE in a mul-
tiplexed format, whereby we introduce multiple mutations
across a defined region in the same pool of cells. We tar-
geted a region of the CCDC6 gene neighbouring a splice
donor site, which includes the synonymous AD risk SNP
rs1171830. There was no effect of A>C conversion of the
SNP (95% CI 0.95–1.03). However, the apparent expression
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of deletions removing the splice site (red) was 15-fold higher
than those retaining the splice site (blue, Figure 3D, Supple-
mentary Figure S14), likely due to extension of the exon to
include the second primer binding site. This demonstrates
how we can use the information encoded in the deletion
repertoire to (re)discover regulatory elements. We then de-
signed HDR template oligos to mutate every base around
the splice site to every other possible base (avoiding amino
acid substitutions), a total of 33 single nucleotide changes.
We performed GenIE using pools of 16 or 17 variants in
each electroporation to ensure HDR rates of >1% per al-
lele. As expected, all variants in the canonical splice donor
site (GT) at the beginning of the intron had a strong ef-
fect on splicing, along with certain base substitutions of the
subsequent two nucleotides (Figure 3E). The effects mea-
sured by GenIE recapitulated the splice donor site consen-
sus sequence of GTRA (Figure 3F), and strongly correlated
with effect size predictions from SpliceAI (18), a machine
learning-based method of splice site prediction (Figure 3F).

DISCUSSION

Although CRISPR-mediated genome editing and isolation
of clonal cell lines provides one means to establish causal
effects of noncoding genetic variants, the number of candi-
date variants overwhelms our ability to produce and char-
acterise clonal cell lines. We have described an arrayed
CRISPR screening method, GenIE, that can be used in
an unbiased manner to assess the modest effect sizes of
common genetic variants on transcription and splicing with
high power, and which is scalable to hundreds of SNPs. Im-
portantly, variants are introduced at their endogenous lo-
cus and therefore are subject to all of the gene regulatory
layers that exist in the natural context. Together, our results
demonstrate the effectiveness of GenIE in assaying the ef-
fects of genetic variants on transcription and splicing and
to define the location and critical sequence motifs of func-
tional elements. While we have used hiPSCs as a convenient
model system, GenIE is compatible with differentiation of
cells into disease-relevant cell types, and in principle could
also be applied to cell types where clonal isolation is diffi-
cult, such as primary cells.

Although GenIE can potentially assay the ∼70% of
GWAS variants that lie within transcribed regions of the
genome, there remains a need for additional methods that
assay non-transcribed regulatory elements, or those that ex-
ist outside of the gene they regulate. Methods have been
developed to understand the effects of gene regulatory el-
ements by repressing their function using catalytically inac-
tive Cas9 fused to transcriptional repression (KRAB) do-
mains (31,32), or by introducing small indels (33). Whilst
applicable to non-transcribed regulatory elements, these
techniques are restricted by their resolution (∼1 kb for
KRAB repressor domains), and their inability to assay the
single nucleotide changes identified by GWAS or other hu-
man genetics studies, which can give different effects to dele-
tion of the underlying regulatory element. Also, despite ex-
tensive optimisation of editing efficiency (10), 49% of sites
we tested (19 of 39) gave HDR rates below a usable level.
We anticipate that further developments in the genome en-
gineering field such as biasing DNA repair (34), base editing

(35,36) or prime editing (37) will improve our ability to per-
form such screens, and expand the number of variants that
can be screened still further.
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