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Abstract

Local translation in neurites is a phenomenon that enhances the spatial segregation of proteins and their functions
away from the cell body, yet it is unclear how local translation varies across neuronal cell types. Further, it is
unclear whether differences in local translation across cell types simply reflect differences in transcription or
whether there is also a cell type-specific post-transcriptional regulation of the location and translation of specific
mRNAs. Most of the mRNAs discovered as being locally translated have been identified from hippocampal
neurons because their laminar organization facilitates neurite-specific dissection and microscopy methods. Given
the diversity of neurons across the brain, studies have not yet analyzed how locally translated mRNAs differ
across cell types. Here, we used the SynapTRAP method to harvest two broad cell types in the mouse forebrain:
GABAergic neurons and layer 5 projection neurons. While some transcripts overlap, the majority of the local
translatome is not shared across these cell types. In addition to differences driven by baseline expression levels,
some transcripts also exhibit cell type-specific post-transcriptional regulation. Finally, we provide evidence that
GABAergic neurons specifically localize mRNAs for peptide neurotransmitters, including somatostatin and
cortistatin, suggesting localized production of these key signaling molecules in the neurites of GABAergic
neurons. Overall, this work suggests that differences in local translation in neurites across neuronal cell types are
poised to contribute substantially to the heterogeneity in neuronal phenotypes.

Key words: GABAergic interneurons; layer 5 pyramidal neurons; local translation; synaptoneurosomes; Synap-
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Significance Statement

All RNAs are generated in the nucleus, but in neurons some of these RNAs are shuttled for local protein
production in neurites toward synapses. There are many types of neurons that express different comple-
ments of receptors and perform different functions. However, there has not yet been a direct comparison
of the ribosome-bound transcripts in neurites across cells. Here, we identify and define differences in
ribosome-bound RNAs isolated from neurites of two contrasting types of neurons. Some of these differ-
ences are due to the neurons not creating the RNA at baseline and some are differences in RNA localization
or ribosome binding in neurites. We also identified RNAs for key neurotransmitter proteins that had not been
previously described as produced in neurites, suggesting these may be locally produced.
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Introduction
Neurons have the ability to localize specific RNAs in

neurites, and local translation near synapses has been
shown to be essential to the kind of synaptic alterations
that are thought to underlie many functions from the
formation of neurites to learning and memory. Evidence
for localized translation in neurites was first observed in
1982 (Steward and Levy, 1982), but only recently have
advances in molecular techniques enabled the identifica-
tion of locally translated mRNAs in a high-throughput
manner. These studies have identified many candidate
mRNAs for local translation in neurites in vivo. However, a
substantial fraction of prior studies has focused on hip-
pocampal neurons because their spatially separated den-
dritic and somatic layers facilitate analysis (Van Driesche
and Martin, 2018). In contrast, most other neuron types in
the brain have highly interwoven neurites such that phys-
ical dissection is unable to harvest a sample enriched for
the processes of specific cells. Thus, there have been no
direct comparisons of how local translation in neurites
may differ across distinct cell types of neurons in the
brain.

Cell types have classically been defined by differences
in location, morphology, neurotransmitter usage, and
function. In the last decade, it has become clear that there
are corresponding whole-cell transcriptional differences
between cell types (Heiman et al., 2008; Dougherty, 2013;
Xu et al., 2014; Zhang et al., 2014). However, to what
extent these cells also have differences in the subcellular
localized translation of transcripts is unclear. Comparison
of the vast, branched arbor of a Purkinje neuron with the
short, clawed dendrites of a granule cell highlights the
remarkable diversity in neurites even just within the cere-
bellum. Likewise, inhibitory and excitatory neurons differ
in both function and morphology within the forebrain.

Cortical pyramidal neurons are large, excitatory neu-
rons with long apical dendrites that extend to the upper
layers of cortex and axons projecting to distal brain
structures. Cortical inhibitory interneurons often have
much shorter neurites that project onto neighboring
cells (Wonders and Anderson, 2006; DeFelipe et al.,
2013).

Distinct profiles in local translation could be a cause
and a consequence of the large variety of neuronal mor-
phologies and functions across the brain. Therefore, we
hypothesize that fundamental morphologic and functional
differences across neuronal types will be reflected in clear
distinctions in local translational profiles as well. Further-
more, distinctive local translational profiles could simply
reflect either transcriptional differences or differences in
the post-transcriptional regulation of mRNA localization or
stability. For example, on one hand, only one cell type
might express a transcript, and thus only that cell type
could possibly translate it locally. On the other hand, two
different cell types might express the same transcript, yet
in one transcript localization is altered through the recog-
nition of a motif in the 3´ UTR by a cell type-specific RNA
binding protein (RNABP) that shuttles mRNAs to neurites
or binds a secondary structure of mRNA that can alter the
rate at which they degrade (Andreassi and Riccio, 2009;
Patel et al., 2012). Thus, the differential expression of
RNABPs between cell types could plausibly result in dis-
tinct profiles of locally translated RNAs. The identification
of how and why locally translated transcripts differ across
cell types could further define pathways that underlie
morphologic and functional differences.

Previously, we developed a derivative of the translating
ribosome affinity purification (TRAP) method, SynapTRAP
(ST), to enable the enrichment of ribosome-bound tran-
scripts from the processes of genetically targeted cell
types of the mouse brain (Dougherty, 2017; Ouwenga
et al., 2017). Here, we used two TRAP mouse lines to
determine whether local translation, as assessed by Syn-
apTRAP, is distinct across different cell types of neurons.
Specifically, we compared layer 5 pyramidal neurons of
the cortex to GABAergic neurons of the forebrain. These
neuronal types were chosen as they differ in prior trans-
lational profiles, morphologic features, and functions. We
also sought to determine whether the differences in the
local translatome are due to baseline, likely transcrip-
tional, differences or to post-transcriptional regulation.
We found that the majority of the differences in local
translation were likely driven by baseline variations, but
there is a measurable role for post-transcriptional regula-
tion as well. Finally, we determine that two of these cell
type-specific locally translated mRNAs encode for the
peptide transmitters cortistatin and somatostatin, sug-
gesting local production of peptide neurotransmitters.

Materials and Methods
Animals

All procedures were performed in accordance with the
guidelines of the Institutional Animal Care and Use Com-
mittee. Mice were maintained in standard housing condi-
tions with food and water provided ad libitum. RNA
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collection used a Cre-dependent TRAP reporter mouse
B6.129S4-Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp/J (cat-
alog #22367, The Jackson Laboratory; RRID:IMSR_JAX:
022367; Zhou et al., 2013) that were bred to two well
characterized Cre lines: Tg(RBP4-cre)KL100Gsat/Mmcd

(RRID:MMRRC_037128-UCD; Beltramo et al., 2013) and
Slc32a1tm2(cre)Lowl/J (catalog #16962, The Jackson Labo-
ratory; RRID:IMSR_JAX:016962; Vong et al., 2011) then
genotyped for the presence of the TRAP construct and
Cre. Mice positive for both a Cre and TRAP construct are
referred to as RBP4-TRAP and vesicular GABA trans-
porter (VGAT)-TRAP mice, respectively.

Experimental design and statistical analysis
All statistical tests are reported in the subsection of the

Materials and Methods describing each experiment. The
design, sample sizes, intermediate values, and results can
be found in the legend of each figure in which they are
represented. The SynapTRAP preparations and quantita-
tive PCR (qPCR) were performed with both sexes pooled.
In situ hybridization (ISH) replication used an equal num-
ber of male and female mice for each probe. All data are
available on the NCBI Genome Expression Omnibus web
site (accession #GSE121162).

SynapTRAP, library preparation, and RNA
sequencing

Five replicates of RBP4-TRAP and VGAT-TRAP were
harvested by rapid forebrain dissection at 21 d postbirth,
as described previously (Westmark et al., 2011; Ouwenga
et al., 2017). Each replicate contained a pool of two to
three forebrains of both sexes, as available. Four samples
were collected from each replicate in parallel, as follows:
whole-cell homogenate (WCH) was RNA isolated from an
aliquot of the initial homogenization of the tissue, and
TRAP was the capture of GFP-tagged ribosomes from an
aliquot of WCH. RNA isolated from a fraction of the WCH
subjected to synaptoneurosomal fractionation (SNF), and
ST is TRAP performed on the SNF, as described previ-
ously (Ouwenga et al., 2017). RNA concentration for all
was measured using a Nanodrop and diluted to �5 ng/�l
before being assessed for quality and concentration using
an Agilent TapeStation 4200.

Library preparation was performed with 30 ng of total
RNA from each sample. Double-stranded cDNA was pre-
pared using the SMARTer Ultra Low RNA kit for Illumina
Sequencing (catalog #634936, Clontech) per manufac-
turer protocol. cDNA was fragmented using a Covaris
E220 Sonicator using peak incident power of 18, a duty
factor of 20%, 50 cycles/burst, and a time of 120 s at
18ºC. cDNA was blunt ended, had an A base added to the
3´ ends, and then had Illumina sequencing adapters li-
gated to the ends. Ligated fragments were then amplified
for 13 cycles using primers incorporating unique index
tags. Fragments were sequenced on an Illumina HiSeq-
3000 sequencing device using single reads extending 50
bases to a depth of 14.4–22 million reads per sample.

RNA sequencing data quality control, and
processing

RNA sequencing (RNA-seq) reads were aligned to the
Ensembl top-level assembly with STAR version 2.0.4b
(RRID:SCR_015899; Dobin et al., 2013). Gene counts
were derived from the number of uniquely aligned unam-
biguous reads by Subread:featureCount version 1.4.5.
Sequencing performance was assessed with RSeQC ver-
sion 2.3 (RRID:SCR_005275; L. Wang et al., 2012) for the
total number of aligned reads, the total number of
uniquely aligned reads, the genes and transcripts de-
tected, the ribosomal fraction, the known junction satura-
tion, and the read distribution over known gene models.
Gene-level counts were then imported into the R/Biocon-
ductor package EdgeR (RRID:SCR_012802; Robinson
et al., 2010). Mitochondrial ribosomal RNA (rRNA), tRNA,
mitochondrial and remaining eukaryotic rRNA reads were
excluded, as were genes without at least 0.5 cpm in at
least three samples for creation of local and “somatic”
candidate lists, or in at least three TRAP or ST samples for
the later direct differential expression comparisons be-
tween the two lines. Counts were then normalized to a
final number of counts per million based on the final library
sizes.

For quality control, performance of the replicate sam-
ples was assessed with a Spearman correlation matrix
and multidimensional scaling plots and RNA-seq results
were verified as reproducible: technical replicates clus-
tered together both in hierarchical clustering based on the
highest 5000 transcripts by counts per million and in
multidimensional scaling.

Then, gene-level performance was assessed with plots
of the residual SD of every gene to their average log count
with a robustly fitted trend line of the residuals. General-
ized linear models using the negative binomial were then
created to test for gene-level differential expression with
EdgeR (RRID:SCR_012802; Robinson et al., 2010), using
the contrasts described in the three sections below. Dif-
ferentially expressed genes and transcripts were then
filtered for false discovery rate (FDR)-adjusted p values
�0.05, except where noted in the text.

Defining the translational profile of layer 5 neurons
and GABAergic neurons

All differential expression analysis was performed using
single-variable generalized linear model approaches im-
plemented in EdgeR, with the following grouping vari-
ables: RBP4_ST; VGAT_ST; RBP4_TRAP; VGAT_TRAP;
RBP4_WCH; and VGAT_WCH.

The expression of TRAP samples was compared with
the corresponding WCH samples to define transcripts
significantly enriched in each type of neuron compared
with overall forebrain gene expression using EdgeR
(contrasts: RBP4_TRAP vs RBP4_WCH and VGAT-
_TRAP vs VGAT_WCH). These form the basis of Figure
2-1, and Figure 2-2. Next, to identify differences be-
tween the neuronal cell types, each TRAP sample was
also directly compared (Fig. 2-3; contrast: VGAT_TRAP
vs RBP4_TRAP).
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Defining the local and somatic translation
candidates in each neuron type

Local translation candidates [(cpmSynapTRAP � cpmSNF)
� (cpmSNF � cpmWCH)] were identified as those enriched
by both SNF and by TRAP using a single-variable gener-
alized linear model. Somatic transition candidates [(cpm-
WCH � cpmSNF) � (cpmTRAP � cpmWCH)] were identified as
those enriched by TRAP but depleted by cellular fraction-
ation. These are as described in the study by Ouwenga
et al. (2017) and are reported in Figure 3-1, Figure 3-2,
Figure 3-3, and Figure 3-4.

Defining differential translation candidates between
neuron types

The desired comparisons between groups were achieved
using the following contrasts: WCH � RBP4_WCH �
VGAT_WCH; ST_RBP4vVGAT � RBP4_ST � VGAT_ST; inter-
action � (RBP4_ST � VGAT_ST) � (RBP4_TRAP � VGAT_
TRAP).

We first confirmed that only a small number of genes
was differentially expressed in the WCH contrasts be-
tween the two lines. These were excluded from all differ-
ential expression candidate lists.

Next, the “ST_RBP4vVGAT” contrast represents a di-
rect comparison between the ST samples of the two cell
types. The significant candidates are reported in Figure
6-1, and Figure 6-2. Finally, to identify post-transcriptional
regulation, we used an “Interaction” comparison to rep-
resent the difference in the effect cell type between the
two cellular compartments (TRAP compared with ST).
This is analogous to an interaction effect in a two-way
ANOVA and is reported in Figure 9-1.

Gene ontology and cell type-specific expression
analysis

Gene ontologies pathway analysis was conducted with
the BINGO (3.0.3) plugin for Cytoscape 2.8.2 (Maere et al.,
2005). A hypergeometric test with Benjamini–Hochberg
multiple testing correction was implemented to detect
overrepresented categories from GO_MF, GO_BP, and
GO_CC using a cutoff of p � 5E-8. Results in Figure 4-1,
Figure 4-2, Figure 4-3, Figure 7-1, and Figure 7-2.

Cell type-specific expression analysis (CSEA) was con-
ducted as described previously (Xu et al., 2014), using the
top 200 genes with FDR �0.05, sorted by log fold change,
enriched in TRAP sample compared with the correspond-
ing WCH (see Fig. 2C,D).

Sequence feature analysis
The 3´ UTRs of the local translation candidates were

downloaded through Biomart (RRID:SCR_002987; Smed-
ley et al., 2015). The longest available UTR sequence for
each candidate was selected. To identify enriched motifs
(MEME Suites), these 3´ UTRs were input to MEME Suites
version 4.12.0 (RRID:SCR_001783; Bailey et al., 2009).
For a comparison group, the longest available UTRs were
also downloaded for the somatic translation candidates
(top 500 by combined absolute value of the log fold
change) from the corresponding cell type, and these were
used as background controls for the identification of mo-
tifs in the local translation candidates. In a second anal-

ysis focusing on the differentially translated candidates
between cell types, for the UTR of each cell type, the 3´
UTR sequences of the alternate cell type were used as
controls for the identification of known motifs [AME (Anal-
ysis of Motif Enrichment)].

Immunofluorescence
Brains were harvested from postnatal day 21 mice and

fixed for 48 h in 4% paraformaldehyde followed by 48 h in
30% sucrose in 1� PBS. Brain was then cut down the
midline before freezing in OCT compound (optimum cut-
ting temperature compound; catalog #23-730-571,
Thermo Fisher Scientific). A cryostat was used for slide
mounting 10 �m sagittal sections of brain tissue. Slides
were stored at �80°C.

Slides were incubated in a blocking solution (PBS, 5%
donkey serum, 0.1% Triton-X 100) for 1 h in a humidified
chamber at room temperature, then with chicken anti-
GFP primary antibody (1:1000; RRID:AB_10000240) in
blocking solution overnight in humidified chamber at 4°C.
Following washes in PBS, slides were incubated in don-
key anti-chicken Alexa Fluor-488 secondary antibody (di-
luted 1:400 in blocking solution). Slides were washed with
PBS, incubated with DAPI, washed again, and mounted
with Prolong Gold.

Fluorescence ISH
High titer of a virus expressing a yellow fluorescent

protein (YFP)-tagged membrane-localized protein (chan-
nelrhodopsin), serotyped as AAV5 [adeno-associated vi-
rus 5; AAV5-EF1a-DIO-hChR2(H134R)-EYFP], was
obtained from the Hope Center Viral Vector Core (Wash-
ington University School of Medicine). One-day-old pups
from the two Cre lines were injected with the virus to
produce sparse Cre-dependent labeling of neurite mem-
branes. At 21 d, the animals underwent a 4% paraformal-
dehyde transcardial perfusion, 12 h incubation in 15%
sucrose in PBS, and 12 h incubation in 30% sucrose in
PBS at 4°C. Coronal sections (18 �m) were cut onto slides
with a cryostat, and these were postfixed in 4% parafor-
maldehyde. Slides were hybridized at 63°C with a 100 ng
Dig-labeled antisense RNA probe created with T7 poly-
merase (catalog #P2075, Promega), from PCR products
using primer sequences from the Allen Brain Atlas (Lein
et al., 2007), and DIG RNA Labeling Mix (catalog
#11277073910, Roche) according to the manufacturer
protocol. cDNA was created using Superscript 3 and
random hexamer priming (catalog #18080093, Thermo
Fisher Scientific). Probe detection was performed using
Sheep Anti-Dig-POD (catalog #11207733910, Roche) fol-
lowed by Tyramide Signal Amplification Cyanine 3 Tyra-
mide (catalog #NEL704A001KT, PerkinElmer). Post-ISH,
slides underwent an immunofluorescence labeling as
described above. Samples were imaged on a Zeiss Im-
ager.Z2 confocal microscope at 1048 � 1048 pixel reso-
lution at constant settings across probes. For each probe,
three slices from each of the two RBP4-CRE mice and
two VGAT-CRE mice (male and female) were imaged for
YFP-positive neurites using a 40� oil lens.

Images were quantified using ImageJ software by mac-
ros that were consistent across probes. First, each chan-
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nel was converted to a black and white image using a
threshold on brightness. Using the image calculator, the
area of NeuN and DAPI were subtracted from the YFP
channel to mask the soma area of the neurons. This area
was quantified and used as a YFP-neurite area. Overlap-
ping puncta from the Cy3 ISH signal channel with this
resulting YFP signal were quantified with analyze particles
(size, 0.5 �m2 to infinity; circularity, 0-1.00). The number
of puncta were divided by the area of the YFP signal for
final analysis. Significance of overlap with YFP was de-
termined with a Wilcoxon–Mann–Whitney test comparing
each probe to the no-probe control. Planned compari-
sons were also conducted across cell types.

The following probe primers were used: Sst (RP_
090901_02_A05): forward, ACGCTACCGAAGCCGTC; re-
verse, TAATACGACTCACTATAGGGGGGGGCCAGGAGT-
TAAGGA; and Cort (RP_051101_02_C12): forward, AAA-
CACCACAGAAGAGACCCTC; reverse, TAATACGAC
TCACTATAGGGGTTACTTGCACGAGGAGAAGGTT.

Quantitative PCR
Three additional independent biological replicates of the

WCH, TRAP, SNF, and ST were collected from each mouse
line as described above and reverse transcribed using
Quanta qScript Reverse Transcriptase (catalog #84002,
QuantaBio). Three technical replicates of each of these sam-
ples and the five samples that were used in RNA-seq were
quantified with Power UP iTaq Universal Sybr green (catalog
#1725120, BIO-RAD) on a QuantStudio 6 Flex (Applied Bio-
systems) in a 10 �l volume with amplicons of �200 nt.
�-Actin was used as an endogenous control. Statistical test-
ing was determined by ANOVA with 5 df in R statistical
software. Primer sequences from PrimerBank (X. Wang
et al., 2012) were as follows: Cort [PrimerBank ID (PBID),
6680984a1]: forward, GAGCGGCCTTCTGACTTTCC; re-
verse, GGGCTTTTTATCCAGGTGTGG; Sst (PBID,
6678035a1): forward, ACCGGGAAACAGGAACTGG; re-
verse, TTGCTGGGTTCGAGTTGGC; and Shank3 (PBID,
255918226c1): forward, CCGGACCTGCAACAAACGA; re-
verse, GCGCGTCTTGAAGGCTATGAT.

Results
We aimed to investigate the local translation profiles of

forebrain GABAergic neurons and pyramidal neurons of the
cortex, two functionally and morphologically distinct neuro-
nal types, using SynapTRAP. To target these neurons, we
bred Cre-dependent TRAP reporter mice (Zhou et al., 2013)
to the following two well characterized Cre lines: Tg(RBP4-
cre)KL100Gsat/Mmcd, targeting layer 5 pyramidal cells (Beltramo
et al., 2013); and Slc32a1tm2(cre)Lowl/J, targeting any GABAe-
rgic neurons, as defined by their expression of VGAT (Vong
et al., 2011). Progeny are referred to as RBP4-TRAP and
VGAT-TRAP. Immunofluorescence of the GFP-tagged ribo-
somal proteins shows robust expression in layer 5 pyramidal
neurons for RBP4-TRAP mice (Fig. 1A,B) and a regularly
distributed pattern in all layers, consistent with interneurons,
for VGAT-TRAP mice (Fig. 1C,D). At higher magnification,
GFP-tagged ribosomal proteins were also observed in the
neurites of each line (Fig. 1C,F), indicating the potential to
harvest ribosome-bound transcripts from this compartment.
Therefore, from each line we collected five forebrain repli-

cates for analysis of local translation. From each biological
replicate, we harvested the following four samples: the
total RNA from the region (WCH), RNA enriched from all
ribosomes in neuron cell type of interest (TRAP), RNA
from forebrain synaptoneurosomal fractions (SNF), and
ribosome-bound RNA enriched from the neuron cell type of
interest from the SNF (SynapTRAP:ST), as described previ-
ously (Ouwenga et al., 2017).

First, we verified that the harvest of mRNA by TRAP
generated the expected enrichment characteristic of each
cell type. TapeStation analysis revealed that TRAP and ST
samples all showed the expected robust capture of both
18S and 28S ribosomal RNAs, indicating that the GFP-
Rpl10a fusion protein was being incorporated into the
large subunit in all fractions, and that these subunits were
being recruited to 18S bound mRNA (data not shown),
consistent with prior studies using this method on other
cells (Ouwenga et al., 2017; Sakers et al., 2017). We then
sequenced the transcripts from each sample using RNA-
seq. Comparing standard TRAP to WCH RNA, each sam-
ple was well depleted for markers of glial cells (purple) and
enriched for genes known to be expressed in cortical
interneurons (blue) or projection neurons (red), respec-
tively, confirming the enrichment of ribosome-bound RNA
from each cell type (Fig. 2A,B, Fig. 2-1, Fig. 2-2). Further,
directly comparing VGAT-TRAP to RBP4-TRAP mice
identified thousands of transcripts (Fig. 2-3) enriched
uniquely in the lines, as indicated by CSEA, a tool that
compares the current gene lists to empirically defined lists
of genes with “marker-like” expression in previously ana-
lyzed cell types at a variety of thresholds (Xu et al., 2014).
In this analysis, the transcripts from RBP4-TRAP mice
overlapped with markers derived from previous profiles of
deep-layer projection neurons (Fig. 2C), with modest sig-
naling from the Pnoc� line, which labels a mix of projec-
tion and interneurons (Doyle et al., 2008). Likewise, the
VGAT-TRAP profiles overlapped with prior profiles of
Pnoc and cortistatin TRAP mice from cortex (Fig. 2D),
lines confirmed to be expressed in interneurons (Naka-
jima, 2012). This overlap was driven by known markers of
interneurons such as Sst, Cort, Dlx1/2, and Htr3a, as well
as markers of projection neurons, such as Fezf2 and
Slc17a7, each of which showed robust enrichment in the
appropriate cell type, particularly when they were directly
compared (Fig. 2E). It was also clear from CSEA that the
rapid forebrain dissection used for synaptoneurosome
preparation here (Westmark et al., 2011; Ouwenga et al.,
2017) likely included some dorsal striatum, as the VGAT-
TRAP samples were also enriched in markers of GABAe-
rgic striatal Drd1 and Drd2� medium spiny neurons, such
as Tac1, Adora2a, Drd1, and Drd2 (yellow), as well as
markers of the subpopulation of Drd2 MSNs that are
striatal cholinergic interneurons (Chat, Slc18a3), which are
shared with other cholinergic populations (data not
shown). Thus, we were confident we had enriched for
ribosome-bound RNA from contrasting neuronal cell
types.

We also verified that the fractionation for neurite RNAs
enriched for individual transcripts previously identified as
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translated in neurites in neurons from other brain regions.
Consistent with prior studies and our recent profiling of a
pan-neuronal line in forebrain, we identified Psd95 (Dlg4)
as enriched in the SNF (Westmark et al., 2011) and
Shank3 as enriched in the ST (Cajigas et al., 2012) within
all replicates of both the VGAT and RBP4-TRAP lines. This
confirms that these genes previously defined as locally
translated in neurons from other brain regions are in the
current cell types and provides evidence that the method
will be effective in these cell types.

Characterization of local and somatic translation
profiles of the neuronal cell types

To identify candidate transcripts showing robust local
translation in each cell type, we applied an analysis to
select for transcripts that are both enriched in the SNF
and bound to ribosomes in the cell type of interest (Fig. 3),
per our published strategy (Ouwenga et al., 2017). This
intersectional analysis selects for transcripts that were
both enriched in the SNF compared with the WCH (show-
ing enrichment in neurites) and enriched in the ST com-
pared with the SNF (on ribosomes from the targeted cell
type). From this, RBP4-TRAP neurons had 247 local
translation candidates (Fig. 3, Fig. 3-1) and VGAT-TRAP
neurons had 480 candidates (Fig. 3A, Fig. 3-2). For con-
trasting controls, we generated a list of candidates for
transcripts whose translation is predicted to be seques-

tered to the somatic, non-neurite, region of the neuron.
These “somatic localization” candidates are defined as
the intersection of transcripts enriched in the TRAP sam-
ple compared with the WCH sample and depleted in the
SNF sample compared with the WCH sample (Fig. 3B,
Fig. 3-3, Fig. 3-4). Note here that we are using the word
“somatic” as a shorthand for “depleted in the SNF” as true
physical dissection of somas from neurites in densely
intermingled regions such as the cortex would not be
feasible (see also Discussion).

Comparing the two local translation profiles shows
that the local transcripts are similar across two neuro-
nal types and that both lists include transcripts known
to be translated locally in the hippocampus, such as
Camk2a and Shank3, and a gene ontology (GO) path-
way analysis reveals fairly similar pathways showing
enrichment of these transcripts (Fig. 4A,B). Overall, the
two cell type lists overlap by 36% of transcripts (Fish-
er’s exact test, p � 0.0001), and GO analysis of these
genes highlights cell projection (p � 2.96E-10) and cell
junction proteins (p � 2.3E-10) as common themes (Fig.
4C, Fig. 4-1, Fig. 4-2, Fig. 4-3). This suggests that both
neuronal cell types use some similar pathways for gen-
eral synaptic maintenance and function, and that there
is a baseline of the local translatome that is shared
across neurons.

A B C

D E F

VGAT-TRAP

RBP4-TRAP

Figure 1. Immunofluorescence of RBP4-TRAP and VGAT-TRAP lines shows expected cellular expression patterns and localization
of ribosomal protein L10a-GFP fusion to neurites. A, RBP4-driven Cre line expresses the TRAP construct, designed to tag ribosomes
with GFP, in layer 5 pyramidal neurons (10�). B, Labeling extends into primary dendrites that continue into the upper layers of the
cortex (40�). C, An example of a RBP4-TRAP dendrite with GFP-tagged ribosomal proteins (arrow). D, VGAT-driven Cre line
expresses the TRAP construct in pattern consistent with interneurons of the cortex (10�). E, Images at a higher magnification (40�)
highlight that the GFP-tagged ribosomal proteins localize in neurites. F, An example of the neurites of a single VGAT-TRAP neuron
with GFP-tagged ribosomal proteins (arrow). Green, GFP; blue, DAPI nuclear stain. Scale bars, 50 �m.
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Figure 2. TRAP enriches ribosome-bound mRNA from cortical projection neurons and GABAergic forebrain populations. A, A volcano
plot illustrates thousands of transcripts that are enriched by RBP4-TRAP when compared with cortical RNA (WCH). This includes
known layer 5 transcripts (red) including the vesicular glutamate transporter 1 (Slc17a7) and the transcription factor Fezf2. The sample
is relatively depleted for glial genes (purple) and markers of interneurons (blue). The horizontal dashed line demarcates p � 0.05, and
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continued
vertical lines down 1.5-fold show enrichment or depletion. B, A volcano plot illustrates that thousands of transcripts are enriched in
VGAT-TRAP compared with WCH, including known markers of interneurons such as VGAT (Slc32a1), Gad, Npy, Sst, Cort, and Dlx2.
Glial and layer 5 transcripts are depleted. C, CSEA analysis of the top 200 genes enriched in RBP4-TRAP over WCH shows significant
overlap with previously defined layer 5 expressed genes. Hexagons represent gene lists enriched to each cell type, with smaller
hexagons representing smaller and more stringent gene lists. These are color coded by the significance of Fisher exact test results
on overlap with RBP4-TRAP data. D, CSEA analysis of top 200 genes enriched in VGAT-TRAP over WCH significantly overlap with
previously defined interneuron-expressed genes (Pnoc� and Cort� TRAP lines), as well as genes expressed in striatal GABAergic cells
(D1�, D2�, and ChAT neurons). E, Volcano plot of a direct comparison of VGAT-TRAP with RBP4-TRAP demonstrates even more
robust enrichment of layer 5 transcripts and makers of GABAergic cells in cortex (blue) and confirms the expression of markers of
GABAergic neurons of striatum (orange). Figure 2-1: DE results between TRAP and WCH of RBP4-TRAP. Figure 2-2: DE results
between TRAP and WCH of VGAT-TRAP. Figure 2-3: DE results between TRAP RBP4-TRAP and TRAP VGAT-TRAP.
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Figure 3. SynapTRAP identifies local translation candidate transcripts for both RBP4 and VGAT-TRAP. A, Tables of 10 representative
local translation candidate transcripts from each of the cell types and Venn diagrams illustrating the analysis conditions used to
generate each list of candidates. B, Tables of 10 representative somatic candidates from each of the cell types and Venn diagrams
illustrating the analysis conditions used to generate each list of candidates. Figure 3-1: Table of RBP4 Local Translation Candidates.
Figure 3-2: Table of VGAT Local Translation Candidates. Figure 3-3: Table of RBP4 Somatic Translation Candidates. Figure 3-4: Table
of VGAT Somatic Translation Candidates.
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Figure 4. Pathway analysis of local translation candidates. A, A gene ontologies pathway analysis of local translation candidates from
the RBP4-TRAP data representing pyramidal neurons reveals significant enrichment of a variety of functional gene categories.
Colored nodes represent significant categories and are organized hierarchically from broadest categories (bottom of each tree) to
most specific. B, A gene ontologies analysis of local translation candidates from the VGAT-TRAP mouse line, representing GABAergic
neurons reveals enrichment in cytoskeletal elements and ribosomal proteins, among other categories. C, A gene ontologies analysis
of those transcripts found as local translation candidates in both VGAT-TRAP and RBP4-TRAP mouse lines (intersect) reveals a
common theme of cytoskeletal elements. The color key indicates the significance of hypergeometic testing after Benjamini–Hochberg
multiple testing correction. Only categories with p � 10E-8 (A, C) or p � 10E-13 are shown (B). Figure 4-1: GO analysis results of
RBP4 local translation candidates with a significance cutoff p � 5E-8. Figure 4-2: GO analysis results of VGAT local translation
candidates with a significance cutoff p � 5E-8. Figure 4-3: GO analysis results of shared local translation candidates with a
significance cutoff p � 5E-8. Figure 4-4: GO analysis results of RBP4 TRAP vs WCH enriched transcripts with a significance cutoff
p � 5E-8. Figure 4-5: GO analysis results of VGAT TRAP vs WCH enriched transcripts with a significance cutoff p � 5E-8.
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Shared features of local candidate transcript
sequence across the neuronal cell types

Examining the sequences of the transcripts identified
common features for local translation candidates across
both pyramidal neurons and GABAergic neurons. Similar
to prior results in a pan-neuronal line (Ouwenga et al.,
2017), the local translation candidates had 3´ UTRs that
were both longer and had higher GC content when com-
pared with the somatic candidates. Longer 3´ UTRs may
allow for more binding sites of proteins and miRNAs for
the regulation of translation and localization, while higher
GC content may influence the stability of these transcripts
as they are shuttled to neurites (Wu and Brewer, 2012).

As these regions could contain regulatory sequences
that act as binding sites for RNABPs mediating localiza-
tion or translational control, the 3´ UTRs were analyzed for
enriched novel motifs using MEME (McLeay and Bailey,
2010), which identifies enriched sequences in the local
translation candidates of each cell type versus their
own somatic translation candidates. Similar to previous
findings, we again find a motif that highly resembles a
G-quadruplex in local candidates (Fig. 5A), which is a
sequence known to interact with the RNABP fragile X
mental retardation protein (FMRP). There is also a
poly-A binding motif enriched in somatic candidates
(Fig. 5B).

Additionally, the 3´ UTRs of the local candidate were
analyzed using AME, a tool to identify binding motifs for
known RNA binding proteins in a candidate list. Both cell
types were enriched for another FMRP binding motif
(GGACAAG: VGAT, p � 1.5E-05; RBP4, p � 1E-15) as
well as a binding site for FUS RNA binding protein (GGUG:
VGAT, p � 5.3E-06; RBP4, p � 5E-26; Fig. 5A), a gene
clearly implicated in amyotrophic lateral sclerosis (ALS;
Deng et al., 2014). Although FUS has mostly been asso-

ciated with the binding of introns during the transcription
of long, neuron-expressed genes in the nucleus, 8–10%
of FUS binding occurs on 3´ UTRs (Lagier-Tourenne et al.,
2012), suggesting that it may also have roles in post-tran-
scriptional regulation. Indeed, it has been shown to be
involved in the post-transcriptional regulation of the
mRNA of an AMPA receptor subunit (GluA1; Udagawa
et al., 2015). Enrichment here suggests that it may have a
similar role for dozens of other proteins as well. Overall,
the similarities in binding motifs enriched in the 3´ UTRs
across the cell types suggests that multiple neuronal cell
types share similar pathways in mRNA regulation.

Identification of differential localized translation
between the distinct cell types

Although many transcripts are clearly shared, we next
designed an analysis to specifically identify the quantita-
tive differences in local transcripts between these types of
neurons by direct statistical testing for differential expres-
sion between the ST samples. Differential analysis be-
tween the ST samples of the pyramidal and GABAergic
neurons showed that these included markers of each cell
type (Fig. 6A), but also identified hundreds of quantitative
differences in the profiles of ribosome-bound transcripts
in the SNF for each (Fig. 6B). We used gene ontologies to
gain a systematic view of the data. This analysis of the
pyramidal neuron candidates identified a variety of en-
riched terms, including neuronal projection (Fig. 7A; p �
6.4E-9), highlighting the need for that maintenance of long
neurites. Gene ontology analysis of the GABAergic neuron
differential translation candidates identified an enrichment
of behavior (Fig. 7B; p � 2E-8), highlighting neuropeptides
and dopamine receptors as potential locally translated
proteins that modify higher-order actions.

Local Translation Candidates

VGAT: GABAergic NeuronsRBP4: Layer 5 Pyramidal Neurons

Somatic Translation Candidates

VGAT: GABAergic NeuronsRBP4: Layer 5 Pyramidal Neurons

PolyA Signal
3.3E-94

PolyA Signal
1.4E-20

G-quadruplex   1.4E-12G-quadruplex  2.5E-138

FUS
5.03E-26

Fmr1 (FMRP)
1.52E-05

Fmr1 (FMRP)
1.03E-15

FUS
5.37E-06

A

B

Figure 5. Protein binding motifs are enriched in local and somatic candidate lists. A, A MEME analysis reveals that Fmr1, FUS, and
G-quadruplex binding motifs are enriched in local translation candidates of both cell types compared with somatic translation
candidates as control. B, A MEME analysis reveals that the Poly A signal sequence is enriched in somatic translation candidates of
both cell types compared with local translation candidates as a control.
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Crmp1 0.50 2.4E-03 1.1E-01
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Nov 0.78 5.9E-03 1.7E-01
Slc17a7 0.65 3.1E-02 3.3E-01
Snap25 0.55 1.5E-02 2.4E-01
Tmem232 1.44 1.2E-08 1.8E-05

Gene LogFC PValue FDR
Capn11 -5.36 2.4E-07 1.8E-04
Cort -1.70 1.4E-10 4.8E-07
Crh -1.99 4.1E-09 8.3E-06
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Gad1 -0.64 3.9E-02 3.6E-01
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Npy -1.90 1.0E-09 2.9E-06
Penk -1.73 5.3E-08 5.3E-05
Pnoc -1.44 2.6E-07 1.9E-04
Sst -1.80 1.9E-08 2.2E-05
Tac2 -1.67 1.9E-08 2.2E-05
Tesc -0.57 1.5E-02 2.4E-01
Vip -1.69 3.4E-09 7.8E-06

B

Figure 6. Direct comparison reveals quantitative differences in SynapTRAP between RBP4 and VGAT neurons. A, Table of 15
representative neurons with quantitative differences between the local translatome of the cell types as identified by a directed
differential expression of ST samples. B, Volcano plot of differential expression results from the direct comparison of ST between cell
types. Genes with significant differences between cell types (p � 0.05) are shown in red. Figure 6-1: Table of Cell Type Specific Local
Translation Candidates in Pyramidal Neurons (RBP4-TRAP). Figure 6-2: Table of Cell Type Specific Local Translation Candidates in
GABAergic Neurons (Vgat-TRAP).
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Features of candidate transcript sequences that
differ across neuronal cell type

If post-transcriptional regulation does indeed play a role
in local translation, then sequences enriched in each neu-
ronal type might have distinctive cis regulatory motifs. We
hypothesized that these transcripts with differences be-
tween the cell types may be guided to neurites through a
cell-specific RNA binding motif. We tested this hypothesis
by scanning the 3´ UTRs of the differentially localized
transcripts for known binding motifs using AME (Fig. 8).
This additional level of regulation of transcripts further
divides different neuronal types from each other and pro-
vides support for a role of post-transcriptional regulation
in defining the local translatome of each distinct cell type.
However, due to the similarity of motifs bound by distinct
RNABPs, it is difficult to predict from sequence alone
which proteins might actually be binding these motifs in
each cell type.

The local translatome is defined by both
transcriptional and post-transcriptional regulation

Cell-specific differences in localized translation may be
different for two reasons. First, the transcript may not be
transcribed in the particular neuronal type. For example,
we detect Sst and Cort transcripts here as enriched in

VGAT SynapTRAP. While Sst and Cort are both highly
abundant in subsets of cortical interneurons (Schindler
et al., 1996; de Lecea et al., 1997), they are largely not
transcribed in pyramidal cells, thus making it impossible
for the transcript to reach the neurites. The second reason
would be cell-specific post-transcriptional regulation such
as transcript-specific differences in RNA localization. As
hinted at in the differences of the 3´ UTRs of local candi-
dates, we suspected that cell-specific machinery may be
driving the localization of a subset of candidates to neu-
rites. Indeed, plotting the ratios of TRAP versus TRAP for
each cell type, compared with ST versus ST, reveals a
number of transcripts that deviate in their ST from what
TRAP would have predicted (Fig. 9A). Gsr, for example,
is expressed in both cell types by TRAP; however, it is
not found in the neurites of GABAergic neurons by ST
(Fig. 9B). However, the largely shared GO processes
(Fig. 4) and motifs (Fig. 5) suggested that baseline
differences might outweigh localization-mediated dif-
ferences.

We therefore systematically tested this hypothesis. We
identified transcripts undergoing cell type-specific spatial
regulation using a statistical approach to distinguish
baseline transcript levels from differential localization us-
ing the RNA-seq data; we sought both to determine the
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Figure 7. GO analysis of quantitatively enriched SynapTRAP candidates. A, A gene ontologies analysis of local translation candidates
quantitatively enriched on RBP4-ST samples over VGAT-ST. B, A gene ontologies analysis of local translation candidates quantita-
tively enriched on VGAT-ST samples over RBP4-ST. Figure 7-1: GO analysis results of RBP4-TRAP Differential local translation
candidates Significance cutoff p � 5E-8. Figure 7-2: GO analysis results of VGAT-TRAP Differential local translation candidates
Significance cutoff p � 5E-8.
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extent to which differences in local translation, as as-
sessed by ST, were already present in the corresponding
TRAP sample or were independently arising due to differ-
ential localization to ST across cell types. We found that
the majority of the differences between cell types are
likely attributable to baseline differences: of the 1631
transcripts identified as differentially expressed between
ST fractions of the two neuronal cell types at p � 0.05,
1396 appeared to be due to expression differences also
apparent in TRAP. However, the remaining 235 tran-
scripts (14.4%) appeared to be mediated by differences in
RNA localization or localization to ribosomes in ST be-
tween cell types (Fig. 9A, 9-1). Thus, focusing on the 99
top differentially expressed genes between ST fractions, 7
still showed differential localization between cell types,
notably, Capn11 (Fig. 9B, 9-1). Thus, while baseline tran-
script differences are preponderant, there is also a role for
cell type-specific translational regulation in determining
the localized translatome.

mRNAs for neuropeptide neurotransmitters are
localized to neurites

Finally, previous models of neuropeptide precursor pro-
tein biosynthesis have described their translation as oc-
curring only in the soma. The enrichment of these mRNAs
in the ST fraction suggests a secondary location for the
synthesis of these proteins (Fig. 10A). To validate the
localization of mRNA for neuropeptides in the neurites of
inhibitory neurons, additional biological replicates under-
went qPCR for Sst and Cort mRNAs. As a positive control,
Shank3 showed the expected local translation candidate

from both cell types and was expressed at relatively
similar levels in the both ST samples. All candidates rep-
licated the RNA-seq results (Fig. 10B).

The neuropeptide mRNAs were also confirmed to co-
localize with GABAergic neurites by ISH (Fig. 11). To
visualize individual neurites in a cell-specific manner, a
CRE-dependent YFP [AAV5-EF1a-DIO-hChR2(H134R)-
EYFP] was injected into the VGAT-CRE and RBP4-CRE
mouse lines. This produced cell-specific labeling of these
neurons. Labeling of NeuN and DAPI was used to mask
nuclear and perinuclear soma, enabling the quantification
of ISH puncta overlapping with the neurites of each cell
type. Quantification revealed a measurable and consistent
presence of these messages in the neurites of GABAergic
cortical neurons (Fig. 11).

Discussion
Local translation is instrumental in many neuronal func-

tions from the formation of neurites to the regulation of
synapses in response to activity (Kislauskis et al., 1993;
Sutton and Schuman, 2005; Lin and Holt, 2007). We
contrasted cortical layer 5 projection neurons to GABAe-
rgic neurons to investigate the extent to which local trans-
lation is distinctly regulated and found evidence for
multiple mechanisms defining the differences between
these types of cells. We found, similar to studies that look
at whole-cell translation by TRAP, that which transcripts
show ribosome occupancy in neurites changes across
neurons as well. While there is substantial overlap be-
tween these local translation candidates of the two cell
types, the majority are neuron type specific. Understand-

VGAT: GABAergic NeuronsRBP4: Layer 5 Pyramidal Neurons
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Figure 8. Distinct enrichment of RNA binding motifs in transcripts with quantitative SynapTRAP differences between cell types. A
MEME analysis identifies known RNA binding protein motifs enriched in the 3´ UTR of transcripts with quantitative differences in ST
between RBP4 and VGAT. p values were Bonferroni corrected .
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ably, with the contrasting functions (i.e., inhibitory vs ex-
citatory) of these two neuron types, one might expect key
differences among the pool of mRNAs being translated in
the neurites at each cell.

There are two main ways in which distinct cell types
could regulate these differences in localized translation.
First, differences could simply reflect baseline differ-
ences between the cell types, such as those that would
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Figure 9. Quantitative regulation of SynapTRAP RNAs occurs by both differential baseline TRAP expression and differential
localization. A, Differential expression analysis reveals a subset of genes significantly differentially expressed between RBP4 and
VGAT SynapTRAP samples may be mediated by differential neurite localization rather than differential TRAP expression. Log2-
transformed fold-change (logFC) between SynapTRAP samples is shown on the y-axis, and logFC between TRAP samples is shown
on the x-axis. Deviation from perfect correlation indicates additional post-transcriptional regulation. Transcripts with significant
evidence for such regulation are shown in red (RBP4 upregulated) and blue (VGAT upregulated), respectively. B, Representative
examples of transcripts showing robust post-transcriptional regulation. Both Capn11 and Gsr show differences in their SynapTRAP
RNA-seq expression that are not reflected in TRAP RNA-seq. Figure 9-1: Table containing differential expression statistics for all
direct comparisons between the two neuron types.
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be driven by differences in transcription or splicing in
the nucleus. Second, there could be a level of post-
transcriptional regulation specifically impacting local
translation (i.e., altered mRNA localization or ribosome
occupancy in neurites). We found that the majority of
differences between cell types when analyzing mRNAs
bound to ribosomes in the SNF fraction was already
apparent in the standard TRAP sample. Thus, it seems
likely that most of the differences are already appar-
ent in the cell body and is thus transcriptional. How-
ever, there is still a clear role for cell type-specific
regulation of localization to SFN ribosomes in a sub-
set of transcripts. Approximately 14% of transcripts
showed deviations in ST that were not predicted from
the TRAP data, indicating that post-transcriptional
mechanisms were altering ribosome occupancy in neu-

rites in a cell type-specific manner. This was exempli-
fied by transcripts like Gsr and Capn11, which were
expressed by TRAP in both cell populations but were
predominantly ribosome-bound in neurites by only one
of the two.

An unexpected finding from our analysis was the pos-
sible cell-specific local translation of two neuropeptide
transmitters, cortistatin and somatostatin, in the GABAe-
rgic neurons. These are examples of SynapTRAP differ-
ences reflecting transcriptional difference between the
two cell types in that they are transcripts that are ex-
pressed in GABAergic neurons but not in pyramidal neu-
rons. While the processed neuropeptides of these mRNAs
have been a marker of inhibitory neurons in the cortex
(Close et al., 2017), they have never before been charac-
terized as potentially locally translated in interneurons.

A

B

C

Figure 10. qPCR validation of neuropeptide RNA in neurites. A, RNA-seq-measured expression level, normalized by counts per
million, shows enrichment of neuropeptides Cort and Sst in both the TRAP of ST specifically of VGAT neurons. Shank3, a well
characterized locally translated gene found enriched in both RBP4 and VGAT ST, is included as a control. B, qPCR results of four
additional biological replicates for the neuropeptides Cort and Sst confirm the enrichment of messages for both peptides in both the
TRAP and ST fractions from VGAT neurons. R, RBP4; V, VGAT. qPCR results are normalized to Actb mRNA using the dCT method.
C, Scatterplots of Log2CPM of RNAseq compared to qPCR in replicate samples confirms reproducibility of the findings.
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Figure 11. In situ hybridization validation of neuropeptide mRNA in neurites. A, In situ hybridization shows RNA localization for Sst
and Cort messages with immunohistochemistry of Cre-dependent membrane-bound YFP-channel fusion in each cell type. DAPI is
used to label nuclei, and NeuN to define the nuclear compartment and perinuclear cytoplasm of all cortical neurons. White arrows
indicate examples of Cort and Sst ISH puncta overlapping with both proximal and distal neurites in subsets of VGAT neurons. B,
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These two neuropeptides have similar structure, act as
inhibitory neuropeptides, and bind many of the same
G-protein-coupled receptors, although they have distinct
physiologic functions (Spier and de Lecea, 2000; de Le-
cea and Castaño, 2006). Somatostatin was identified for
its ability to inhibit growth hormone release (Brazeau
et al., 1973), and cortistatin for its induction of slow waves
in the cerebral cortex related to sleep (de Lecea et al.,
1996).

Previous literature describes neuropeptide precursor
mRNA being translated in the endoplasmic reticulum (ER)
of the soma and with the immature precursor protein
transported down neurites in vesicles where they are then
processed into mature neuropeptides (Goodman et al.,
1983; Hökfelt et al., 2000; Russo, 2017). This model was
developed through several methods including axonal in-
jury and disruption of microtubular transport. Specifically,
on axonal injury, neuropeptides build up proximal to the
point of injury. Furthermore, when the axon was injured in
two locations, an additional, but smaller, buildup of neu-
ropeptides occurred between the two injury sites (Gilbert
et al., 1980). Although not discussed by the authors at the
time, these data confirm that local synthesis of neuropep-
tides in neurites is possible, though whether this was
mediated by mRNA translation or peptide precursor pro-
cessing is not clear from this experiment alone. However,
as ER and Golgi structures extend into neurites (Tsukita
and Ishikawa, 1976; Henkart et al., 1978; de Juan-Sanz
et al., 2017), the components needed for neuropeptide
synthesis from mRNA to neuropeptide are present locally.
Additionally, classic studies of neurons treated with col-
chicine, a microtubular disruptor, were interpreted as dis-
rupting peptide localization to neurites because they
disrupted precursor vesicle transport; however, this treat-
ment could also inhibit the transport of mRNA and ER
dynamics, preventing the trafficking of mRNAs to the
neurites as well as the vesicles of precursor protein. Thus,
the data supporting the old model are not inconsistent
with local translation of neuropeptide precursor mRNA
occurring in neurites in addition to the soma.

Indeed, several studies have speculated about the
presence of neuropeptide mRNA in neurites; however,
they lacked a method for cell type-specific labeling and
finer resolution microscopy to confirm it (Lehmann et al.,
1990; Levy et al., 1990; Mohr et al., 1990). The cell-
specific expression and localized enrichment of Cort and
Sst levels were confirmed here through qPCR (Fig. 10A) in
independent samples. In addition, fine-resolution fluores-
cent confocal microscopy confirmed cell type specificity
and localization by ISH puncta of both neuropeptide pre-
cursor mRNAs overlapping with cell-specific labeling of
neurites from the VGAT-CRE mouse line compared with
no probe and the RBP4-CRE lines (Fig. 11C). The addi-

tional pathway of local production of these neuropeptides
in neurites would allow for greater temporal and spatial
control of neuropeptide release. Unlike the fast neu-
rotransmitter glutamate, neuropeptides are degraded
rather than recycled after release, requiring new protein
to be generated for continued signaling. Localized
translation of these peptides could allow for a more
rapid replenishment compared with shuttling precursor
proteins from the soma.

Our study did have at least three limitations. First, while
these results demonstrate that there must be a diversity in
local translation across cell types, samples isolated from
the VGAT-TRAP line (GABAergic neurons) plausibly in-
clude multiple more precisely definable cell types of
GABAergic neurons of the cortex and striatum (Nakajima,
2012). Regardless, even without focusing on more precise
subtypes of GABAergic neurons, there are robust differ-
ences with layer 5 pyramidal neurons . These new findings
extend previous knowledge of local translation gathered
from cell types that are laminarly organized, such as the
hippocampus (Zhong et al., 2006; Taylor et al., 2009;
Cajigas et al., 2012), and suggest that there are both
consistent sets of genes that might represent a fairly “core
local translatome” as well as neuron type-specific differ-
ences. Further investigation of local translation in a greater
number of cell types may reveal more regulatory pathways
of this localized phenomenon. It might be of particular inter-
est to focus on neuron types with highly unique polarized
processes, such as the clawed dendrites of cerebellar gran-
ule cells, or the magnificent specialization that is the calyx of
Held in the auditory colliculus. In addition, profiling more
defined cell types may reduce the variation and allow for a
deeper analysis of the mechanisms of those transcripts that
do show post-transcriptional regulation. With the vast array
of TRAP and Cre mouse lines available, the ability to inves-
tigate localized translation in large a survey of cell types is
possible.

Likewise, differential splicing is one method that cells
may use to localize some isoforms to neurites (Taliaferro
et al., 2016). Due to the use of 3´ priming in library prep-
aration, this dataset is not well suited for the discovery of
differentially localized isoforms as it has a heavy 3´ bias in
sequencing reads. In addition, our analysis of motifs that
might mediate RNA localization was limited by our sim-
plifying assumption focusing on the longest transcript
from each gene for motif discovery, and the validity of our
motif results are contingent on this assumption being a
reasonable one. Alternative library preparation methods
might provide more insight into isoform localization and
enable more thorough analysis of key regulatory motifs.
However, cell-specific splicing of transcripts would be an
additional level of regulation to alter local translation

continued
Illustration of the method used to quantify the ISH signal in the neurites of each cell type. The cell-specific Cre-driven YFP signal
(green border) was masked with NeuN and DAPI (blue and white border) to remove any signal in nuclear and perinuclear
compartments. The remaining ISH puncta overlapping with GAP (red borders) were quantified. C, Quantification of overlapping ISH
puncta with cell-specific labeling of neurites reveals that Cort and Sst are significantly enriched in neurites of VGAT neurons. Each
probe and no probe control, n � 13, Mann–Whitney test. ��P � 0.01, ���P � 0.001.
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across cell types that could factor into the specialized
functions of each cell.

Finally, we also cannot determine which messages in
the SNF might be coming from axons, and which from
dendrites. A prior study (Shigeoka et al., 2016) was able to
elegantly profile axon-specific ribosome-bound mRNA by
separately conducting TRAP on regions containing either
cell bodies or axons using neurons with long-range pro-
jections. Similarly, our term somatic is operationalized as
simply being “non-SNF.” It may indeed still contain some
neurite fragments, so it is not as pure a measure of a
somatic fraction as Shigeoka et al. (2016) were able to
achieve. However, for cells such as cortical GABAergic
interneurons, where axons only project locally, we would
not be able to use such a physical separation approach.
Furthermore, we have assessed only ribosome occu-
pancy (by TRAP and ST) rather than a direct measure of
active protein translation. With current methods available
in vivo, we cannot strictly determine the difference be-
tween actively translating transcripts versus transcripts
that might be stalled but still bound by ribosomes in
neurites.

Nonetheless, the current findings indicate an array of
interesting future avenues of investigation. Notably, the
developmental differences in cell-specific local translation
could be explored. In the current analysis, the candidates
for local translation were identified in mice at 21 d post-
birth. At that age, the cortical neurons have finished their
developmental migrations. Given the two contrasting mi-
gratory directions of the two cell types (Molnár et al.,
2006), it is possible that additional cell-specific candi-
dates in neurites would be identified at earlier time points
that aid in cell polarity and motility during development.
Likewise, it would be of interest to determine whether
there are cell type-specific specializations in the localized
translation in response to activity in the mature nervous
system. This could be important for any role in local
translation in changes in synaptic strength, learning, and
memory. Further, if the method could be successfully
adapted to applications in the spinal cord, it would be of
interest to assess how the neurite translatome profiled
might be altered during the neurodegenerative disease
ALS. Indeed, it has been show that each of the major cell
types (astrocytes, oligodendrocytes, and neurons) has a
distinct translational response in models of ALS (Sun
et al., 2015); however, it is not clear to what extent this
might be occurring in peripheral processes compared
with the whole cell.

Finally, this article describes local translation in normal
early postnatal neurons. While many neurologic diseases,
such as fragile X syndrome, which is caused by a lack of
FMRP, have been associated with altered local translation
(Kelleher and Bear, 2008; Meyer-Luehmann et al., 2009), it
is unclear whether disease causes the same perturbation
in all neurons or whether a certain cell type contributes
more heavily to the phenotypes. With FMRP binding
motifs enriched in the 3´ UTR of the local translation
candidates of both cell types, disruption of this master
regulator would have a broad effect on local translation,
but it is unclear how this and other diseases alter local

translation on a cell-specific level across the CNS. Thus,
determining how mutations modeling RNABP disease im-
pact local translation in a cell type-specific manner would
also be of substantial future interest.
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