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Mycobacterium tuberculosis instigates interactions with host factors to promote its survival within the 
host inimical conditions. Among such factors, nuclear receptors (NRs) seem to be promising candidates 
owing to their role in bacterial pathogenesis. However, only few members of NR superfamily have 
been implicated in M. tuberculosis infection and there is a dearth of comprehensive knowledge about 
expression or function of the entire superfamily. In this study, we performed detailed expression 
analysis and identified key NRs getting differentially regulated in murine macrophages and dendritic 
cells (DC) upon infection with H37Rv. The murine macrophages and DCs infected with H37Rv entailed 
overlapping changes in the expression of certain NRs which reflect upon the possibility that both cells 
might utilize similar transcriptional programs upon M. tuberculosis infection. We identified Nr4a3 
and Rora, which have not been implicated in M. tuberculosis pathogenesis, undergo similar changes 
in expression in macrophages and DCs upon H37Rv infection. Interestingly, a similar pattern in their 
expression was also observed in infected human monocyte derived macrophages and the findings 
corroborated well with PBMCs obtained from TB patients. This all-inclusive analysis provides the basis 
for a precise approach in identifying NRs that can be targeted therapeutically in intracellular bacterial 
infections.

The cells of innate immune system particularly macrophages and dendritic cells (DCs) provide the first line of 
defence against Mycobacterium tuberculosis and they are among the first few cells to interact with the bacteria 
upon infection in the host. Macrophages and DCs utilize a wide variety of surface receptors including toll-like 
receptors, opsonic receptors, mannose receptors, etc. that recognize antigenic molecules on the bacterial sur-
faces1–5. Engagement of bacterial pathogen-associated molecular patterns (PAMPs) with these host cell receptors 
results in the bacterial uptake and entrapment of bacteria in the phagosomes. The members of nuclear receptor 
(NR) superfamily not only regulate the signalling through such pathogen recognition receptors but have also 
been shown to sense the lipid components of mycobacteria by their direct binding to such lipids6,7. The NR super-
family that comprises a total of 49 members has been categorized into three families namely, endocrine, adopted 
orphan and orphan NRs on the basis of the nature of the ligand they bind8–11.

A growing literature about NRs in infectious diseases highlights that they are important in shaping up the 
innate immune responses and several pathogens, for their own benefits, have evolved strategies to modulate 
NRs either by changing their expression or by interfering with their transcriptional activity. For example, Listeria 
monocytogenes and M. tuberculosis induce the expression of peroxisome proliferator-activated receptor gamma 
(Pparg) in macrophages12–14. Expression of Pparg is also elevated in response to a PAMP called mannose-capped 
lipoarabinomannan obtained from the cell wall of M. tuberculosis15. Interestingly, silencing of Pparg in mac-
rophages significantly reduces the bacterial burden supporting the pro-bacterial role for Pparg12. In addition 
to Pparg, another NR named testicular receptor 4 (Tr4) also acts as a molecular switch and by regulating the 
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macrophage polarization towards M2 phenotype, augments the bacterial survival12,16. The infection with intra-
cellular bacteria like M. tuberculosis, L. monocytogenes and Shigella flexneri also elevates the levels of liver X 
receptor alpha (Lxra) in macrophages17,18. Moreover, infected macrophages have elevated levels of Lxra target 
genes suggesting that transcriptional programs induced by Lxra promote the clearance of bacteria inside the 
macrophages17. In agreement with these findings, Lxra deficient mice showed increased susceptibility to bacterial 
infections17,18. Also, along with Lxr the binding sites of retinoic acid receptor (Rar) are enriched in H3K4me1 
regions (a marker for active or poised enhancers) in M. tuberculosis infected THP-1 cells19. In accordance with 
these findings, studies performed on human DCs infected with M. tuberculosis also revealed enrichment of Lxr 
and Rar binding sites20. Furthermore, the transcriptomic analysis of blood samples from active pulmonary TB 
patients revealed an altered expression in vitamin D receptor (Vdr) associated genes compared to the individu-
als with latent bacterial infection. Vdr-regulated genes are also enriched in M. tuberculosis infected THP-1 cell 
line21,22. Many other members of NR superfamily which includes glucocorticoid receptor (Gr), pregnane X recep-
tor (Pxr), Nr1d1, and Vdr have also been shown to be involved in the pathogenesis of bacterial infection23–28. 
Furthermore, NRs are amicable to modulation by small molecules (which are either available or can be synthe-
sized easily) and hence numerous endogenous and synthetic NR ligands have been evaluated in various infection 
models as potential therapies29.

M. tuberculosis is unique in its ability as it successfully parasitizes both macrophages and DCs, which in tradi-
tional view are considered as host sentinels for initiating protective immunity against bacterial infections. With 
the emergence of knowledge about the cross-talk between host NRs and M. tuberculosis, it is compelling to iden-
tify all those NRs which have a bearing on the persistence and pathogenesis of mycobacteria in macrophages and 
DCs. A composite gene expression analysis of NRs performed in macrophages and DCs has suggested a regu-
latory role of NR superfamily in macrophages and DC functionality8,30. However, these studies have examined 
the expression of these NRs only in the presence of a PAMP or an immunological modulator and we still need 
to unravel a composite list of all NRs being modulated by mycobacteria in its innate immune cell niches. In this 
study, we performed a detailed expression profiling of NR superfamily in murine macrophages and DCs upon M. 
tuberculosis infection. In conjunction with identifying NRs whose role in M. tuberculosis pathogenesis has not yet 
been established we also recapitulated some of the findings which have been previously published. Intriguingly, 
we observed that NRs such as Vdr, Lxra, Pparg, Rarg, Nr4a’s, RAR-related orphan receptor alpha (Rora), andro-
gen receptor (Ar), and thyroid hormone receptor beta (Thrb) were undergoing differential regulation in both 
macrophages and DCs upon M. tuberculosis infection suggesting a plausible cross-talk between these NRs and 
M. tuberculosis. Interestingly, our analysis also revealed Rora and Nr4a3, both of which have not been previously 
implicated in TB infection, undergo changes in expression upon M. tuberculosis infection. We identified that 
H37Rv induces the expression of Rora while the expression of Nr4a3 was significantly reduced in murine and 
human macrophages. We also observed a similar pattern in the expression of Rora and Nr4a3 in murine DCs and 
PBMCs obtained from patients with active TB. Therefore, examining the potential of ligands for such NRs as an 
approach to anti-TB therapy could be promising.

Results
Identification of NRs modulated by M. tuberculosis H37RV in mBMDCs.  Being an intracellular 
pathogen, M. tuberculosis resides in cell types such as macrophages and DCs. Among these, macrophages have 
been largely the focus for studying cross-talk of M. tuberculosis with the host. However, given the unique ability 
of DCs to initiate T cell responses, DCs could possibly regulate the adaptive immune responses against the bac-
teria. Recently DCs have been shown to express certain repertoire of NRs, few of which have also been shown to 
regulate DC functions8,31,32. So, in order to address whether this pathogen has the ability to modulate any of these 
NRs in DCs and thereby DC function, in this study, we infected mouse bone marrow-derived DCs (mBMDCs) 
with H37Rv and monitored the expression of NRs relative to uninfected control cells. We selected 0 h, 12 h, and 
48 h post infection as the time points which allowed us to identify the changes in the transcript levels of NRs 
during early and later stages of infection. Interestingly, we found that the levels of some NRs were being altered 
upon infection (Fig. 1A). Among the endocrine NRs, Ar, Rarg, Thrb, and Vdr underwent significant downregu-
lation of greater than 2-folds (Fig. 1B). While Ar and Vdr remained constantly repressed during later time points 
of infection, the expression of Rarg and Thrb started to rescue at 48 h post infection. The adopted orphan NRs, 
Lxra and Pparg were downregulated at 12 h (Fig. 1C) followed by an enhanced expression of Lxra and recovery of 
Pparg’s basal expression at 48 h after infection. In the orphan NR family, all three members of Nurr family (Nr4a1, 
Nr4a2 and Nr4a3) exhibited repression while Rora was upregulated during later stages of infection (Fig. 1D). 
Taken together, our data identifies the members of NR superfamily which are being significantly modulated in 
mBMDCs upon M. tuberculosis infection. Of these, Vdr, Lxra and Pparg have already been shown to have an 
explicit role in M. tuberculosis pathogenesis thereby indicating plausible implication of other altered NRs in M. 
tuberculosis infection.

Expression analysis of NRs in mBMDMs upon M. tuberculosis infection.  Given the modulation 
of NRs with an unidentified role in M. tuberculosis infection, in H37Rv infected mBMDCs, we next set out to 
profile entire NR superfamily in H37Rv infected mouse bone marrow-derived macrophages (mBMDMs) to 
further explore the members with a possible role in M. tuberculosis pathogenesis. A similar kind of analysis 
revealed that unlike mBMDCs, in mBMDMs certain NRs started responding during the early time point of 
infection (0 h). These included Esr1, Gr, Rar’s, Thrb, Vdr, Pparg, Rxrb, Nr1d’s, Tr4, Nr4a1, and Nr4a3 (Fig. 2). At 
48 h post infection, when the equilibrium between bacteria and macrophages was established, few NRs that did 
not respond during early infection (0 h) showed elevated levels (Ppard, Rxra, Nr4a2, and Rora). Furthermore, 
this analysis reflected that while some of the early responding NRs such as Esr1 and Nr1d2 had a reverse pat-
tern of their expression at 48 h, others simply recovered their basal levels (Nr1d1, Tr4, Nr4a1, and Nr4a3). Thus,  
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M. tuberculosis infection affects the levels of different NRs in its innate immune reservoirs, but whether these 
induced changes in an individual receptor favours pathogen or host needs to be established.

NRs commonly modulated in mBMDCs and mBMDMs by M. tuberculosis.  Next, to additionally 
identify the key members of NR superfamily which might be crucial for M. tuberculosis pathogenesis we followed 
a systematic approach. Intriguingly, further in depth analysis revealed that M. tuberculosis was altering certain 
repertoire of NRs which was shared by both mBMDCs and mBMDMs. We identified that among the 49 members 
of the NR superfamily there were 10 NRs which were being modulated in both cell types upon M. tuberculosis 
infection (Fig. 3). Interestingly, six of them showed a similar pattern of regulation of their expression in mBMDCs 
and mBMDMs (Fig. 3A–F). Of these, Vdr, Lxra and Pparg have already been reported to have an implication in 
the tuberculosis disease. Whereas the role of others, which includes Rarg, Nr4a3 and Rora, has not yet been iden-
tified and remains to be established in M. tuberculosis infection. On the contrary, Ar (Fig. 3G), Thrb (Fig. 3H), 
Nr4a2 (Fig. 3I) and Nr4a1 (Fig. 3J) exhibited upregulation in mBMDMs whereas their expression was downregu-
lated in mBMDCs. The probable explanation for this could be the cell specific responses against mycobacteria in 
the studied cell types. As shown in Fig. 3K, Rora and Nr4a3 have similar while Ar, Thrb and Nr4a2 have different 
expression pattern in mBMDCs and mBMDMs. In corroboration, we observed similar modulation of Rora and 
Nr4a3 at protein levels as well (Fig. 3L). Taken together, we speculated that these commonly modulated NRs 
could prove to be novel target molecules for developing drugs to control M. tuberculosis infection.

Figure 1.  Mapping NRs expression profile in mBMDCs infected with mycobacterium H37Rv. (A) Heatmap 
depicting the fold expression of NRs in mBMDCs at 0 h, 12 h and 48 h after H37Rv infection, relative to 
uninfected mBMDCs. Transcripts with Ct values 32 or less are presented. Yellow and red colour displays the up- 
and down-regulated genes respectively as illustrated in the scale bar below the heatmap. Average fold regulation 
showing atleast two-fold change for (B) endocrine, (C) adopted orphan and (D) orphan NRs at different time 
points post H37Rv infection relative to uninfected mBMDCs are plotted. Results are mean and s.d. of three 
independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001, versus uninfected mBMDCs (one-way 
ANOVA). Letters above bars depict connecting letter report representing correlation of NRs expression at 
different time points. Bars not connected by the same letter are significantly different.
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Expression of NRs in CD11c positive cells isolated from lungs of M. tuberculosis infected mice.  
To determine whether above identified commonly regulated NRs were also significant in an in vivo setting, we 
tested their levels in lungs isolated from the most commonly used mice model of M. tuberculosis infection. We 
selected day 7, 15 and 30 post aerosol infection for our analysis in order to study their kinetics over the early 
and later stages of infection. CD11c positive cells were isolated from the lungs of these mice which represented 
a cellular population consisting of alveolar macrophages and DCs. Interestingly, alteration in the expression of 
Nr4a3 (Fig. 4A) and Rora (Fig. 4B) was in concordance with our in vitro findings. In addition, Ar (Fig. 4C), Thrb 
(Fig. 4D) and Lxra (Fig. 4E) reflected an expression pattern which was similar to mBMDCs, while Nr4a2 (Fig. 4F) 
exhibited that of mBMDMs.

Figure 2.  Mapping NRs expression profile in mBMDMs infected with mycobacterium H37Rv. (A) Heatmap 
depicting the fold expression of NRs in mBMDMs at 0 h, 12 h and 48 h after H37Rv infection, relative to 
uninfected mBMDMs. Transcripts with Ct values 32 or less are presented. Yellow and red colour displays the 
up- and down-regulated genes respectively as illustrated in the scale bar below the heatmap. Average fold 
regulation showing atleast two-fold change for (B) endocrine, (C) adopted orphan and (D) orphan NRs at 
different time points post H37Rv infection relative to uninfected mBMDMs are plotted. Results are mean and 
s.d. of three independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001, versus uninfected mBMDMs 
(one-way ANOVA). Letters above bars depict connecting letter report representing correlation of NRs 
expression at different time points. Bars not connected by the same letter are significantly different.
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Figure 3.  M. tuberculosis modulates NRs expression in murine macrophages and dendritic cells. NRs 
undergoing change in expression in both mBMDMs and mBMDCs are plotted. Comparative expression 
analysis of (A–J) NRs in mBMDMs and mBMDCs at 0 h, 12 h and 48 h post H37Rv infection. (K) A schematic 
representation showing NRs with significantly similar and opposite expression pattern in mBMDMs and 
mBMDCs at 0 h, 12 h and 48 h after H37Rv infection. (L) Immunoblot analysis of Nr4a3 and Rora in H37Rv 
infected mBMDCs and mBMDMs at 0 h, 12 h and 48 h post H37Rv infection. β-actin was used as loading 
control. The full length or source images of all immunoblots have been provided in the supplementary 
information. Results are mean and s.d. (A–J) or representative (L) of three independent experiments. *p < 0.05, 
**p < 0.01 and ***p < 0.001, versus uninfected mBMDMs or mBMDCs (one-way ANOVA).
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Expression of Nr4a3 and Rora in hMDMs and clinical samples.  To further extend our in vitro find-
ings we monitored the expression of Nr4a3 and Rora in human monocyte derived macrophages (hMDMs) 
(obtained from healthy individuals). The hMDMs were infected with H37Rv and the levels of Nr4a3 and Rora 
were measured at different time points (0, 12, and 48 h) (Fig. 5A). Consistent with our in vitro findings, we 

Figure 4.  M. tuberculosis modulates NRs expression in CD11c positive cells. RT-qPCR analysis for relative 
expression of (A–J) NRs in CD11c positive cells isolated from lungs of M. tuberculosis H37Rv infected mice 
at day 7, 15, and 30 as compared to uninfected control mice. Target gene expression was normalized to 
β-actin and is presented as fold regulation relative to control. Results are mean and s.d. of three independent 
experiments.*p < 0.05 and **p < 0.01, versus control mice (one-way ANOVA).
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observed decreased expression of Nr4a3 at 12 and 48 h post infection and increased expression of Rora at 48 h 
post infection. In addition, we also monitored relative mRNA abundance of Nr4a3 and Rora in human PBMCs 
isolated from freshly diagnosed TB patients (Fig. 5B). We observed a relatively lesser expression of Nr4a3 and 
higher expression of Rora in PBMCs isolated from TB patients compared to PBMCs isolated from healthy indi-
viduals. Altogether, these findings suggest that Nr4a3 and Rora might have an important role in M. tuberculosis 
pathogenesis.

Discussion
M. tuberculosis gets transmitted via aerosol thereby lodging the lungs where it inhabits cells of different pheno-
types as macrophages, DCs, neutrophils, monocytes, endothelial and epithelial cells. Among these, the innate 
immune cells are the principal cell type harbouring the bacteria inside the host body. The scientific challenges 
in understanding the immunology of M. tuberculosis arise from the observation that an apparently appropriate 
immune response is developed upon infection however, it generally leads to the establishment of a latent infection 
rather than elimination of pathogen33,34. In addition, M. tuberculosis outsmarts host defence mechanisms, manip-
ulates host signalling mechanisms and overturns them for its own survival within the host35. The pathogen has 
a unique repertoire of cell wall lipids which have been shown to possess immunomodulatory properties and are 
important for its pathogenesis36. Earlier studies have shown that these lipids help the bacteria to invade the host 
cells and in subverting immune responses by modulating phagosome maturation, cytokine response, and antigen 
presentation37. In addition, M. tuberculosis actively sheds its lipids in the host cell which then enter the endocytic 
network and are trafficked within as well as outside the infected cell38–41. It has been proposed that microvesicles 
released in the extracellular environment by the infected host cells are taken up by the uninfected bystander 

Figure 5.  Expression analysis of Nr4a3 and Rora in hMDMs and clinical samples. (A) RT-qPCR analysis for 
relative expression of Nr4a3 and Rora in H37Rv infected hMDMs isolated from healthy individuals at 0 h, 
12 h and 48 h post infection. Results are mean and s.d. of three independent experiments. *p < 0.05, versus 
uninfected (one-way ANOVA). (B) Relative mRNA abundance of Nr4a3 and Rora in human PBMCs isolated 
from freshly diagnosed TB patients (n = 10) was calculated as 2−(ΔΔCt) relative to healthy individuals (n = 10).
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cells including macrophages and DCs39,40. Among these, DCs in particular can migrate from the lungs to the 
local draining lymph nodes and this trafficking might result in the leaching of mycobacterial antigens from their 
primary site of infection to the distant sites. Thus, providing the mechanism for dissemination of mycobacterial 
components and hence establishing a communicating network that may have whole body manifestation. The cell 
integrates the lipid signalling pathways via lipid sensors that include membrane receptors and certain lipid sens-
ing NRs such as Tr416. Owing to the fact that these NRs are amenable to pharmacological modulation makes them 
a good therapeutic drug target to combat TB. However, we still lack an in-depth knowledge of how M. tuberculosis 
manipulates the host NRs for its survival and pathogenesis.

In this study, we monitored and determined the levels of NRs in macrophages and DCs upon M. tuberculo-
sis infection to elucidate the cross-talk between the pathogen and host NRs. We chose different time points for 
infection to mimic the conditions where early on the host cells are either trying to eliminate the infection or 
later time points where the pathogen might have established a persistent infection by exploiting the host intra-
cellular machinery. It became apparent from our findings that M. tuberculosis infection leads to an alteration 
in the levels of several members of NR superfamily in innate immune cells. Interestingly, few of the receptors 
(Vdr, Lxra, Pparg, Rarg, Rora, Nr4a’s, Ar, and Thrb) were commonly modulated in the studied cell types. Among 
these Lxra has been previously established to actively contribute towards the protective immune response against 
intracellular pathogen M. tuberculosis17. The epigenetic landscapes identified in M. tuberculosis infected human 
macrophages and human DCs also signifies the importance of Lxr in shaping the bactericidal response against 
intracellular bacteria19,20. In addition, 1,25-dihydroxyvitamin D that acts as a ligand for Vdr also aids in the better 
clearance of bacteria25–27. Vdr is also identified as a significant transcriptional modulator of the genes that are 
upregulated in human macrophages in response to M. tuberculosis infection22. Moreover, vitamin D deficiency 
has been correlated with increased TB susceptibility. On the contrary, Pparg increases the persistence of bacteria 
inside the host cells and our recent findings demonstrated that it does so by driving the alternative activation 
of macrophages thereby promoting the fitness of M. tuberculosis12,15,29. Furthermore, rosiglitazone, a ligand to 
Pparg, enhances the bacterial survival inside the macrophages12. In concordance with earlier studies, we found a 
dynamic change in the expression of Pparg upon M. tuberculosis infection. Interestingly, this study also identified 
changes in the expression of Nr4a3 and Rora, whose functions remained unknown in M. tuberculosis infection. 
While the expression of Nr4a3 was significantly decreased in macrophages and DCs, the expression of Rora was 
found to elevate in the infected cells. The PBMCs obtained from TB patients also showed significant changes in 
the expression of Nr4a3 and Rora pointing towards their plausible role in bacterial infection. Hence, it is conceiv-
able that the dynamics of M. tuberculosis infection might be regulating the expression of those NRs that either 
enhance successful intracellular parasitisation by bacteria or are responsible for its clearance. Therefore, it will be 
interesting to decipher the function of other differentially regulated NRs with no reported role in M. tuberculosis 
pathogenesis.

On the other hand, we observed that few NRs are constitutively expressed at high levels without undergoing 
any significant changes upon M. tuberculosis infection but have a reported role in its pathogenesis such as Tr4. Tr4 
acts as a molecular switch and by regulating the macrophage polarization towards M2 phenotype, augments the 
bacterial survival12. In a recent published study, it has been elucidated that the lipid components of mycobacterial 
cell wall binds to Tr416. This leads to the transactivation of Tr4 thereby inducing foamy biogenesis and granuloma 
formation. It has now been appreciated that sometimes rather than the NR expression it is the changing repertoire 
of the host cellular lipids, which act as ligands for these NRs, that regulates their function. This led us to speculate 
that NRs with high expression might also be having a plausible role in the clearance or persistence of M. tuber-
culosis. However, detailed functional studies should be performed for validating their roles in M. tuberculosis 
infection. It has been revealed that Pxr, an adopted orphan NR, increases the survival of M. tuberculosis in its host 
niche (human macrophages)23. But in corroboration with other reports, we found insignificant expression of this 
NR in studied murine cell types8,30.

Given the fact that the current TB treatment is complex and often results in poor patient compliance, there is a 
compelling need for new drug regimens which are more effective with shorter treatment period. Most drugs devel-
oped till date to cure mycobacterial infections target crucial enzymatic processes in the bacterium such as transcrip-
tion, translation or biosynthetic pathways like cell wall synthesis42. In addition to developing new novel TB-drugs 
that are directed against bacterial processes, there is also an increasing interest in developing therapeutics that are 
not directly bactericidal but target host pathways used by bacteria for either infecting, persisting or replicating inside 
the host43,44. In this connection, the findings that NRs modulate several cellular pathways that are important for 
bacterial survival inside the cell and their amenability to pharmacological modulation makes it interesting to explore 
the possibility of utilizing NRs as targets for anti-TB therapies. Adding small molecules that can regulate the activity 
of NRs in ways that strengthen the microbicidal properties of macrophages and DCs along with standard TB-drugs 
may significantly reduce the duration of TB treatment. Moreover, this adjunct therapy may also be effective in pro-
viding treatment against latent bacteria which is otherwise resistant to the anti-TB drugs.

Collectively, our study suggests the existence of a complex interplay between host NRs and M. tuberculo-
sis. These NRs may provide immense opportunities as potential therapeutic targets that can regulate immune 
responses thus directing protective immunity against infectious diseases.

Materials and Methods
Human ethics statement.  The project was approved by the Ethics Committee of the Government Medical 
College and Hospital (GMCH), Sector 32, Chandigarh, India and the Ethics and Biosafety Committee of the 
IMTECH, Sector 39 A, Chandigarh, India. Human PBMCs and hMDMs were obtained as described earlier23.

Experimental animals.  C57BL/6 mice aged 6–8 weeks were procured from the animal facility of Institute 
of Microbial Technology, India. Animals were housed in Biosafety Level 3 facility of the institute. All animal 
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procedures were approved by the Institutional Animal Ethics Committee of the Institute of Microbial Technology, 
and were in compliance with the guidelines from the National Regulatory guideline issued by the Committee for 
the Purpose of Supervision of Experiments on animals (N0.55/1999/CPCSEA), Ministry of Environment and 
Forest, Govt. of India.

Mycobacterial strain and culture conditions.  M. tuberculosis H37Rv was cultured in 7H9 broth medium 
containing 5% glycerol and 0.05% Tween 80. The broth was supplemented with 10% OADC and the culture was 
incubated at 37 °C on a shaker. Bacterial cultures in log phase were used for infection.

mBMDCs and mBMDMs culture.  For the generation of mBMDCs, bone marrow precursors were obtained 
from the femur and tibia of C57BL/6 mice and treated with RBC lysis buffer. The precursors were then cultured 
in ultra-low attachment plates (Corning Costar) in RPMI-1640 medium (Gibco) supplemented with 10% new 
born calf serum (Gibco), 1% Penicillin Streptomycin (Pen Strep; Gibco), 10 ng/ml of GM-CSF (eBioscience) and 
10 ng/ml of IL-4 (eBioscience), for 7 days. Non-adherent cells were harvested on day 7 and they exhibit ~90% 
purity as determined by the expression of CD11c. mBMDMs were derived by culturing bone marrow precursors 
in RPMI-1640 medium supplemented with 10% new born calf serum, 1% Penicillin Streptomycin and 50 ng/ml 
of GM-CSF. The non-adherent cells were replated on day 3 and kept for another 4 days. On day 7, adherent cells 
were harvested and they present ~98% as determined by analyzing the expression of CD11b and F4/80 by flow 
cytometry.

Isolation of cells from lungs.  Lungs were harvested from uninfected or M. tuberculosis H37Rv infected 
mice on days 7, 15, and 30. The lungs were minced and incubated with collagenase (2 mg/ml) and DNase (40 
Units/ml) for 30 mins at 37 °C. After digestion, lung cells were dispersed and single cell suspension was obtained 
by passing it through 70 µm cell strainer. The cell suspension was washed and RBCs were lysed using RBC lysis 
buffer, followed by washing with 1× PBS. The cell population was enriched for CD11c positive cells using EasySep 
Mouse CD11c positive selection kit (STEMCELL Technologies) according to the manufacturer’s protocol.

M. tuberculosis H37Rv infection of mBMDCs and mBMDMs.  The mBMDCs and mBMDMs were 
infected with H37Rv at MOI of 1:5. After 4 h of infection the cells were washed to remove any unphagocytosed 
bacteria. The cells were then either harvested immediately after washing (considered as 0 h), 12 h, or 48 h post 
infection and processed for RNA isolation.

Aerosol infection of mice with M. tuberculosis H37Rv.  Mice were aerosol challenged (with a nebuli-
sation system Glas-Col; Terre Haute, IN) with M. tuberculosis H37Rv as described previously16. The mice were 
sacrificed on day 7, 15, and 30 post H37Rv infection. The lungs were dissected and processed for the isolation of 
CD11c positive cells.

Immunoblot analysis.  Whole cell lysates were prepared and standard procedures were followed for immu-
noblotting. Briefly, equal amounts of total proteins were separated by SDS-PAGE on a 10% acrylamide gel and 
then transferred onto polyvinylidene difluoride membranes. The membranes were then blocked with 5% BSA 
for 1 h at room temperature, followed by overnight incubation at 4 °C with primary antibodies against Nr4a3 
(AV45646, Sigma-Aldrich), Rora (sc-28612, Santa Cruz), and β-actin (sc-47778, Santa Cruz). Membranes 
were then washed three times with 1× PBST (pH 7.4) and incubated with appropriate horseradish peroxidase 
(HRP)-conjugated secondary antibodies for an hour at room temperature and developed with chemiluminescent 
HRP substrate.

PCR array.  The isolation of total RNA was performed from cells using an RNeasy Mini Kit (Qiagen). Using 
an RT2 First Strand Kit (Qiagen), 1 µg of total RNA was reverse transcribed into cDNA which was then subjected 
to RT-qPCR using RT2 SYBR Green ROX qPCR Mastermix (Qiagen). Customized RT2 Profile PCR Array (SA 
Bioscience) was used to determine the expression of 49 murine NRs as per manufacturer’s instructions. The QC 
for the RT-qPCR arrays was performed using a RT2 Profiler PCR Array Data Analysis version 3.5 software. The 
expression data which successfully passed the QC were further analysed to determine the relative fold regulation 
by using 2−ΔΔCt method. The NRs with a Ct value greater than 32 were excluded from final analysis.

Quantitative real-time PCR.  Total RNA was obtained from cells by extraction with RNeasy Mini Kit 
(Qiagen) and subjected to cDNA synthesis with the Verso cDNA kit (Thermo Scientific). RT-qPCR was per-
formed using the SYBR Green method (DyNAmoColorFlash SYBR Green qPCR Kit, Thermo Scientific). The 
analysis of the expressed transcripts was performed by employing 2−ΔΔCt method.

Statistical analysis.  Results are represented as mean and sd. Statistical analysis was performed in Prism 7 
(GraphPad). Statistical significance with multiple parameters was analyzed with one-way ANOVA followed by 
post-hoc Tukey’s test. The correlation analysis of NR expression between different time points has been done by 
using JMP11. Comparison of all pairs was performed using Tukey-Kramer HSD.
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