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Oral mesenchymal stem/progenitor cells (MSCs) are renowned in the field of tissue engineering/regeneration for their multilineage
differentiation potential and easy acquisition. These cells encompass the periodontal ligament stem/progenitor cells (PDLSCs), the
dental pulp stem/progenitor cells (DPSCs), the stem/progenitor cells from human exfoliated deciduous teeth (SHED), the gingival
mesenchymal stem/progenitor cells (GMSCs), the stem/progenitor cells from the apical papilla (SCAP), the dental follicle
stem/progenitor cells (DFSCs), the bone marrow mesenchymal stem/progenitor cells (BM-MSCs) from the alveolar bone
proper, and the human periapical cyst-mesenchymal stem cells (hPCy-MSCs). Apart from their remarkable regenerative
potential, oral MSCs possess the capacity to interact with an inflammatory microenvironment. Although inflammation might
affect the properties of oral MSCs, they could inversely exert a multitude of immunological actions to the local inflammatory
microenvironment. The present review discusses the current understanding about the immunomodulatory role of oral MSCs
both in periodontitis and systemic diseases, their “double-edged sword” uniqueness in inflammatory regulation, their affection
of the immune system, and the underlying mechanisms, involving oral MSC-derived extracellular vesicles.

1. Introduction

According to the International Society for Cellular Therapy,
mesenchymal stem/progenitor cells (MSCs) positively
express the surface markers CD73, CD90, and CD105 and
negatively express the endothelial as well as the hematopoi-
etic markers CD11b, CD19, CD79α, CD31, CD34, CD45,
and HLA-DR antigen [1]. CD90 (Thy-1) is usually used as
a marker for a variety of MSCs and for the axonal processes
of mature neurons. CD105 (endoglin), as a part of the
TGF-β receptor complex that is involved in the binding of
TGF-β1, TGF-β3, BMP-2, and/or BMP-7, has been found
on endothelial cells, activated macrophages, fibroblasts,
smooth muscle cells, and MSCs. CD73, as a marker of lym-
phocyte differentiation, can be coexpressed with CD90 and

CD105 in very high concentrations on any potential MSCs.
Thus, CD73, CD90, and CD10 are three major makers
expressed on the MSCs’ surface. CD79a and CD19 are
expressed on B cells, and CD34 is a marker of primitive
hematopoietic progenitors and endothelial cells. CD14 and
CD11b are predominantly expressed onmonocytes and mac-
rophages, and CD45 is a marker of pan-leukocyte. HLA-DR
molecules are not expressed on MSCs unless stimulated.
Accordingly, MSCs lack the expression of CD45, CD34,
CD14 or CD11b, CD79a or CD19, and HLA-DR antigens [1].

MSCs are characterized by their self-renewal and multili-
neage differentiation capability into osteogenic, adipogenic,
chondrogenic, and myogenic- and neurogenic-like lineages.
Aside from their remarkable proliferative and multilineage
differentiation/regenerative potential [2], multiple impressive
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paracrine functions, which affect the surrounding microenvi-
ronment, have been ascribed to MSCs [3]. These paracrine
activities unfolded over the last years to encompass remark-
able modulatory effects in the courses of a variety of
autoimmune and inflammatory diseases, including multiple
sclerosis, acute lung injury, muscular dystrophy, osteoarthri-
tis, and graft versus host disease (GVHD) [4]. The observed
effects were primarily attributed to the MSCs’ potential to
constrain the underlying immune responses, while abscond-
ing the host’s immune surveillance [5]. Yet, although we
mostly consider the effects of MSCs on their surrounding
environment, the aforementioned biological attributes of
MSCs can be greatly influenced by their inflammatory micro-
environment [6], which usually present during many diseases
as well as the initial physiological healing processes.

Originally, MSCs were characterized as fibroblast-like
cells isolated from the bone marrow mesenchymal cellular
populations [7]. Since the turn of the millennium, oral tissues
have further been described as readily available sources for
MSCs’ isolation. Relying on their ease of acquisition and
remarkable multilineage differentiation potential, oral-
tissue-derived MSCs have attracted pronounced attention
[8] (Figure 1). Periodontal ligament stem/progenitor cells
(PDLSCs), residing inside the periodontal ligament, express
embryonic stem cell markers (Oct4, Sox2, Nanog, and Klf4)
and a subset of neural crest markers (Nestin, Slug, p75,
and Sox10) [9]. The gingival mesenchymal stem/progeni-
tor cells (GMSCs) contain two subpopulations of G-MSCs:
90% neural-crest-derived GMSCs (N-GMSCs) and 10%
mesoderm-derived GMSCs (M-GMSCs), where N-GMSCs
are more capable of differentiating into neural cells than

M-GMSCs [10]. Dental pulp stem/progenitor cells (DPSCs)
and stem/progenitor cells are from human exfoliated
deciduous teeth (SHED) originate from dental pulps of adult
as well as deciduous teeth, respectively. Stem/progenitor cells
from the apical papilla (SCAP) reside in the apical papilla of
incompletely developed teeth, and dental follicle stem/pro-
genitor cells (DFSCs) could be isolated from human third
molars. The alveolar bone proper further harbors bone
marrow mesenchymal stem/progenitor cells (BM-MSCs).
Remarkably, MSCs isolated in the course of the surgical
removal of periapical cyst were termed as human periapical
cyst-mesenchymal stem cells (hPCy-MSCs) [11]. Though
considered as “biological waste,” hPCy-MSCs presented
more potent differentiation toward neurogenesis and osteo-
genesis [12] and were administrated in neurodegenerative
diseases like Parkinson’s disease and in bone regeneration
[12–14]. However, evidence of immunomodulatory proper-
ties about hPCy-MSCs is still absent [15]. Besides, oral MSCs
were further obtained from a diversity of oral soft tissue,
including the incisive papillae and the rugae area of the palate
[16], the maxillary tuberosity [17], the oral mucosa [18], and
the hyperplastic gingiva [19].

2. Effects of Microenvironment on Oral MSCs

2.1. Oral MSC Behavior under Inflammatory
Microenvironment. The oral cavity is a distinctive habitat,
harbouring an array of microorganism, with more than 700
species [20, 21]. An understanding of the effect of the resul-
tant bacterially induced inflammatory environment onMSCs
and their intrinsic processes is pivotal, in order to boost their
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Figure 1: Location of oral-tissue-derived MSCs. PDLSCs: periodontal ligament stem cells; DPSCs: dental pulp stem cells; SHED: stem cells
from human exfoliated deciduous teeth; GMSCs: gingival mesenchymal stem cells; SCAP: stem cells of the apical papilla; DFSCs: dental
follicle stem cells; BM-MSCs: bone marrow mesenchymal stem cells; PCy-MSCs: periapical cyst-mesenchymal stem cells.
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reparative/regenerative potential and maintain their stem-
ness. MSCs’ survival under intensely inflamed microenviron-
mental conditions is relatively short, with a half-life of 24
hours [22], and the MSCs number is quite sparse [23, 24].
Three days following SHED injection into periodontitis-
induced defects, minimal cell diffusion was detected with
bioluminescence imaging, and SHED diminished during
days 5 to 7 [24]. Similarly, three days following local or sys-
temic injection of 1 × 107 BM-MSCs into an injured corneas,
surprisingly, less than 10 BM-MSCs appeared in the corneas,
with a partial reversal of the deleterious effects of corneal
opacity and inflammation [23]. This finding is completely
opposite to the old concept that significant numbers of MSCs
are required in injured sites for tissue repair. The theory of
“hit-and-run” was proposed [25] to describe this rapid action
of MSCs, including the secretion of soluble factors or
secretomes, including cytokines, soluble factors, peptides,
proteins, metabolites, microRNAs, and even mitochondria
in extracellular vesicles [26–30].

Multiple investigations exploring the impact of the
inflammatory microenvironment on oral MSCs’ properties
addressed their proliferation potential, migration and
homing, multilineage differentiation, and inflammatory
cytokines production [3]. Yet, results remain quite contro-
versial, depending on the origins of MSCs under investiga-
tion, the variation and concentration of the inflammatory
stimuli, and the experimental setup [31–33]. Regarding
MSCs’ proliferation, Escherichia coli lipopolysaccharide
(Ec-LPS) inhibited the proliferation of DPSCs significantly
at a concentration of 10μg/ml, while promoted it at 0.1μg/ml
and exerted no influence at the tipping concentration of
1μg/ml [32], in a dose-dependent pattern. Ec-LPS enhanced
the proliferation rate of BM-MSCs at 1μg/ml but not at
10μg/ml [34]. Also, BM-MSCs’ attributes were demon-
strated to be affected by different Pg-LPS concentrations,
with an increase in proliferation, osteogenic differentiation,
and immunomodulatory properties observed at 0.1μg/ml
but a decrease or even apoptosis occurring at 10μg/ml [33].
Interestingly, compared to GMSCs from healthy tissues, the
proliferation rate of GMSCs from inflamed tissues was
enhanced [35]. Contrastingly, the proliferation of DFSCs
was not influenced by concentrations of Pg-LPS ranging
from 1μg/ml to 50μg/ml [36]. It appears that the source of
oral MSCs could greatly affect their proliferative response
to inflammatory stimuli of various concentrations.

Cellular proliferation is classically followed by selective
migration/homing of MSCs in tissue regenerative/reparative
process. This cellular homing and migration ability is princi-
pally regulated by local cytokines and chemokines [37].
PDLSCs cultured in interleukin-1β (IL-1β) (5 ng/ml)/tumor
necrosis factor- (TNF-) α (10 ng/mL) inflammatory microen-
vironment upregulated their expression of CXC chemokine
receptor 4 (CXCR4), which downregulated the tissue-
released chemokine SDF-1/CXCL12 by bonding to it,
thereby increasing PDLSCs’ homing activity [38]. Moreover,
the proinflammatory chemokine RANTES/CCL5 increased
the migrated activity of PDLSCs, through the enhancement
of the actin skeleton, the focal adhesion, the corresponding
ECM receptors, and the cellular migration signaling pathway

[39]. In conclusion, a controlled inflammatory microenvi-
ronment could significantly affect the homing and migration
ability of oral MSCs.

Interestingly, LPS-challenged oral MSCs altered their
regenerative markers’ expression profile according to the
source of the LPS. After stimulated by Ec-LPS, adipose
stem/progenitor cells, DPSCs, and PDLSCs increased their
osteogenic mRNA expressions, including alkaline phospha-
tase (ALP), Runt-related transcription factor 2 (RUNX2),
osteocalcin (OCN) [32, 40, 41]. BM-MSCs, and adipose
stem/progenitor cells also upregulated the calcium deposit
as well as ALP activity with the stimulation of LPS (origin
unclear) [31, 42]. In contrast, the expression of Col-I and
OCN in human PDLSCs was downregulated upon Pg-LPS
stimulation [43] and the calcium deposition by mouse BM-
MSCs decreased by challenging them through Ec-LPS at
1μg/ml [44]. With the stimulation of IL-1β and TNF-α,
GMSCs’ osteogenic and adipogenic differentiation was sup-
pressed [45]. Remarkably, GMSCs isolated from human
hyperplastic gingival tissue displayed the same immunoregu-
latory functions in murine skin allograft as that of GMSCs
from healthy gingiva, but weaker capability of collagen
regeneration [19].

On the level of inflammatory cytokine release, a short-
termed Ec-LPS stimulation of BM-MSCs, umbilical cord
stem/progenitor cells, DFSCs, and DPSCs demonstrated a
marked increase in their IL-6 and IL-8, but not in TNF-α
secretion [46–48]. A long-term stimulation of PDLSCs by
Pg-LPS resulted in a significant increase in cellular IL-1β,
IL-6, and IL-8 release [43]. Compared to GMSCs from
healthy tissue, GMSCs from inflamed tissue significantly
produced higher IL-1, IL-6, and TNF-α [35]. In contrast,
DFSCs challenged by Pg-LPS demonstrated no difference in
IL-6 expression [36, 48].

Particularly, our group has been addressed in the study of
GMSC behavior under inflammatory environment for years
and uncovered that they were a unique group of MSCs with
the characteristic of inflammatory resistance. Stimulation of
GMSCs with Pg-LPS in concentrations ranging from
10ng/ml to 10μg/ml upregulated their proliferation while
induced minimally their inflammatory response and did
not attenuate their regenerative capacity [49]. Challenged
by a proinflammatory cytokines “cocktail” (IL-1β, TNF-α,
and IFN-γ), the cellular proliferation of GMSCs declined at
the initial stage (day 3) but increased significantly at the later
stage (day 7), in a time-dependent manner. Their stemness
and multilineage differentiation potential kept quite stable
under “cocktail” stimulation [50].

Toll-like receptors (TLRs) expressed on MSCs were dem-
onstrated to not only affect their migration, proliferation, and
differentiation potential but also to play an important role in
interaction with inflammatory environment. Therefore, we
depicted TLR expression profile of GMSCs, DPSCs, and
BM-MSCs under uninflamed [51–53] and inflamed condi-
tions [51, 52]. In a basic medium, DPSCs expressed TLRs
1–10 in different quantities, while in inflammatory medium
TLRs 2, 3, 4, 5, and 8 were upregulated, TLRs 1, 7, 9, and
10 downregulated, and TLR6 expression abolished [52]. Sim-
ilarly, in a basic medium, GMSCs expressed TLRs 1, 2, 3, 4, 5,
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6, 7, and 10, while in an inflammatory medium TLRs 1, 2, 4,
5, 7, and 10 significantly upregulated and TLR 6 diminished
[51]. These variations in the TLR expression profile affect
the recognition ability of MSCs for both gram-positive as well
as gram-negative pathogens as well as damage-associated
molecular patterns under inflammation [54, 55].

2.2. Oral MSC Behavior under Other Microenvironments.
Oxidative stress, defined as the damage caused by an imbal-
ance between oxidants and antioxidants [2], is two sided:
high oxidant levels can damage biomolecules, while low basal
level of oxidant is essential to the life processes [3]. Oxidative
stress is tightly related to inflammation, affecting the devel-
opment and perpetuation of inflammation in different stages
and at various degrees [1]. Besides, reactive oxygen species
(ROS), generated from mitochondrial complexes I and III
and from NADPH oxidase isoform NOX4 during MSCs
differentiation [4], could inhibit osteogenic differentiation
[56] and induce adipogenesis/chondrogenesis [57, 58] if
ROS level is excessive. BM-MSCs isolated from popula-
tions with old age, atherosclerosis, and type 2 diabetes,
who experienced high oxidative stress, failed to induce T
cell suppression [59, 60]. Nevertheless, the evidence of oxida-
tive stress on oral MSCs is still quite rare and the intrinsic
signaling is unclear.

Extracellular matrix (ECM) is also considered a crucial
factor to influences oral MSCs by changing its biochemical
or physical properties. Compared to collagen type I which
is the most commonly purified ECM, decellularized bone
extracellular matrix (bECM) hydrogels facilitated a signifi-
cant upregulation of RUNX-2 and bone sialoprotein (BSP)
of DPSCs, indicating their osteogenic differentiation [61].
Physical factors of ECM, such as stiffness, could influence
the distribution and morphology of DPSCs and promote
their odontogenic and osteogenic differentiation [62].

Micro-/nanoparticles have been widely used as bone graft
substitute to mimic natural bone tissue. The addition of
nanosilicates to poly(glycerol sebacate) could not only mod-
ulate the degradation rate and mechanical stiffness of the
scaffold but also enhance the adhesion, spreading, prolifera-
tion, and osteogenic differentiation potential of preosteo-
blasts [63]. It was reported that compared to traditional
biphasic calcium phosphate (BCP), BCP bioceramics com-
posed of microwhiskers and nanoparticles hybrid-
structured surface (hBCP) employed in a long bone defect
model of beagle dogs achieved a higher quality of regenerated
bone and a higher fracture load. Also, hBCP group dramati-
cally downregulated inflammatory gene expression of BM-
MSCs, indicating a closer resemblance of hBCP to the natural
bone [64].

3. Effects of Oral MSCs on
Inflammatory Microenvironment

3.1. “Double-Edged Sword” Effect of Oral MSCs on Their
Inflammatory Microenvironment. Various experimental
setups including animal models, cellular coculture system,
and conditioned medium application were administrated to
explore the impact of MSCs on inflammatory microenviron-

ment, including immune cell infiltration and inflammatory
cytokine production. The immunomodulatory effects of oral
MSCs are believed to be mediated by direct cell to cell contact
as well as through the production of soluble cytokines,
including IL-1, IL-6, IL-10, indoleamine 2,3-dioxygenase
(IDO), nitric oxide (NO), transforming growth factor
(TGF)-β1, and prostaglandin E2 (PGE2) [65].

Yet, the immunoregulative capacity of MSCs is largely
governed by the surrounding inflammatory intensity [5].
Under low inflammatory condition, MSCs promote the
inflammatory response through the secretion of cytokines
that recruit immune cells to the local area, while if the inflam-
matory cytokines exceed a certain threshold, MSCs shift from
pro- to anti-inflammatory cells, preventing an overexpres-
sion of immunoreaction [5, 66] (Figure 2). MSCs exert an
inhibitory effect on effector T cells under high concentrations
(0.4 ng/ml) of interferon- (IFN-) γ and TNF-α, while under
low concentrations (0.2 ng/ml) of the same cytokines, MSCs
promote their cellular proliferation. This “double-edged
sword” effect is attributed to the inflammatory-dose-
dependent production of NO/IDO by MSCs, which
functions as an “on-off” switch, changing MSCs from being
immunosuppressive to immune enhancing [66]. Similarly, a
low dose of IFN-γ could boost the antigen-presenting
functions of MSCs through upregulating MHC-II and
MHC-I, rendering them less susceptible to NK-mediated cell
lysis. High doses of IFN-γ, contrastingly suppress the expres-
sion of the same MHCs in MSCs [67, 68].

In the periodontium, the inflammatory concentration is
directly associated with the severity of periodontitis [69].
PDLSCs clearly demonstrated similar “double-edged sword”
properties. In a healthy periodontium, PDLSCs suppress the
production of ROS by neutrophil precursor HL-60D,
exerting a protective effect on the surrounding tissues from
ROS-mediated deleterious attack. Yet, with a challenge of
Porphyromonas gingivalis total protein extract (Pg-PE),
PDLSCs reverse their action, augmenting the ROS produc-
tion by activating HL-60D [70–74].

Similarly, the effects of MSCs on osteoclast also depends
on the dose of the surrounding biomolecules as well as the
concentration of the inflammatory condition [75]. Osteoclast
formation was enhanced when cocultured with BM-MSCs in
the presence of 10-9M 1α,25(OH)2D3. At higher concentra-
tions of 10-8M 1α,25(OH)2D3, this effect was not observed
[76]. Similarly, BM-MSCs promoted the formation and func-
tion of cocultured osteoclasts in the absence or presence of a
low dose of TNF-α (5 ng/ml), while inhibited osteoclast for-
mation at high doses of TNF-α (10 ng/ml) [77]. Receptor
activator of NF-κB ligand (RANKL) is expressed by MSCs
during normal physiological remodeling, while under
inflammatory conditions the expression of OPG [78] and
IL-10 [79] is upregulated and RANKL [77] is slightly down-
regulated. This dual regulatory effect of MSCs on the forma-
tion and differentiation of osteoclasts is further consistent
with the “double-edged sword” property of MSCs in inflam-
matory regulation, switching between proinflammatory and
anti-inflammatory phenotypes by sensing different inflam-
matory milieu (Figure 2). Thus, aside from playing a classical
role to ameliorate inflammation, MSCs could serve as
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inflammatory promoters to activate immune cells under cer-
tain conditions. Through such a dose-dependent feedback,
MSCs maintain tissue integrity and homeostasis as an immu-
noregulative agent [5, 80].

As above, MSCs and the local inflammatory environment
could affect each other under the inflammatory stimuli.
Although they seem to be two independent biological
behavior, underlying correlations exist to maintain tissue
equilibrium. The influence of inflammatory environment
on MSCs would affect their survival, proliferation, stemness,
and differentiation potential, which might impair or boost
the process of tissue regeneration/repair. Also, MSCs’ actions
as immunomodulators could attenuate the inflammatory
process.

3.2. Effects of Oral MSCs on the Innate and Acquired Immune
System. Oral MSCs regulate local inflammatory environ-
ment also by interacting with the innate and acquired
immune system in a multifaceted way (Figure 3). As pri-
mary antigen-presenting cells, dendritic cells (DCs) couple
innate and adaptive immune response [81]. Both DPSCs
and GMSCs have been demonstrated to interfere with
the maturation and activity of DCs, lessening their antigen
presentation competence and inflammatory reaction,
which may attribute to the elevation/activation of IL-10
via a PGE2-mediated mechanism [82, 83]. Moreover, by
interacting with EP4 receptors (PGE2-receptor subtype)

expressed on DCs, PGE2 secreted from GMSCs increases
the production of IL-23 in DCs, which facilitates Th17 cell
expansion [84].

Macrophages, which are indispensable components of
the innate immune system, contain two major subpopula-
tions, namely proinflammatory M1 phenotype and anti-
inflammatory M2 phenotype [81]. DPSCs are reported to
inhibit M1 macrophage function by preventing their TNF-α
secretion via an IDO-mediated pathway [85]. Also, DPSCs
as well as GMSCs possess the ability to guide the polarization
of macrophages toward M2 phenotype, through elevated
secretion of PGE2, IL-6, IL-10, and GM-CSF [86, 87].

Mast cells play a significant role in allergy and inflamma-
tion. Studies show that GMSCs hinder the production of
TNF-α in activated mast cells, which is believed to be partly
mediated by TNF-α/PGE2 feedback axis [83, 86].

Lymphocytes, consisting of T cells, B cells, and natural
killer cells (NK cells), play a vital role in the adaptive immune
response. GMSCs were demonstrated to inhibit the prolifer-
ation/activation of T cells in vitro through upregulating IL-10
and downregulating tryptophan, via GMSCs’ derived indo-
leamine 2,3-dioxygenase (IDO) [86, 87]. IFN-γ released by
activated T cells acts as a regulator in the feedback signaling
between T cells and GMSCs [87]. Additionally, GMSCs,
DPSCs, PDLSCs, and SHED possess the capability to sup-
press activation of Th17 cells [88–91] and promote the
growth of CD4+CD25+FoxP3+ regulatory T cells (Tregs)
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Figure 2: Under a high level of inflammation, oral MSCs suppress inflammation production and bone resorption by the regulation of
inflammatory cytokines, inflammatory cells, RANKL/OPG, and osteoclasts, respectively. While under a low level of inflammation, oral
MSCs promote both inflammation production and bone resorption.
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[88–90], mediated by M2 macrophages via a TGF-β-depen-
dent mechanism [88, 89]. Studies also revealed that
GMSCs and DPSCs induced T cell apoptosis and sup-
pressed the proliferation of NK cell and Th1 via Fas-
L/Fas-mediated pathway [92, 93], resulting in the
decreased production of IFN-γ and IL-17 by Th1, whereas
it enhanced IL-4 secretion by Th2 cells. As to the humoral
immunity level, similar to other MSCs, PDLSCs and
DPSCs were considered to hinder B cell proliferation, dif-
ferentiation potential, and antibody production [88, 94]
and to suppress allogeneic T and B cell proliferation
through TGF-β1 release [88].

Moreover, GMSCs, SCAPs, PDLSCs, DFSCs, and
DPSCs are capable of suppressing the proliferation and
activation of human peripheral blood mononuclear cells
(PBMCs). GMSCs, PDLSCs, and SCAPs were reported to
exert an adverse effect on PBMCs [17, 87, 95, 96], in a
dose-dependent manner [17, 87, 95], through their secre-
tion of TGF-β, HGF, and IDO [96]. Similarly, DPSCs
and DFSCs hindered the proliferation of PBMCs by pro-
ducing TGF-β [96, 97] and TLR4 agonists could facilitate
this effect [97].

4. Oral MSC-Derived Extracellular Vesicles
(EVs) in Conditioned Media

To date, the intrinsic immunoregulative mechanism of MSCs
are not fully elucidated, although paracrine factors have been
corroborated to play an important role in this process. The
paracrine action may be attributed, at least in part, to EVs
released from MSCs in their respective media. EV, known
as nanosized membrane structures released by cells in an
evolutionally conserved manner, can transfer RNA, micro-
RNA, and even proteins to modulate inflammatory environ-
ment [98–100]. EV can be broadly divided into four main

categories: exosomes, microvesicles, retrovirus-like vesicles,
and apoptotic bodies. Exosomes, arising from exocytosis
of multivesicular bodies with the size of 30-120 nm, are
encapsulated within a lipoprotein coat, which determines
its tropism and protects it from being degraded in the sys-
temic circulation. Microvesicles, budding from the plasma
membrane, are vesicles at 50–2,000 nm. Retrovirus-like par-
ticles are noninfectious vesicles at 90–100nm that are sim-
ilar to retroviral vesicles and contain a portion of retroviral
proteins. Apoptotic bodies are vesicles at 50–5,000 nm that
are produced from cell death during apoptosis progress
[101–103].

Oral MSC-derived exosomes have been reported of ther-
apeutic benefit in a number of inflammatory-related disease,
through different molecular mechanisms. BM-MSC-derived
exosomes promoted the regeneration/repair of the periodon-
tal ligament and temporomandibular joint, through activa-
tion of AKT, ERK, and AMPK signaling pathways that
suppress the inflammatory response by chondrocyte and
increase the proliferation and migration of periodontal liga-
ment cells [104, 105]. Following stimulation by Pg-LPS,
microRNA-155-5p expression in PDLSC-derived exosomes
significantly decreased and the exosome was ingested by
CD4+ T cells. MicroRNA-155-5p could negatively regulate
its downstream target molecule in CD4+ T cells, known as
Sirtuin-1. Therefore, the downregulation of microRNA-
155-5p in PDLSC-derived exosomes by Pg-LPS rescued the
Th17/Treg imbalance via upregulating Sirtuin-1 in CD4+ T
cells [106].

The same exosomes were also demonstrated to suppress
the inflammatory cytokines in autoimmune encephalomyeli-
tis, through inactivating NALP3 and NF-κB pathways [98,
99]. DPSC-derived exosomes demonstrated the ability to
reduce edema in carrageenan-induced acute inflammation
model, with an effect comparable to prednisolone. Still,
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Figure 3: Immunomodulatory “crosstalk” between oral MSCs and mast cells, macrophages (with their M1 and M2 phenotypes), dendritic
cells, natural killer cells, T cells, and B cells. COX-2: cyclooxygenase-2; GM-CSF: granulocyte-macrophage colony-stimulating factor; IDO:
indoleamine 2,3-dioxygenase; IFN: interferon; IL: interleukin; PGE2: prostaglandin E2; TGF: transforming growth factor. Red lines:
inhibition, black arrows: secretion/stimulation, blue dotted line box: soluble factors and transmembrane protein secreted by oral MSCs,
blue solid line box: stimuli secreted by immune cells.
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prednisolone exerted a prominent inflammatory suppression
at early stages, while DPSC-derived exosomes inhibited the
inflammation more reliably at later time points [107].
SHED-derived exosomes were effective in treating traumatic
brain injury by promoting motor functional recovery, reduc-
ing cortical lesion, and decreasing neuroinflammation at cel-
lular levels, through shifting microglia from M1 pro- to M2
anti-inflammatory phenotype [108]. In an acute lung injury
mouse model, a single intravenous administration of
SHED-secreted factors alleviated lung injury, weight loss,
and inflammatory response, accompanied by an increased
number of anti-inflammatory M2-like lung macrophages
[100]. GMSC-derived exosomes were capable of accelerating
wound healing in diabetic mice by promoting reepithelializa-
tion, angiogenesis and neuronal ingrowth, and collagen
remodeling [109]. Particularly, exosomes derived from
healthy BM-MSCs alleviated radiation-induced bone loss by
recovering the adipogenic and osteogenic differentiation
potential of radiation-injured BM-MSCs via Wnt/β-catenin
activation [110].

Additionally, BM-MSC-derived microvesicles downreg-
ulated the level of IL-1β, IL-6, TNF-α, iNOS, and PTGS2,
produced by microglia cells, when cocultured in LPS inflam-
matory environment. Moreover, the phosphorylation of
ERK, JNK, and p38 molecules in microglia cells was also sup-
pressed by BM-MSC-derived microvesicles [111]. In an
uninflamed environment, DPSCs were shown to induce the
production of TNF-α by macrophages via PKR-rich microve-
sicles [112].

Although EVs in the oral MSC-derived conditioned
media play a pivotal role in cell-cell communication,
the information exchange between oral MSCs and their
surrounding inflammatory microenvironment is bidirec-
tional. EVs liberated from oral MSCs could restrain the
inflammatory response in immune cells, and conversely
immune cells could affect the proliferation, differentia-
tion, and migration potential of MSCs, through their
EVs [113, 114]. In an Ec-LPS-challenged inflammatory
environment, monocyte-derived exosomes could promote
the osteogenic differentiation of BM-MSCs [115]. EVs
derived from dendritic cells could increase the migration
of BM-MSCs in a dose-dependent manner, even in the
absence of dendritic cells [116].

In this context, EV-based approaches appear to pro-
vide a new paradigm for cell-free therapies, overcoming
many of the current clinical constrain of cellular trans-
plantation. EV, encapsulating prolific proteins and RNAs,
can cross the plasma membrane to deliver their cargo into
target cells and are tolerated by the body [55]. Moreover,
it was suggested that exosome secretion profile can be
improved by preconditioning or genetic modification of
the parent cells, so it could be an ideal vehicle for drug
and gene delivery [117, 118]. On the other hand, contents
of MSCs’ EVs are not always static but vary according to
the surrounding environment and in different growth
periods of MSCs. Therefore, we still scarcely recognize
the proteomic and genomic complexities of EVs and fur-
ther studies are needed to investigate the exact composi-
tion and possible mechanism.

5. Experimental Therapeutic Applications of
Oral MSCs

5.1. Experimental Therapeutic Applications of Oral MSCs in
Periodontal Diseases. Compared to other MSCs, oral tissue-
derived MSCs are more adaptive to inflammatory environ-
mental challenges, principally because of the bacteria-
congregated habitat they usually reside in. The complex sub-
gingival microenvironment is an ideal cradle for bacteria col-
onization, where it inhabits an array of diverse bacterial
species known as subgingival plaque [119]. Still, despite the
huge number of microorganisms, the subgingival community
is quite stable and harmonious. The occurrence of an envi-
ronmental imbalance results in the initiation of a periodontal
disease with a marked bacterial dysbiosis, the multiplication
of various periodontal pathogens, and a shift in the bacterial
ecology from gram-positive aerobic to gram-negative anaer-
obic form [120].

Under these pathogenic conditions, oral MSCs could
exert a variety of anti-inflammatory functions (Table 1). In
inflammatory periodontitis-induced bone defect, MSCs were
demonstrated to mediate the formation of new bone- and
periodontal ligament fiber-like structures [121], through
decreasing the number of TRAP+ (a specific histochemical
marker of osteoclasts) cells and attenuating the level of the
proinflammatory cytokines TNF-α and IL-17, as well as
increasing the anti-inflammatory cytokine IL-10 and shifting
M1 macrophage to a M2 phenotype [24, 122, 123]. SHED
and BM-MSCs demonstrated an ability to mitigate the sever-
ity of periodontal bone loss, with a decrease in the concentra-
tions of TNF-α, IL-1α, IL-1β, IL-17, and IFN-γ and an
increase in IL-10 [24, 122–124]. Pretreatment of BM-MSCs
by acetylsalicylic acid could further augment these effects
[124]. SHED significantly amplify the number of CD206+

(M2) macrophages in periodontal tissues. It further promote
the conversion of M1 macrophages which secrete NO, ROS,
and TNF-α to CD206+ M2 macrophages which release
IL-10, TGF-β, and arginase-1 (Arg1), in a coculture sys-
tem [24, 125]. Similarly, BM-MSC-conditioned medium
downregulated mRNA expression of IL-1, IL-6, and
TNF-α, as well as the IL-6/IL-10 ratio in a rat tooth trans-
plantation model [126]. BM-MSCs also promoted bone-
related factor expression by alveolar osteoblasts (AOs), gingi-
val fibroblasts (GFs), and periodontal ligament cells [127].
Additionally, BM-MSCs could reduce alveolar bone loss,
osteoclast number, inflammatory cell infiltration, and
RANKL/OPG ratio in periodontitis-induced bone defect
[123, 124]. In orthodontic movement, BM-MSC administra-
tion, especially BM-MSCs transfected with OPG plasmids,
significantly decreased orthodontic force-induced root
resorption lacunae, osteoclast number, RANKL, and COX-2
[128].

Thus, through their regenerative and paracrine immuno-
modulatory actions, oral MSCs augment periodontal tissue
regeneration, while ameliorating bone resorption. They
decrease inflammatory factor level and RANKL/OPG ratio
in periodontal disease by regulating immune cells, resident
cells, and osteoclasts, so as to mitigate bone loss. This immu-
noregulative function and inflammatory resistance in turn
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maintain their stemness, survival, and multilineage differen-
tiation potential, in order to promote periodontal tissue
regeneration/repair.

5.2. Experimental Therapeutic Applications of Oral MSCs in
Systemic Diseases. Oral MSCs are applicable not only in oral
disease but also in systemic diseases as immunoregulators,
mainly through decreasing inflammatory cytokine produc-
tion, inhibiting bone resorption in a cell-cell contact manner
or through a paracrine way [65] (Table 1).

Acute lung injury is characterized by an excessive and
uncontrolled inflammatory response, which involves the
activation of neutrophils and macrophages and the
corresponding tissue damage by releasing antimicrobial
compounds [129]. Tail intravenous introduction of
DFSC/DFSC-conditioned medium into an acute lung injury
model alleviated the histopathological damage and pulmo-
nary permeability through downregulating MCP-1, IL-1β,
IL-6, and TNF-α, as well as upregulating the levels of IL-
10 and the macrophage M2 marker Arg-1 in bronchoalve-
olar lavage fluid [129]. Also, the compromised alveolar
epithelial cell properties including the decreased viability,
increased apoptosis, increased NF-κB activity, and extrain-
flammatory cytokine release were reversed by BM-MSC
administration [130].

Multiple sclerosis is a chronic inflammatory, demyelin-
ating disease of multiple pathogenic factors, which is char-
acterized by myelin degradation and damage of the central
nervous system. PDLSCs were corroborated to mitigate the
inflammatory response by inhibiting TNF-α, COX-2, and
iNOS expressions and concomitantly enhancing IL-10 and
IL-37 secretion in the experimental autoimmune encepha-
lomyelitis, which is a murine model of multiple sclerosis.
Furthermore, PDLSCs were demonstrated to suppress cel-
lular apoptosis by inhibiting the proapoptotic protein
caspase-3 and enhancing the antiapoptotic protein Bax
and Bcl-2 [131].

Optic neuropathies, the leading cause of irreversible
blindness and visual impairment, which result from
trauma injury, glaucoma, inflammation, ischemia, or
tumor compression, are characterized by the degeneration
of retinal ganglion cells (RGCs) and their axons. Intravit-
real injection of PDLSCs into the rat vitreous chamber
in the optic nerve injury model could promote the survival
and neurite regeneration of RGCs by increasing brain-
derived neurotrophic factor secretion in a direct cell-cell-
contact manner [132].

Sjögren’s syndrome is a systemic autoimmune disease
that primarily affects the exocrine glands. It is characterized
by clinical symptoms including dry eyes and mouth, and his-
tological feature of focal lymphocytic infiltration of the exo-
crine glands. Currently, the role of CD4+ T cells in the
pathogenesis of Sjögren’s syndrome has been proposed, and
multiple studies have demonstrated the role of MSCs in the
regulation of T cells. In the murine Sjögren’s-like disease
model, BM-MSCs restored the salivary flow rate and reduced
the lymphocytic infiltration by modulating pro- and anti-
inflammatory cytokines INF-γ, TNF-α, IL-10, PGE2, and
IL-6 [133].

Type 1 diabetes is an autoimmune disease caused by the
immune-mediated destruction of pancreatic β-cells, involv-
ing the upregulation of inflammatory cytokines and the
imbalance of Th17 cells and Tregs. GMSCs were demon-
strated effective in the treatment for type 1 diabetes, with
the better control of blood glucose levels, the delayed diabetes
onset, and the ameliorated pathology scores in the pancreas.
The mechanism was postulated to be primarily mediated
through downregulating the level of IL-17 and IFN-γ
expressed by CD4+ and CD8+ T cells and upregulating the
number and function of Tregs [134]. Moreover, diabetic
polyneuropathy, the most common microvascular complica-
tion of both type 1 and type 2 diabetes, involves inflamma-
tory response during the disease development. DPSC
introduction ameliorated diabetic polyneuropathy, improv-
ing the delay in sciatic nerve conduction velocities and the
decreased nerve blood flow, through downregulating mono-
cytes/macrophages, inflammatory messenger ribonucleic
acid and upregulating CD206 mRNA (a M2 macrophage
marker) [135].

Allergic contact dermatitis, classified as a type IV hyper-
sensitivity reaction, is caused by repeated skin exposure to
contact allergens. Contact hypersensitivity (CHS) is a classic
murine model of allergic contact dermatitis, in which dermal
DCs, allergen-specific T lymphocytes, allergen-specific effec-
tor T cells, and mast cells play a significant role. Infusion of
GMSCs into the CHS reversed the imbalance of abnormal
Th1/Th2 ratio and decreased the infiltration of dendritic
cells, mast cells, and Th17. It further increased the number
of Tregs in the allergen contact area, with a remission of
hypersensitivity. Mechanically, GMSCs inhibited proinflam-
matory factors and promoted anti-inflammatory factors
through COX/PGE2 and PGE2–EP3 signaling pathways
[83, 136]. Interestingly, in the CHS model, a local injection
of GMSCs demonstrated a more marked effect on attenuat-
ing inflammation than intravenous injection of the same cells
[83, 136]. An intravenous injection of GMSCs improved
arthritis, with the reduced TNF-α and CII-specific IgG secre-
tion via FasL/Fas pathway [137]. Similarly, allergic rhinitis,
which is an allergic disease defined as inhaled-particle-
induced nasal mucosa hypersensitivity, can trigger an IgE-
mediated hypersensitivity. SHED administration signifi-
cantly reduced nasal symptoms and inflammatory infiltra-
tion in allergic rhinitis [138].

Colitis is an inflammatory-related colonic mucosal
injury in the distal small intestine, contributing to the
dysfunction of innate and adaptive immunity. GMSCs
and DPSCs significantly ameliorated inflammation clini-
cally and histopathologically, by restoring the normal
intestinal architecture, reversing weight loss, improving
the overall disease score, and suppressing epithelial ulcer-
ation. At the cellular and molecular level, GMSCs and
DPSCs decreased infiltration of Th1 and Th17 cells,
increased Tregs, inhibited IL-6 and IL-17 release, and ele-
vated IL-10 level [87, 93].

Rheumatoid arthritis, a multisystem autoimmune disease
characterized by the loss of immunologic self-tolerance and
chronic inflammation, could impair the joints of the whole
body. GMSCs was reported to mitigate bone and cartilage
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destruction by remarkably enhanced Tregs number through
CD39/CD73 signals in the murine-rheumatoid-arthritis
model [139].

Process of cutaneous wound healing can be divided into
three stages: inflammation, tissue formation, and remodel-
ing, which involves interactions of resident cells, infiltrating
immune cells, and their secretion as well. GMSCs were found
to interact with the local inflammatory microenvironment,
migrating into the local wound bed and promoting macro-
phage conversion from M1 to M2 phenotype. Concomi-
tantly, TNF-α and IL-6 were suppressed while IL-10 was
elevated with the administration of GMSCs, with accelerated
wound healing, rapid deepithelialization, and increased
angiogenesis [140].

Moreover, spinal cord injury (SCI) normally caused by
accident and inflammation is considered a key regulator
during the secondary neurodegenerative events [141].
SCAP advanced the healing of spinal cord injury through
reducing TNF-α level and promoting the differentiation
oligodendrocyte progenitor cells. Besides, SHEDs/SHED-
conditioned medium were found to promote the fibrotic
scar resolution, by suppressing the inflammatory media-
tors TNF-α, IL-1β, and iNOS and by inducing apoptosis
of activated hepatic stellate cells, in the liver fibrosis exper-
imental model [142].

As above, oral MSCs contributed to tissue regeneration/-
repair in a variety of immune/inflammatory disease not only
by boosting tissue regeneration but also by ameliorating
immune/inflammatory response. However, the majority of
studies still remained at the initial stage of observing the var-
iation of inflammatory cytokines and immune cells or detect-
ing the signaling pathway; exact mechanisms are needed to
be further elucidated.

6. Clinical Applications of MSCs in
Autoimmune and Inflammatory Diseases

Due to the immunomodulatory function and low immuno-
genicity of MSCs, autologous/allogenic MSCs obtain good
results in the treatment of human autoimmune and inflam-
matory diseases. Clinical efficacy and safety have been dem-
onstrated for MSCs applied in patients with systematic
lupus erythematosus [143–145], rheumatic arthritis [146],
GVHD [147], and osteoarthritis, [148] via intravenous or
local injection, with the results of a decrease in the disease
activity score, rebuilding of T cell imbalance, and functional
improvement. Nevertheless, despite the inspiring outcomes
in clinical trials, it was proposed that MSC transplantation
might not be effective in refractory patients in a long-term
perspective [149, 150].

As for oral MSCs, researchers discovered that GMSCs
possess an extraordinary potential in the treatment of auto-
immune and inflammatory diseases owing to their high pro-
liferation rate, no tumorigenesis [151], immunomodulatory
function, stable stem cellularity, and differentiation abilities
under inflammatory environment [19, 152]. Moreover,
GMSCs isolated from patients with rheumatic arthritis and
systematic lupus erythematosus presented similar cell pheno-
type and immunosuppressive action [153]. Yet, clinical trials

of GMSCs and other oral MSCs applied in patients with auto-
immune and inflammatory diseases are still deficient, so fur-
ther study is needed to reveal their immunomodulatory
efficacy.

7. Conclusion

Oral MSCs, with the unique clinical advantages of easy access
in large quantities, as well as their remarkable tissue reparati-
ve/regenerative potential, have been proposed as ideal candi-
dates for MSC-based tissue regeneration. Moreover, the
current knowledge reveals a vivid interaction between the
oral MSCs and their inflammatory milieu, both at the cellular
and secretomes levels. The interaction largely governs the
proliferation potential, migration and homing, multilineage
differentiation, and inflammatory response of oral MSCs on
the one hand, and on the other hand, regulates the severity
of local inflammatory microenvironment. Particularly, the
bidirectional regulatory manner of MSCs, including anti-
inflammatory and proinflammatory effects, boosts them to
become novel natural modulators in maintaining inflamma-
tory balance, not only in periodontitis but also in various sys-
temic diseases. Nevertheless, we still scarcely know the
underlying molecular mechanisms, though recently the con-
cept of secretomes-driven cell-free therapeutic potential
opens a multitude of very promising perspectives clinically.
Thus, a deeper understanding of the underlying mechanisms
of oral MSCs’ immunomodulatory effects could pave the way
to make MSC therapy a clinical reality.
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