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Summary

Immunotherapies have revolutionised cancer management. Despite their suc-
cess, durable responses are limited to a subset of patients. Prediction of
immunotherapy response in patients has proven to be difficult due to a lack of
robust biomarkers. Routinely collected imaging may offer an additional infor-
mation source to personalise patient treatment, with advantages over tissue-
based biomarkers. Quantitative image analysis or radiomics, which involves
the high-throughput extraction of imaging features, has the potential to non-
invasively predict cancer histology, outcomes and prognosis. This review eval-
uates the value of radiomics in patients undergoing immunotherapy, with a
summary provided of the performance of radiomics models in predicting
immunotherapy response and toxicity, as well as immune correlates. Much of
the literature focussed on clinical endpoints and correlates to tissue biomark-
ers, particularly in lung cancer, while few studies investigated association with
immune-related adverse events. Strengths of the studies included more fre-
quent use of clinical trial datasets, homogenous patient cohorts and high-
quality diagnostic scans. Limitations of the studies include heterogeneity in
study methodology, lack of well-defined homogenous imaging datasets, lim-
ited open publishing of imaging datasets, coding and parameters used for
radiomics signature development and limited use of external validation data-
sets. Future research should address the above limitations, as well as further
explore the relationship between radiomics and immune-related adverse
effects and less well-studied biological correlates such tumour mutational bur-
den, and incorporate known clinical prognostic scores into radiomics models.
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Introduction

For decades, chemotherapy has been the standard of
care in patients with advanced cancer. More recently, the
advent of immunotherapy including immune checkpoint
inhibitors (ICI) has changed the landscape of treatment
and clinical outcomes for patients. Immune checkpoints
suppress the native anti-tumour immune response. ICI
impede these pathways and thereby allow for an effec-
tive anti-tumour response by the immune system. The
first U.S. Food and Drug Administration (FDA) approved
ICI was ipilimumab, which targets the cytotoxic T-
lymphocyte–associated antigen 4 (CTLA-4) checkpoint
protein, and was found to be efficacious in metastatic
melanoma.1 Subsequently, two agents targeting the pro-
grammed cell death protein 1/ programmed death ligand
1 (PD-1/PD-L1) immune checkpoint, pembrolizumab and

nivolumab were also approved for metastatic mela-
noma.2,3 Since then, the range of indications for PD-1/
PD-L1 inhibitors has expanded rapidly with improve-
ments in survival seen in several different tumour
streams in the locally advanced,4,5 recurrent6 and meta-
static setting.6–8

Tissue biomarkers

Despite the success of immunotherapy, the benefits of
this treatment are largely seen in a subset of patients,
with between 17% and 48% of patients responding to
treatment.7,9 Some patients also experience significant
adverse effects, including colitis, pneumonitis, hepatitis
and hypophysitis, which may limit their clinical use and
in certain cases can be life-threatening.10 Improved
patient selection and personalisation of treatment is,
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therefore, important to identify patients that may
respond poorly to immunotherapy alone and potentially
may benefit from alternative or combined therapies.
Furthermore, it will limit the exposure of patients un-
necessarily to possible toxicities associated with
immunotherapy treatment. Better patient selection will
also improve the cost-effectiveness of immunotherapy,
which is expensive compared with other anti-cancer
treatments.

Tissue biomarkers may be used to predict response to
immunotherapy and select patients most likely to benefit
from treatment. PD-L1 is perhaps the most extensively
studied and clinically utilised biomarker for immunother-
apy response. Notably, in patients with non-small cell
lung cancer (NSCLC) with PD-L1 expression ≥50%, pem-
brolizumab results in improved overall survival (OS)
compared with chemotherapy9 and is now routinely
tested in the clinic in this patient group. Tumour muta-
tional burden (TMB) is also gaining interest as a predictor
of response to immunotherapy, with some studies sug-
gesting a high TMB correlates with better response to
immunotherapy.11,12 There are, however, a number of
disadvantages and challenges related to tissue biomark-
ers. Tissue biomarkers must be obtained through an
invasive procedure, which may be associated with risks
such as bleeding or infection. In certain cases, obtaining
tissue may not be feasible due to these risks being unac-
ceptably high. Furthermore, due to their invasive nature,
tissue biomarkers are typically assessed at a single time-
point only. As a result, assessment of any changes in
biomarkers that occur over time and with treatment may
not be possible. A biopsy also only allows for sampling of
a small part of the total tumour, which may not ade-
quately capture any intra-tumoural or inter-tumoural
heterogeneity that exists within a patient.

Imaging biomarkers

Imaging biomarkers have several advantages compared
with tissue biomarkers. Imaging is a non-invasive proce-
dure that is performed routinely in patients with cancer.
Imaging also allows for visualisation and assessment of
the whole tumour as well as any sites of metastatic dis-
ease. The ability to capture the entire spectrum of dis-
ease within a patient may allow for better assessment of
any heterogeneity that exists within or between tumours
and which may drive differential prognoses and
responses to treatment. Early identification of poor
responders, or heterogenous response, may also provide
opportunities to escalate or change treatment, or con-
sider multimodality treatment options, such as the addi-
tion of stereotactic ablative body radiotherapy (SABR) for
oligoprogressive disease.

A widely used system for response assessment to sys-
temic therapies used in clinical trials is ‘Response Evalua-
tion Criteria in Solid Tumours’ (RECIST).13 RECIST
measurements and definitions of response are based

upon assessment of the maximum diameter of malignant
lesions over a single slice of a CT scan, with total mea-
surement of up to five ‘target’ lesions. Some patients
receiving immunotherapy, however, may experience
atypical responses, such as pseudoprogression (PSPD),
in which tumours initially enlarge in size, followed by a
delayed response and tumour shrinkage. This pattern
would be falsely characterised as progressive disease as
per RECIST and may lead to premature cessation of
treatment. Modified systems have been developed to
better account for the differences in response seen fol-
lowing immunotherapy, including immune RECIST (iRE-
CIST), which requires confirmation of progressive
disease at a subsequent timepoint.14 Nevertheless, these
systems still rely on a single imaging parameter to deter-
mine treatment response, and currently, neither RECIST
nor iRECIST consistently provides reliable estimates of
OS in patients receiving immunotherapy.15 As a conse-
quence, our current system for response assessment
may result in negative outcomes, including delays in
treatment decisions for patients.

Radiomics

Radiomics is a tool that involves the extraction of numer-
ous quantitative features from standard imaging. Radio-
mics is based upon the assumption that extracted
imaging data are the product of mechanisms occurring at
a genetic and molecular level linked to the genotypic and
phenotypic characteristics of the tissue and may, there-
fore, be used as imaging biomarkers to predict patient
outcomes.16

The typical workflow for radiomics analysis involves
segmentation of a chosen volume of interest (VOI) from
imaging datasets. Specialised software is used to per-
form high-throughput extraction of quantitative image
features to characterise the VOI. These features can be
broadly grouped into shape, first-order (image intensity)
and second-order (texture) features.17 Analysis of this
data and correlation with clinically meaningful endpoints
may subsequently be performed using statistical or
machine learning techniques, which generate predictions
or classifications for specific oncological endpoints. In
machine learning, classification is a supervised learning
task of inferring a function from labelled training data.18

Various classification algorithms such as logistic regres-
sion, random forests (RF) and support vector machines
(SVM) may be used to build predictive models.19 Unsu-
pervised machine learning techniques (such as hierarchi-
cal clustering) may also be used to enhance our ability to
analyse images.20

There are numerous advantages of a radiomics
approach to image assessment including the ability to
gain additional information from a routinely performed
procedure, its non-invasive nature and the ability to
assess the entire tumour. In addition, tumours may be
assessed at multiple timepoints, with assessment of

© 2022 The Authors. Journal of Medical Imaging and Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New
Zealand College of Radiologists.

G Kothari

576



changes in radiomics features over time termed ‘delta-
radiomics’,21 rather than information derived from a sin-
gle biopsy performed at a single timepoint alone. The
utility of radiomics to enhance our understanding of can-
cer diagnosis, prognosis and response to treatment, as
well as better understand tumour heterogeneity and the
tumour microenvironment, has been investigated,22,23

with studies relating to immunotherapy emerging over
recent years. This review aims to summarise the current
literature relating to the utility of radiomics in patients
with cancer undergoing immunotherapy treatment,
including its role in predicting treatment response and
toxicity, as well as correlates to relevant tumour biology.

Predicting response to immunotherapy

A summary of selected full-text English radiomics litera-
ture relating to immunotherapy across tumour types
reporting outcomes of radiomics models is listed in
Table 1 following an initial review of the literature using
the search terms ‘immunotherapy’ AND ‘radiomics’ on
PubMed. Eighteen studies included in the table investi-
gated the ability of radiomics features to predict clinical
outcomes, including treatment response and survival
outcomes. One of the earliest studies published assess-
ing the value of radiomics in predicting immunotherapy
response was by Sun et al.24 This study trained a radio-
mics model on a dataset of 135 patients from the
prospective MOSCATO trial. This trial included a mixed
cohort of patients with advanced solid tumours and
aimed to analyse the benefit of high-throughput genomic
analyses. All patients within this study had both CT and
RNA-sequencing (RNA-seq) data available for review.
The radiomics model, which extracted radiomics features
from the CT scan of the biopsied lesion, was trained to
predict the quantity of tumour-infiltrating CD8 cells, as
estimated by RNA-seq. The model included eight fea-
tures, including tum_minValue, four Grey-Level Run
Length Matrix (GLRLM) textural features from both the
tumour and periphery, the location of the selected VOI
and CT peak kilovoltage (kVp). GLRLM features represent
the overall heterogeneity or homogeneity of a region,
with results from this study showing higher levels of
homogeneity correlating with a high CD8 level. Interest-
ingly, the signature also incorporated the location of the
lesion, highlighting potential differences in the tumour
immune environment and subsequently the radiomic fea-
ture results depending upon the site of metastasis. Fur-
thermore, it confirms the importance in considering the
definition and details of the specified VOI particularly in
radiomics studies of patients with metastatic disease.
The developed radiomics signature was subsequently
externally validated using CT and RNA-seq data of 119
patients from The Cancer Genome Atlas (AUC = 0.67,
95% CI 0.57–0.77), as well as a randomly selected
cohort of patients from Gustave Roussy Cancer Centre
that were classified as having either ‘immune-inflamed’

or ‘immune-desert’ phenotypes based upon the primary
tumour type and its recognised response to immunother-
apy (AUC 0.76, 95% CI 0.66–0.86). The same model
was shown to be associated with OS in multivariate anal-
ysis (HR 0.52, 95% CI 0.35–0.79, P = 0.0022) on 137
patients enrolled in five Phase I immunotherapy trials at
the Gustave Roussy Cancer Centre. Some minor limita-
tions of the study included heterogeneity of CT scanners
used with lack of information regarding contrast, no test-
ing of feature repeatability or reproducibility and no
details regarding cross-validation used during the feature
selection process. Some of the significant strengths,
however, of this study included the use of an open-
access radiomics platform, details provided regarding
image pre-processing, as well as explicit reporting of the
radiomics model used and features included, allowing
this model to be subsequently also externally validated
in patients undergoing immunotherapy and SABR combi-
nation treatment with results reported in two separate
studies.25,26 The first study by Sun et al. utilised a data-
set composed of 94 patients from six independent clinical
trials and extracted radiomics features from 100 irradi-
ated and 189 non-irradiated lesions. The median number
of fractions and dose by fraction given were 3 fractions
of 8 Gy (IQR 6–12). Median time from start of
immunotherapy to start of SABR was 21 days (IQR 8–
24), with 16 patients starting SABR prior to immunother-
apy. Median time to the first follow-up CT scan was
2.8 months. The radiomics model was predictive of per
lesion response measured at the time of the first follow-
up CT scan with an AUC of 0.63 (95% CI 0.56–0.71).
Interestingly, entropy (indicating heterogeneity) of the
distribution of the radiomics scores of lesions within a
patient was associated with PFS and OS and could dis-
criminate between patients that had uniform vs. mixed
responses to treatment. The second study by Korpics
et al.26 validated the model using an imaging dataset
from 68 patients undergoing SABR followed by pem-
brolizumab on a Phase I trial (NCT02608385).27 Radio-
mics features were extracted from 139 irradiated lesions.
The radiomics model (using a pre-specified, although
arbitrary 25% percentile cut-off), was predictive of per
lesion response at first follow-up (odds ratio [OR] 10.2;
95% CI 1.76–59.17; P = 0.012). The average of the
radiomics score for each irradiated lesion was used to
determine a radiomics score for each patient. Patients
with a high radiomics score had improved PFS (HR 0.47,
95% CI 0.26–0.85; P = 0.013) and OS (HR 0.39, 95%
CI, 0.20–0.75; P = 0.005).

More recently, several studies investigating the value
of radiomics in predicting response to immunotherapy
have analysed less heterogenous patient cohorts, most
commonly including only patients with advanced NSCLC.
A systematic review and meta-analysis of radiomic mod-
els predicting immunotherapy response and outcome in
patients with NSCLC was recently published.28 The sys-
tematic review included 15 studies with datasets ranging
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from 30 to 228 patients, with 10 studies included within
the meta-analysis. Imaging parameters were generally
well documented within the studies. While most studies
utilised a baseline CT scan to extract radiomics features,
a few studies also used follow-up CT scans to assess the
value of delta-radiomics.29–32 Three studies utilised PET/
CT scans.33–35 The VOI varied between studies and
included the primary lung lesion,31,34–36 the largest
lesion29,30,37 and all target lesions.38 A few studies sepa-
rately considered the peri-tumoural region as a
VOI.32,37,38 The majority of studies utilised feature
dimension reduction and machine learning algorithms to
select radiomics features and develop a radiomics signa-
ture. Various endpoints were assessed including overall
response using RECIST and iRECIST, durable clinical ben-
efit (DCB), hyperprogression, progression-free survival
(PFS) and overall survival (OS). The results of the study
found radiomics models had a pooled diagnostic odds
ratio for predicting immunotherapy response of 14.99
(95% CI 8.66–25.95), and a pooled hazard ratio (HR) for
PFS of 2.39 (95% CI 1.69–3.38, P < 0.001) and OS of
1.96 (95% CI 1.61–2.40, P < 0.001). Three of five stud-
ies that added clinical variables to radiomics models
showed an improvement in model perfor-
mance.29,31,32,34,37 Despite the promising outcomes of
the study, the review also found the quality of the radio-
mics studies overall to be poor. Only two studies included
within this review performed validation of their model on
a dataset from an external centre32,39 and the overall
radiomics quality score (RQS)40 was low, with a mean
RQS of 29.6% ranging from 0% to 68.1%.

The study with the highest RQS was by Mu et al.,
which included 194 patients with stage IIIB-IV NSCLC
undergoing immunotherapy, who had baseline PET/CT
scans available for analysis.34 Radiomics features were
extracted from PET, CT and PET/CT for the primary lung
lesion and patients divided into a training (n = 99) and
two validation cohorts (47 retrospective and 48 prospec-
tively collected). An ‘in-house’ developed software,
rather than an open-access platform, was used to extract
radiomics features, limiting the ability of external groups
to validate study findings. A radiomics model was built
using eight radiomics features that was predictive of OS
and importantly was also tested and performed well on a
validation dataset (C-indices of 0.83 on training, and
0.83 and 0.80 on validation datasets). Another large
study, which also performed relatively well on the RQS,
is by Liu et al.29 This was a retrospective multicentre
study that included 197 patients randomly divided into a
training and validation dataset using a 7:3 ratio. The
authors compared two VOI in this study, with one VOI
using all RECIST target lesions or the second VOI using
the largest target lesion only. Lesions were contoured at
baseline and the first follow-up CT scan. Both baseline
radiomics features and delta-radiomics features, which
captured the change in radiomics feature value over
time, were extracted using ‘in-house’ software.

Radiomics features were used to predict overall patient
response at 6 months. The authors found a delta-
radiomics signature using the largest RECIST target
lesion performed better compared with a signature using
baseline radiomics features alone with an AUC of 0.81 in
training and 0.80 in the validation dataset. The delta-
radiomics signature using all RECIST target lesions had
an AUC of 0.82 in training and 0.81 in the validation
dataset. The authors noted that some patients had a
heterogenous response to immunotherapy between
metastatic lesions; however, no per lesion analysis was
performed.

The second most common type of tumour studied in
this setting is advanced melanoma. One of the largest
studies assessing the value of radiomics models in
assessment of efficacy in melanoma is by Dercle et al.41

This study utilised contrast-enhanced CT scans from two
randomised multicentre clinical trials of ICI in advanced
melanoma, KEYNOTE-002 and KEYNOTE-006, and split
patients into a training (n = 252) and validation
(n = 287) cohort. The training cohort consisted of
patients treated with ipilimumab and pembrolizumab,
while the validation cohort only consisted of patients on
pembrolizumab. The radiomics signature trained to pre-
dict OS consisted of delta-radiomics features, as well as
total tumour volume at baseline, and change in volume
at 3 months. The radiomics signature outperformed
RECIST in predicting OS (validation cohort AUC 0.92,
95% CI 0.89–0.95 and AUC 0.80, 95% CI, 0.75–0.84,
respectively). Despite the strengths of this study, includ-
ing the use of relatively large datasets from clinical trials,
and comparison with RECIST, minimal information was
provided regarding the CT acquisition parameters, the
platform used to extract radiomics features, any pre-
processing performed and details regarding the model
itself that would allow for validation of findings by exter-
nal groups. Additionally, imaging features were not com-
pared or combined with clinical and histopathological
features that may have been collected during the trials.
Another study in melanoma by Basler et al. 2020 aimed
to predict pseudoprogression utilising PET/CT-derived
radiomics features on 112 patients with 716 metas-
tases.42 Of the 716 metastases, 30 were identified as
pseudoprogression at 6 months. The study found a
model using delta-radiomics features, based upon the
percentage change in features from baseline to
3 months, had a higher AUC compared with a model
using baseline features alone (AUC 0.79 and 0.69,
respectively). The delta-radiomics model incorporated 2
features ‘mc_volume’ and ‘fractal dimension’. The
authors found that an increase in ‘fractal dimension’ rep-
resenting a change from a homogenous to a heteroge-
nous lesion was associated with true rather than
pseudoprogressive disease. The performance of the
model was marginally improved to AUC 0.82 through the
addition of blood markers (LDH/S100). Limitations of this
study include the small sample size, lack of validation
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cohort and use of ‘in-house’ software to extract radio-
mics features.

Prediction of immune-related adverse events

Three studies included in Table 1 investigated the ability
of radiomics to predict immune-related adverse events.
Mu et al. were able to train and validate a radiomics
model derived from PET/CT features of the primary
tumour in patients with NSCLC undergoing ICI treatment
to predict the risk of immune-related severe adverse
events.43 The model also incorporated clinical features
including type and dose of immunotherapy. Strengths of
the study include the use of a test and prospective vali-
dation cohort and publication of the five features and cal-
culation formula used for the radiomics score.
Limitations, however, include lack of detail regarding the
platform used to extract radiomics features, the rela-
tively small sample size and low event rate with only 14
out of 97 patients experiencing adverse events in the
development cohort. Another study, analysing a mixed
cohort of patients, developed a radiomics model based
upon CT-derived features from the normal lung to predict
the risk of pneumonitis with 100% accuracy, although
the number of patients on the study was very small, with
only two out of 32 patients experiencing pneumonitis,
with no validation cohort.44

Correlation of radiomics features with tumour
biology

Cellular immunity, and in particular lymphocytes, plays
an important role in the body’s anti-tumour immune
response. Tumour-infiltrating lymphocytes (TIL) are lym-
phocytes found directly within or surrounding a tumour
and have been associated with better outcomes in a
range of primary tumour types45,46 and also found to be
predictive of response to ICI.47 Lymphocytes can be
broadly divided into T and B lymphocytes, and natural
killer cells. T lymphocytes in particular play a leading role
in the cellular immune response. T lymphocytes can be
further divided into CD4+ helper T lymphocytes (CD3+
CD4+) and CD8+ cytotoxic T lymphocytes (CD3+ CD8+)
according to their surface markers. Both the tumour and
the peri-tumoural region may be important in providing
information regarding immune infiltration and stromal
inflammation and thereby response to immunotherapy
agents, which may be captured on imaging and changes
in imaging over time and with treatment.

Sixteen studies included in Table 1 assessed the corre-
lation of radiomics features with tissue biomarkers. One
of the largest series assessing the ability of radiomics
features to predict TIL status of a tumour is by Chen
et al.48 This study in patients with hepatocellular carci-
noma (HCC) extracted MRI radiomics features from the
tumour and peri-tumoural regions to predict the patients’
Immunoscore, which assessed the density of CD3+ and

CD8+ T cells within the tumour core and invasive margin.
The study found that a radiomics model which incorpo-
rated both intra- and peri-tumoural radiomics features
had a higher AUC in the validation cohort compared with
a model with intra-tumoural features alone (0.89, 95%
CI 0.80–0.99 vs. 0.63, 95% CI 0.47–0.80). The model
was further improved through the addition of clinical fea-
tures of AFP, GGT and AST (AUC 0.93, 95% CI 0.86–
1.00) although the results were not statistically signifi-
cant. Strengths of this study include the homogenous
patient population, use of both intra-tumoural and peri-
tumoural VOIs and reporting of features used in the
radiomics model. While the model performed well on a
non-random split sample validation cohort, it could be
further strengthened by testing on an external validation
cohort and potentially further reduction in the number of
features utilised within the model to reduce the risk of
overfitting the model. Another study, discussed earlier by
Sun et al., that included a mixed cohort of 135 patients
with advanced solid malignancies from the MOSCATO
trial, generated a CT-based radiomics signature to pre-
dict for CD8 cell tumour infiltration assessed using RNA-
seq genomic data from patient biopsies.24 The authors
subsequently validated the model on patients from the
Cancer Genome Atlas dataset (AUC 0�67; 95% CI 0�57–
0�77). Interestingly, three of the eight features within
this model were textural features derived also from the
peri-tumoural region.

Many studies have explored the association of radio-
mics features with PD-L1 status. One of the first studies
to assess the ability of radiomics features to predict PD-
L1 status was by Jiang et al.49 This was a retrospective
single-centre study that extracted radiomics features
from both the CT and PET components of a pre-operative
PET/CT in patients with lung cancer undergoing surgery.
The PD-L1 status of patients was assessed on post-
operative samples via immunohistochemistry testing.
The authors found that the performance of the CT-
derived radiomics features was excellent (AUC 0.97,
95% CI 0.93–1.0) and significantly better than PET-
derived features. The performance of the model was
excellent when tested using both the Ventana PD-L1 test
kit (PD-L1 ≥ 1% AUC 0.97; PD-L1 ≥ 50% AUC 0.80) and
the pharmDex PD-L1 test kit (PD-L1 ≥ 1% AUC 0.86;
PD-L1 ≥ 50% AUC 0.91). Strengths of this study include
the relatively large sample size and use of post-operative
samples to detect PD-L1 status, as well as relatively
homogenous imaging parameters collected from a single
centre. While the radiomics features included within the
radiomics model are provided, explicit details regarding
any pre-processing performed and details of the radio-
mics signature to allow for validation by external groups
were not provided. Another study considering a more
advanced cohort of patients with Stage IV NSCLC found
a radiomics-based model predictive of PD-L1 > 50% on
biopsy samples had moderate performance (AUC 0.67
validation, AUC 0.75 test cohort) and was slightly
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improved through the addition of deep learning features
(AUC 0.71 validation, AUC 0.76 test cohort).50 This study
included a very large cohort of patients to develop the
model (n = 750), relevant particularly given the use of a
deep learning model. Minimal details, however, were pro-
vided regarding the platform used for radiomics feature
extraction and the features included within the radiomics
model. Another study in oesophageal cancer using mixed
biopsy and surgical samples found that the addition of
clinical features (grade and stage) to a radiomics model
resulted in a higher AUC compared with a model with
radiomics or clinical features alone (AUC 0.817, 0.750
and 0.692, respectively).51

Other tissue biomarkers that are gaining interest
include microsatellite instability (MSI) and TMB. One
study was able to validate a radiomics model incorporat-
ing 40 radiomics features to predict microsatellite insta-
bility in colon cancer with an AUC of 0.76.52 Another
study in patients with NSCLC was able to develop both a
CT-based radiomics and deep learning model to predict
TMB (AUC 0.74, 95% CI 0.69 to 0.79 and AUC 0.85,
95% CI 0.84 to 0.87, respectively).53 The overall num-
ber of patients, to some extent for developing a deep
learning model, and in particular within the validation
cohort, however, in this study were relatively small. CT
images were obtained using a large range of manufactur-
ers with varying slice thicknesses; however, detailed
information regarding CT acquisition parameters was not
provided. Information regarding the platform used to
extract radiomics features was also missing.

Limitations

Compared with the broader radiomics literature,
immunotherapy-related studies to date have a number
of strengths including more frequent use of prospectively
collected datasets, use of relatively homogenous patient
groups and treatment and use of high-quality diagnostic
CT scans for extraction of radiomics features. Many stud-
ies additionally investigated the value of delta-radiomics
and peri-tumoural radiomics features. The studies, how-
ever, also highlight a number of challenges and limita-
tions that exist. Despite many studies reporting good to
excellent performance of radiomics-based models, there
was heterogeneity in the number and type of features
extracted from imaging, the pre-processing of features,
the feature selection methods and machine learning
algorithms used to develop the radiomics model. Differ-
ences in methodology may affect model perfor-
mance54,55 and complicate the task of comparing results
across radiomics studies. While there is little consensus
within the literature as to which feature selection pro-
cesses and machine learning models should be used, this
should certainly be carefully considered in any radiomics
analysis.56 The overall quality of studies could also be
improved, particularly through the adherence to guideli-
nes such as the Image Biomarker Standardisation

Initiative (IBSI),57 the radiomics quality score (RQS)40

and the Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (TRI-
POD) statement.58,59

The IBSI guidelines aimed to standardise feature defi-
nitions and provide guidance on the pre-processing
methods used for features to allow comparison of fea-
tures across studies. Unfortunately, a number of radio-
mics studies did not report which software package was
used to extract radiomics features or utilised ‘in-house’
software to extract features. Few studies did not report
the exact features used within radiomics models. Even
when these were reported, sufficient information was not
routinely provided regarding the pre-processing methods
or mathematical definitions of features, potentially
resulting in features with the same name across studies,
measuring different image characteristics, while features
with different names may be measuring the same char-
acteristics.60 The lack of use of standardised image pro-
cessing and image biomarker nomenclature and
definitions within the literature severely impedes any
comparison across studies, collation and meta-analysis
of findings across studies and contributes to the replica-
tion crisis within the field, undermining both the credibil-
ity of findings and the ability to translate results to a
clinical setting.

The RQS is a radiomics-specific quality assessment
tool that identifies 16 key components, each assigned a
number of points, to clearly evaluate the validity of a
radiomics study and any bias or limitations that exist.
Studies within the radiomics literature performed rela-
tively poorly on the use of prospective studies that were
pre-registered in a trial database, use of calibration
statistics, use of multiple imaging timepoints, cost-
effectiveness analysis and open publishing of the imag-
ing, VOI and codes used for analysis within the study. In
particular, upfront inclusion of radiomics analysis into
prospective trials affords studies the opportunity for
more homogenous image datasets through prospectively
defining and recording image acquisition parameters and
reconstruction algorithms used, as well as better report-
ing details such as contrast protocols, which is often not
well documented within studies and may lead to varia-
tion in outcomes. Open publishing of the codes used for
analysis and presentation of the full model developed,
including all regression coefficients, would allow for repli-
cation of findings and validation of models by indepen-
dent groups on external datasets.

The importance of validation, and particularly external
validation of models, is highlighted in the TRIPOD state-
ment. This is particularly hampered by the limited avail-
ability of publicly accessible annotated imaging datasets
in patients undergoing immunotherapy. Several radio-
mics studies, therefore, included relatively small num-
bers of patients, limiting their ability to both develop and
validate models. While cross-validation and random split
sample validation methods were commonly utilised as
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internal validation techniques, most studies lacked exter-
nal validation cohorts. Lack of external validation may
not only result in over-estimation of the performance of
models but also limit their generalisability.

Future directions

Despite the limitations and challenges highlighted by the
current radiomics literature, a number of areas for future
research are also emerging. Studies investigating the
predictive value of radiomics models in patients undergo-
ing immunotherapy in rarer cancer types and association
with less well-studied tissue biomarkers, such as TMB,
are required. There is limited research on the ability of
radiomics models to predict immune-related adverse
effects. Studies did not routinely assess clinical features
and the added value of imaging biomarkers to known
clinically utilised prognostic and predictive indicators in
patients undergoing immunotherapy, such as the Gus-
tave Roussy Immune Score.61

Unlike much of the prior radiomics work which
assessed early-stage or locally advanced disease,
assessment of immunotherapy response often required
interrogation of datasets of patients with metastatic dis-
ease and thereby multiple potential VOIs. The appropri-
ate VOI in these patients is uncertain. In these patients,
the primary tumour may not always be easily defined or
previously treated and, therefore, not available for analy-
sis. Contouring all sites of metastatic disease can be a
laborious process and introduces further uncertainties.
Not all tumours are easily and consistently defined on
imaging due to various factors such as associated col-
lapse or consolidation surrounding the tumour. Among
the current studies, VOI definitions varied widely from
the primary tumour, to the largest lesion, to all RECIST
target lesions or all sites of metastatic disease, with lim-
ited and inconsistent findings as to the most reliable and
valid VOI in this setting. Further complicating the issue is
the finding that the peri-tumoural region may also hold
pertinent information and radiomics features extracted
from this region often featured within radiomics models
used. However, the definition and size of the peri-
tumoural region also varied between studies. Further
research is, therefore, required as to the optimal VOI in
this setting. The introduction of multiple VOIs per patient
also raises the issue of the ideal way to aggregate radio-
mic results to utilise in per patient endpoints such as
overall response and survival. In addition to determining
the optimal VOI, further research is required as to
whether ‘semantic’ imaging features, such as those qual-
itatively described by radiologists, can be quantitatively
defined to create novel medical expert-defined features
that could be used for image analysis. Further research
assessing per lesion responses, to investigate not only
hyperprogression and pseudoprogression, but also
patients with mixed responses and potentially oligopro-
gressive disease, is also required.

Various machine learning approaches have been uti-
lised to create radiomics models, with further research
required as to the optimal approach in the
immunotherapy setting. Deep learning approaches are
increasingly being incorporated into image analysis
studies and into all parts of the workflow including seg-
mentation, generation of imaging features and model
development. Convolutional neural networks (CNN) are
a commonly employed class of deep learning, in which
pre-defined features (as used in radiomics) are not
required. In contrast, CNN layers are used to automate
the process of selection and quantification of imaging
features that are important for certain tasks or outputs
such as prognostication. Additionally, while radiomics
feature extraction is highly dependent upon the accu-
rate segmentation of a VOI, deep learning processes
can handle less well-defined regions of interest or
entire image datasets and independently determine rel-
evant and significant regions within an image. Deep
learning approaches may, therefore, mitigate the limi-
tations of using pre-defined features and manually con-
toured VOI, which inherently introduces bias into the
image analysis process. The ability to substantially
automate the process of image analysis through deep
learning, thereby facilitating the analysis of larger data-
sets combined with promising initial outcomes using
deep learning in immunotherapy62 and non-
immunotherapy settings,63 makes this an exciting area
for further research. Challenges of a deep learning
approach, however, include the lack of interpretability
and transparency of deep learning models, raising ethi-
cal and trust issues and limiting their clinical use,
although solutions to partly overcome these issues are
being investigated.64

Conclusions

The incorporation of immunotherapy into the arsenal for
cancer therapies has led to an exciting phase of change,
with improvements in patient outcomes and substantial
progress made in our understanding of the biology of the
immune response. The challenge of delivering person-
alised care for patients in this setting remains, with bet-
ter biomarkers needed to augment clinician decision
making in this increasingly complex field.

Radiomics and image analysis provide an underutilised
avenue for further exploration, potentially in combination
with currently employed clinical and tissue biomarkers.
Overall studies evaluating the predictive power of
radiomics-based models based upon both baseline and
change in imaging features over time in patients under-
going immunotherapy are promising, with many studies
reporting good model performance with respect to pre-
diction of immunotherapy response and outcome. Fur-
thermore, there is increasing evidence that tumour
immune states may be characterised by radiomic fea-
tures.
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However, despite the burgeoning number of studies in
this field, current radiomic studies remain immature with
room for improvement in quality, with heterogeneous
results and lack of thorough model validation. Integration of
radiomics models into a clinical setting will require prospec-
tive studies with externally validated models, integration of
other relevant biological and clinical data to develop supe-
rior composite models and resolution of technical barriers
required for model implementation in routine clinical care.
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