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Abstract: Atherosclerosis has long been known to be a chronic inflammatory disease. In addition,
there is intense oxidative stress in atherosclerosis resulting from an imbalance between the excess
reactive oxygen species (ROS) generation and inadequate anti-oxidant defense forces. The excess
of the oxidative forces results in the conversion of low-density lipoproteins (LDL) to oxidized LDL
(ox-LDL), which is highly atherogenic. The sub-endothelial deposition of ox-LDL, formation of foamy
macrophages, vascular smooth muscle cell (VSMC) proliferation and migration, and deposition
of collagen are central pathophysiologic steps in the formation of atherosclerotic plaque. Ox-LDL
exerts its action through several different scavenger receptors, the most important of which is LOX-1
in atherogenesis. LOX-1 is a transmembrane glycoprotein that binds to and internalizes ox-LDL.
This interaction results in variable downstream effects based on the cell type. In endothelial cells,
there is an increased expression of cellular adhesion molecules, resulting in the increased attachment
and migration of inflammatory cells to intima, followed by their differentiation into macrophages.
There is also a worsening endothelial dysfunction due to the increased production of vasoconstrictors,
increased ROS, and depletion of endothelial nitric oxide (NO). In the macrophages and VSMCs,
ox-LDL causes further upregulation of the LOX-1 gene, modulation of calpains, macrophage migration,
VSMC proliferation and foam cell formation. Soluble LOX-1 (sLOX-1), a fragment of the main LOX-1
molecule, is being investigated as a diagnostic marker because it has been shown to be present
in increased quantities in patients with hypertension, diabetes, metabolic syndrome and coronary
artery disease. LOX-1 gene deletion in mice and anti-LOX-1 therapy has been shown to decrease
inflammation, oxidative stress and atherosclerosis. LOX-1 deletion also results in damage from
ischemia, making LOX-1 a promising target of therapy for atherosclerosis and related disorders.
In this article we focus on the different mechanisms for regulation, signaling and the various effects of
LOX-1 in contributing to atherosclerosis.
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1. Introduction

Atherosclerosis is a chronic inflammatory disease and is characterized by lipid and inflammatory
cell deposits in the walls of medium and large sized arteries. There is an interplay between the
generation of reactive oxygen species (ROS) and the anti-oxidant defense system, the imbalance of
which leads to increased oxidative stress contributing to endothelial dysfunction, which is a major
determinant of atherogenesis. In conditions such as hypertension, diabetes, smoking and dyslipidemia,
which are known to elevate the cardiovascular disease risk, ROS production has been found to be
increased in the vessel walls [1]. Increased ROS species leads to the oxidation of native LDL to oxidized
LDL (ox-LDL), which plays a significant role in atherogenesis.

Antioxidants 2019, 8, 218; doi:10.3390/antiox8070218 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0003-4517-4197
https://orcid.org/0000-0003-0384-2097
http://www.mdpi.com/2076-3921/8/7/218?type=check_update&version=1
http://dx.doi.org/10.3390/antiox8070218
http://www.mdpi.com/journal/antioxidants


Antioxidants 2019, 8, 218 2 of 15

Ox-LDL is defined as “circulating LDL derived particle that have peroxides or their degradation
products within it or associated with the particle” [2]. Ox-LDL exerts its various effects on cells
such as endothelial cells, platelets, macrophages, fibroblasts, and smooth muscle cells through the
transmembrane glycoprotein LOX-1 [3]. In addition, other scavenger receptors (SR), such as CD-36
and SR-A, also contribute to the internalization of ox-LDL and atheroma formation.

In this chapter, we will discuss the role of LOX-1 in contributing to atherogenesis and its major
complication—myocardial ischemia.

2. Mechanism of Atherosclerosis

The formation of fatty streaks is considered the initial step in atherogenesis. Fatty streaks are
subendothelial deposits of lipid-laden macrophages. Endothelial dysfunction is the primary step in
fatty streak formation. In classic “risk factors” for atherosclerosis, such as smoking, hypertension,
diabetes and dyslipidemia, there is an activation of endothelial cells resulting in adhesion molecules
expression which facilitates the attachment of inflammatory cells primarily circulating monocytes.
These cells migrate into the sub-endothelial region in response to chemotactic signals. Various growth
factors stimulate the expression of various SRs and the differentiation of monocytes into macrophages
that internalize the modified lipids resulting in the formation of foam cells—the hallmark of early
atherosclerotic lesion.

The nascent atheroma then develops under the influence of proliferating and migrating smooth
muscle cells and the deposition of an extracellular matrix in response to various growth factors released
by macrophages to form advanced atherosclerotic plaque [1]. The local inflammatory reaction causes
the release of matrix metalloproteinases (MMPs), which leads to the loss of endothelium due to the
degradation of the subendothelial basement membrane, which in turn causes plaque disruption and
thrombus formation, as well as the sudden expansion of the plaque. Often, anticoagulant pathways
override this and a healing process begins. Due to the release of the platelet derived growth factor
(PDGF) and tissue growth factor-β (TGF-β), there is smooth muscle migration, proliferation and
deposition of collagen, forming a fibrous cap for the atherosclerotic plaque. The fibrous cap is weakened
by MMPs and can lead to a plaque rupture, leading to the exposure of the thrombogenic tissue factor
in the lipid core to the coagulation factors in the cells, leading to thrombosis in the blood vessel [4].

3. Ox-LDL–LOX-1 in Atherogenesis

Ox-LDL plays an important role in atherogenesis. It inhibits the constitutive endothelial nitric
oxide synthetase (eNOS) expression and contributes to the generation of ROS from cells, smooth
muscle cells and macrophages [4]. It causes the induction of the expression of adhesion molecules on
endothelial cells, macrophage proliferation, collagen formation, smooth muscle cell migration and
platelet activation. Multiple SRs have been identified based on their role in scavenging modified
lipids. They have been classified into 8 classes, namely classes A through H. They bind to various
ligands, including modified self-proteins and pathogenic organisms. All SRs bind to modified LDLs,
except SCARA-5 (class A) and LAMP (Class D) [5]. SR-A type 1 and II, CD-36 and LOX-1 have been
found to be involved in the formation of foam cells by the uptake of modified LDL [6]. In vitro studies
suggest that SR-A and CD36 contribute to up to 75% to 90% of the ox-LDL uptake [7]. SR-As are
normally expressed in myeloid cells, but in the presence of oxidative stress and growth factors, they
are expressed in endothelial cells and smooth muscle cells [8]. The deletion of SR-A has been shown to
decrease the size of atherosclerotic lesions in Apo-E null mice. In addition, there is an approximately
60% reduction in the uptake of modified LDL in macrophages of SR-AI and SR-AIII deficient mice [9].
SR-A also mediates the adhesion of macrophages to the extracellular matrix [10]. CD36 is found on
monocytes, macrophages, platelets and adipocytes [5]. CD36 contribute to foam cell formation by
macrophages by mediating the binding and uptake of modified lipids. Human macrophages lacking
CD36 have a 40% decrease in the binding and uptake of ox-LDL [11]. CD36 also mediates the adhesion
between the macrophages and activated platelets and collagen.
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Among SRs, LOX-1, a member of the class E SR family, plays a critical role in atherosclerosis.
LOX-1 is a 50-kDA transmembrane glycoprotein that was initially identified in bovine aortic endothelial
cells, where it acted as an important receptor for the binding, internalization and degradation of
ox-LDL [3]. It has a cytoplasmic, transmembrane neck and extracellular domains and was later
found to be expressed in a variety of other cells, such as macrophages, vascular smooth muscle cells,
cardiomyocytes, platelets and fibroblasts.

LOX-1, in addition to the binding and internalization of ox-LDL, contributes to endothelial
dysfunction and apoptosis and helps in the formation of foam cells in macrophages and vascular
smooth muscle cells. Mediators such as angiotensin II, cytokines, sheer stress, and advanced glycation
end-products, and conditions such as diabetes mellitus, hypertension and dyslipidemia, upregulate
LOX-1 [12–14]. In addition to ox-LDL, several other molecules act as ligands to the LOX-1 receptor.
Tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interferon-gamma (IFN-γ), and modified
lipoproteins such as glycoxidized LDL, lysophosphatidylcholine and ROS, induce the expression of
LOX-1. In in-vivo studies, hypertension and diabetes, obesity, ischemia reperfusion injury, heart failure,
psychological stress and HIV infection have been shown to increase the LOX-1 expression [15,16].

4. Regulation of LOX-1

The human LOX-1 protein is encoded by the ox-LDL receptor 1 gene (OLR1) in the C-type lectin
gene cluster of chromosome 12. NF-κB and AP-1 binding elements are present in the 5’ -regulatory
regions of the LOX-1 gene [17]. The extracellular domain of the LOX-1 protein, when cleaved from the
neck region, forms the soluble LOX-1 (sLOX-1). LOX-1 expression is low under normal physiological
conditions. However, in the presence of an inflammatory milieu that is rich in the above-mentioned
ligands, there is an upregulation of the transcription and translation of the LOX-1 gene [16]. Ox-LDL is
the most potent activator of LOX-1. The binding of ox-LDL to LOX-1 activates NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells). NF-κB binds at the 5’ side of LOX-1 to the shear stress
responsive element binding site GAGACC and activates the expression of LOX-1. The binding of
ox-LDL to LOX-1 results in an increased expression of adhesion molecules like vascular cell adhesion
molecule-1 (VCAM-1), and cytokines including monocyte-chemoattractant-protein-1 (MCP-1) [17].
These pro-inflammatory molecules themselves in turn cause the increased expression of LOX-1 in
endothelial cells, resulting in a self-perpetuating cycle between ox-LDL, LOX-1 and NF-κB [18]. Certain
other pro-inflammatory and pro-atherogenic molecules like IL-1 and-6 and TNF-α upregulate the
LOX-1 expression in vascular smooth muscle cells. In addition, the LOX-1 activation worsens oxidative
stress, resulting in more ox-LDL formation, and this cycle self-amplifies [16].

The exposure of endothelial cells to homocysteine (such as in hyperhomocysteinemia) has been
shown to increase LOX-1 mRNA transcription and translation, which is reversed with folic acid [19,20].
Certain infectious agents like Chlamydia, H. pylori and cytomegalovirus, which have been implicated in
atherosclerosis, increase sLOX-1 levels and LOX-1 directed ox-LDL endocytosis in human umbilical
vein endothelial cells [21].

Besides inflammation and atherosclerosis, LOX-1 expression is regulated by several epigenetic
mechanisms [22]. MicroRNAs (miRNAs) are non-coding RNAs that are responsible for
post-transcription gene expression modulation. Several studies have shown that various miRNAs like
miR-155, miR-590-5P and let-7 g regulate LOX-1 expression, mainly in a reciprocal fashion. For instance,
the knockdown or silencing of miR-155 upregulates the LOX-1 and ox-LDL mediated lipid uptake.
It also increases the production of IL-1 and -8 and TNF-α [23]. On the other hand, miR-590-5p binds to
the 3’ untranslated region of LOX-1 and degrades it. As expected, treatment with miR-590-p mimicking
drugs suppresses LOX-1 and attenuates angiogenesis in human umbilical vein endothelial cells [24,25].
When apoE knockout mice were given a high fat diet, there was an upregulation of LOX-1 in the aorta,
leading to increased foam cells and lipid deposition. This upregulation of LOX-1 and associated vessel
wall pathology changes were inhibited by a pre-treatment with let-7 g agonists [26].



Antioxidants 2019, 8, 218 4 of 15

DNA methylation suppresses transcription and is another epigenetic mechanism responsible for
the modulation of the LOX-1 expression. Ox-LDL downregulates the DNA methylation of the LOX-1
promoter, thereby increasing the production of LOX-1 [27]. Analogously, the exposure of endothelial
cells to homocysteine decreased DNA methyltransferase activity and increased LOX-1 expression [28].
These studies suggest that atherogenic stimuli have the potential to increase LOX-1 levels by repressing
DNA methylation [22].

There is also some data on the effect of histone acetylation-deacetylation on the LOX-1 gene
regulation. Ox-LDL can worsen inflammation through histone acetylation and the resulting
upregulation of the IL-8 and MCP-1 production [29]. In contrast, sirtuin 1 causes the histone
deacetylation of NF-κB and downregulates the LOX-1 expression [30].

In a recent study, Mentrup et al. showed that LOX-1 signaling is also controlled by intramembrane
proteases such as signal peptide peptidase-like 2a and b (SPPL2a/b) that are involved in regulated
intramembrane proteolysis [31]. Regulated intramembrane proteolysis involves a sequential cleavage
of the substrate ectodomain of the transmembrane protein followed by the processing of the residual
membrane-embedded stub by the intramembrane cleaving proteases (I-CLIP). The resulting intracellular
domain of the transmembrane protein is released into the cytosol and can contribute to various
regulatory functions [32]. SPPL2a/b are I-CLIPs that cleave N-terminal fragments (NTFs) derived from
the regulated intramembrane proteolysis of transmembrane proteins. LOX-1 was found to be processed
by ADAM10 and lysosomal proteases to form its NTF. LOX-1 NTFs were found to activate MAP kinases
independent of LOX-1 ligands. They triggered downstream signaling that induced proatherogenic
and fibrotic targets. The LOX-1 NTFs undergo intramembrane cleavage by SPPL2a/b. Unlike the
ligand-induced full length receptor, the NF-κB pathway is not activated by the LOX-1 NTF induced
signaling. The inhibition of SPPL2a/b in double deficient mice caused increased ligand dependent
LOX-1 induced MAPK signaling when challenged with hypercholesterolemia. Thus, the Mentrup et al.
study suggests the presence of two different LOX-1 signaling pathways [31].

Stancel et al. have proposed that C-reactive protein (CRP) and LOX-1 form a cyclic mechanism
with ox-LDL in atherogenesis [33]. CRP is a ligand for LOX-1 and increases vascular permeability,
impairs the endothelium-dependent vasodilator function and plays a role in monocyte-endothelial cell
adhesion. CRP, through FcγRI/CD64 and FcγRIIa/CD32, increased the expression of LOX-1 [34]. Also,
oxLDL and plasma L5, through a LOX-1 dependent manner, were found to increase CRP release from
human aortic endothelial cells [35].

5. LOX-1 Signaling Pathways and Its Effects

LOX-1 activation results in several downstream signaling pathways. LOX-1 binds to MMP14
and activates RhoA and Rac1. RhoA inhibits the endothelial NO synthesis, while Rac1 increases the
NADPH oxidase activity, resulting in ROS production and oxidative stress. Hence, the inhibition of
LOX-1 binding to MMP14 will reduce oxidative stress [36]. p66shc is a redox enzyme involved in
mitochondrial ROS production and mitochondrial DNA damage. The exposure of endothelial cells to a
high ox-LDL level phosphorylates p66shc. This causes more mitochondrial DNA damage and increases
plaque formation and instability. Treatment with siRNA has a protective effect on mitochondria [37–39].
NADPH oxidase (Nox) enzymes are a major source of ROS in the vascular tissues. The Nox2 isoform is
mainly located in monocytes and forms an active complex with the subunits p22phox, p47phox, p40phox,
and p67phox [40]. On the other hand, Nox4 is expressed in endothelial cells and forms a complex
with p22phox [41,42]. The Ox-LDL induced ROS formation is contributed by the induction of Nox,2,
Nox4 and p47phox [43,44]. The deletion of LOX-1 in mice fed with high cholesterol and a high fat diet
decreased the expression of Nox2, Nox4, p22phox, and p47phox [45,46]. NF-κB is activated by ox-LDL
through LOX-1. This activates the proinflammatory pathways and LOX-1, thus forming a vicious cycle
of increased ox-LDL uptake through the activated LOX-1, increased ROS formation and increased
expression of the LOX-1 receptors [16].
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The interaction between ox-LDL and LOX-1 results in an increased production of adhesion
molecules like VCAM-1 and cytokines like MCP-1, leading to the attachment of monocytes to
endothelial cells. Ox-LDL–LOX-1 binding leads to the phosphorylation of mitogen-activated protein
kinase (MAPK) and induces apoptosis [43]. Ox-LDL causes protein kinase C activation and plays a
critical role in the expression of MMPs [47]. LOX-1 induction also reduces the phosphorylation of
protein kinase B (PKB), which is involved in the activation of eNOS by its phosphorylation. Thus,
the decrease in PKB phosphorylation decreases the NO production due to the decline in the eNOS
activation [48,49].

The increased proprotein convertase subtilsin/kexin type 9 (PCSK9) expression upregulates the
LOX-1-mediated ox-LDL uptake [50]. LPS increases the LOX-1 expression and PCSK9 levels in human
endothelial cells and vascular smooth muscle cells. The data from gene knockout mice and siRNA
transfection studies have shown that LOX-1 and PCSK9 upregulate each other’s gene expression [51].

The mTOR inhibitor rapamycin downregulates LOX-1 by interfering with the signaling interactions
between mTOR, LOX-1 and NF-κB. Rapamycin and LOX-1 inhibition is associated with decreased
autophagy, implying the role of LOX-1 in regulating autophagy [52,53]. In addition, LOX-1 is involved
in the activation of the NOD-like receptor pyrin domain containing (NLRP3) inflammasome and in the
increased expression of the angiotensin converting enzyme (ACE) [40].

Ox-LDL binding to LOX-1 causes the rapid internalization of the ligand receptor complex into
the cell. Based on the type of cell where this interaction occurs, downstream signaling leads to varied
effects, as described below (Figures 1–3).
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5.1. Endothelial Cells

Through LOX-1, ox-LDL causes endothelial dysfunction by multiple pathways [15,54] (Figure 1).
The ox-LDL–LOX-1 pathway activates the mitogen-activated protein kinase (MAPK), causing an
increase in the MCP-1 expression and monocyte adhesion. Human coronary endothelial cells (HCAECs),
when incubated in the presence of antisense oligonucleotides to the 5’ coding sequence of the LOX-1
gene, suppressed the basal LOX-1 protein and LOX-1-mRNA. It also significantly decreased the ox-LDL
mediated upregulation of MCP-1 and monocyte adhesion [55]. These, in addition to the increased
expression of cell adhesion molecules such as VCAM-1 and ICAM-1, promote the migration and
differentiation of the monocytes to macrophages, a critical step in atherogenesis [55].

Ox-LDL increases the generation of vasoconstrictors such as the angiotensin converting enzyme
(ACE) and endothelin-1 [47,56]. Cultured HCAECs, when incubated with ox-LDL, showed an increased
expression of ACE in a time- and concentration-dependent manner. Pretreatment with an antibody to
LOX-1 was able to block this action of ox-LDL. Native-LDL had no major effect on the ACE expression
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in these cells. This effect of ox-LDL is likely mediated through the MAPK activation, as the pretreatment
of HCAECs with the MAPK p42/44 inhibitor attenuated the ACE expression [47].

Ox-LDL also increases ROS by increasing the NADPH oxidase activity. This causes the inactivation
of NO. In addition, ox-LDL causes the dysfunction of the eNOS enzyme by displacing it from the
caveolar membrane location [57] and by arginase II activation, which in turn downregulates eNOS
due to competition for its common substrate L-arginine [58]. Thus, the increased generation of
vasoconstrictors and ROS, and the depletion of NO, lead to endothelial dysfunction.

Ox-LDL activates caspase-3 and caspase-9 in the intrinsic apoptotic pathway and inhibits
antiapoptotic proteins such as B-cell lymphoma 2 (Bcl-2) and the cellular inhibitor of apoptosis
protein1 (c-IAP-2) [59]. Chen et al., in HCAECs treated with ox-LDL, showed a time- and
concentration-dependent increase in the release of activators of caspase-9, cytochrome c and Smac from
mitochondria to cytoplasm and the activation of caspase-9 [59]. Ox-LDL was shown to upregulate Fas
expression in the extrinsic apoptotic pathway on the endothelial cell surface, thereby leading to Fas
mediated apoptosis [60]. Thus, Ox-LDL promotes apoptosis of endothelial cells by both intrinsic and
extrinsic pathways.

Ox-LDL activates NF-κB, and its activation in turn increases the expression of TNF-α, adhesion
molecules and LOX-1 in endothelial cells. The LOX-1 gene has a NF-κB binding site at its 5’ flanking
region, and therefore ox-LDL increases the expression of LOX-1 through NF-κB, leading to a vicious
cycle of proinflammatory signaling [17].

Ox-LDL also increases the synthesis of MMP-1, MMP-3 and MMP-9, causing an imbalance in the
MMPs in endothelial cells, contributing to the increased degradation of fibrotic cap and predisposition
to atherosclerotic plaque rupture [61,62].

5.2. Macrophages

In normal circumstances, LOX-1 expressed in macrophages contributes to 5–10% of the ox-LDL
uptake. However, in proinflammatory states, the expression of LOX-1 is upregulated, and it contributes
to around 40% of the ox-LDL update by macrophages [15,63]. Proinflammatory cytokines and
hyperglycemia upregulate this phenomenon and increase the uptake of ox-LDL, thereby contributing
to lipid accumulation and foam cell formation [64].

Through LOX-1, ox-LDL modulate cell-dependent proteases such as calpains, which are important
in macrophage migration (Figure 2). Ox-LDL causes an increased macrophage attachment, increases
the calcium concentration in the cells and inhibits macrophage migration. These functions of ox-LDL
in macrophages were shown to be reversed with LOX-1 deletion [65].

Yang et al. used siRNA technology to study the effects of LOX-1 silencing on the ox-LDL induced
ROS generation and Nox expression in mouse macrophages. Ox-LDL caused an increase in the ROS
generation and a decrease in the superoxide dismutase activity in the macrophages at a cellular level,
thus contributing to apoptosis. LOX-1 siRNA was able to significantly reverse the oxidative stress
parameters [64].

5.3. Smooth Muscle Cells

Like endothelial cells and macrophages, LOX-1 is expressed on the cell membranes of vascular
smooth muscle cells, and is upregulated in inflammatory states in response to cytokines that are
proinflammatory such as TNF-α, IL-1 and IFN-γ [66].

Micro RNA let-7g, which inhibits the LOX-1 gene, was shown to reduce ox-LDL mediated vascular
smooth muscle cell migration and proliferation [67]. Ox-LDL induces the release of growth factors such
as the insulin-like growth factor (IGF-1), PDGF and epidermal growth factor (EGF), leading to vascular
smooth muscle cell proliferation [4,66,68]. In addition, ox-LDL suppresses the miR-141 expression,
which in turn promotes the proliferation of vascular smooth muscle cells [69] (Figure 3).

Vascular smooth muscle cells can also form foam cells through the accumulation of lipid droplets.
The anti-LOX-1 antibody can significantly decrease the uptake of ox-LDL and formation of foam cells
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by vascular smooth muscle cells [70]. Elevated concentrations of ox-LDL increase the proapoptotic
protein expression such as the bcl-2-associated X protein (Bax), causing apoptosis of vascular smooth
muscle cells. Apoptosis in vascular smooth muscle cells leads to atherosclerotic plaque instability and
rupture. The effects are mediated largely through LOX-1 [71].

5.4. Platelets and Fibroblasts

LOX-1 expression on the platelets occurs in an activation-dependent manner unlike scavenger
receptors such as CD36, which are constitutively expressed. In activated platelets, LOX-1 mediates the
binding and internalization of ox-LDL [72]. The activated platelets induce the expression of platelet
adhesion molecules, induce foam cell formation and contribute to endothelial dysfunction [73,74].
LOX-1 is important in thrombus formation by contributing to the ADP-induced activation of fibrinogen
receptors such as alpha (IIb)beta(3) and alpha(2)beta(1) integrins. The anti-LOX-1 antibody was shown
to inhibit the ADP-induced platelet aggregation [75]. Chan et al. examined the effect of L5 (highly
electronegative LDL) in thrombus formation and demonstrated that L5 enhanced the ADP-induced
platelet activation and was contributed by the LOX-1 mediated Protein Kinase C signaling pathway [76].
Aspirin and statins have also been shown to reduce the expression of LOX-1 in platelets. Activated
platelets also contribute to endothelial dysfunction by inducing endothelin-1 in endothelial cells,
through its interaction with LOX-1 and CD40 [77]. In addition, through LOX-1, ox-LDL can cause
plaque instability through the release of the extracellular MMP inducer CD147 [78].

In fibroblasts, the anti-LOX-1 antibody was shown to decrease the effects of TGF-β mediated
collagen synthesis [79]. In addition, the LOX-1 deletion in LDL receptor knockout mice decreased
collagen accumulation in plaque [45]. Thus, LOX-1 expression in fibroblast contributes to
collagen formation.

6. LOX-1 as a Diagnostic Marker and Therapeutic Target

The extracellular portion of the LOX-1 receptor can get cleaved by the action of ADAM10
metalloproteinase and form sLOX-1. The sLOX-1 measurement is being investigated as a diagnostic
marker for various cardiovascular diseases. There are reports that sLOX-1 can be used as an early
predictor for endothelial dysfunction in metabolic syndrome [80]. Elevated sLOX-1 levels have been
associated with hypertension, diabetes mellitus type 2 and smoking in various studies; however,
the interpretation of these results is difficult as these risk factors often coexist in patients with
cardiovascular diseases [81–83].

There have been reports of a correlation between sLOX-1 receptor levels in patients with acute
coronary syndrome. In a study by Hayashida et al., the sLOX-1 levels were significantly higher in acute
coronary syndrome patients (n = 521) and showed an earlier peak than troponin T. This suggested that
sLOX-1 may be considered an early marker of plaque instability [84].

The levels of sLOX-1 were found to be higher in the coronary circulation than in the systemic
circulation in patients with acute coronary syndrome and exertional angina, suggesting its origin from
the coronary circulation [85]. sLOX-1 levels were also studied in percutaneous coronary intervention
related peri procedural myocardial infarction (PCI-RPMI) patients and was found to be higher in those
undergoing PCI for stable angina who subsequently developed PCI-RPMI. Thus, the use of sLOX-1
may be helpful in evaluating coronary events in this patient group [86].

We believe that large-scale studies are needed for the application of sLOX-1 levels in diagnosing
cardiovascular diseases in clinical practice.

7. LOX-1 Directed Therapy in Atherosclerosis and Myocardial Ischemia

Evidence of the benefits of eliminating LOX-1 came from the study by Hinagata et al. in a rat
model of neointimal hyperplasia after a balloon arterial injury [87]. Mehta et al. [88] showed that
the LOX-1 gene deletion was associated with a decrease in oxidative stress, inflammatory response,
NO degradation and atherosclerosis in LDL-receptor null mice that were on a high cholesterol diet
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for 18 weeks. In another study by Hu et al., the LOX-1 deletion in LDL-receptor null mice decreased
collagen formation in atherosclerotic regions [45].

Besides atherosclerosis, studies have shown the benefit of anti-LOX-1 therapy in myocardial
ischemia. LOX-1 levels are upregulated in the heart following a short duration of coronary artery
occlusion followed by reperfusion. In a study by Li et al. [89], a prior treatment of rats with a
LOX-1 antibody was associated with decreased inflammation, apoptosis and myocardial infarct size.
Lu et al. [90] showed that LOX-1 gene deletion reduced myocardial injury, and improved the cardiac
function and overall survival in mice who underwent permanent coronary artery ligation.

8. LOX-1 Inhibitors

Being a contributor in multiple pathways in atherogenesis and related diseases, LOX-1 is
considered a potential therapeutic target. Many of the current therapies such as aspirin, statin and
oral hypoglycemics exert indirect effects on the LOX-1 expression [91,92]. Many naturally occurring
compounds and commonly used herbal drugs modify the LOX-1 expression and affect various steps in
atherosclerosis. Gingko biloba extract, curcumin, bergamot peet, and ellagic acid have been shown
to decrease the LOX-1 expression. Resveratrol, tanshionone II-A and berberine decrease the ox-LDL
mediated ROS generation and thereby decrease atherosclerosis [93]. Quercetin has an antioxidant
activity and inactivates the STAT3 signaling pathway, leading to the inhibition of the ox-LDL- and
LPS-induced LOX-1 expression and lipid accumulation in macrophages [94]. The active compound
in danshen, a medicinal herb used in various cardiovascular diseases, namely dihydrotanshinone I,
has been shown to decrease the LPS-induced LOX-1 expression and oxidative stress in human umbilical
vein endothelial cells. In-vivo studies using ApoE knockout mice fed with dihydrotanshinone I also
showed a decline in the LOX-1 expression, oxidative stress and atherosclerotic plaque formation [95].
In a recent study, Yan et al. showed that Longhu Rendan, a traditional Chinese medicine, was able to
decrease the LOX-1 expression and levels of cholesterol, LDL-c and triglyceride in apolipoprotein E
gene knockout mice [96].

Currently synthetic LOX-1 modulators are being developed based on RNA interference techniques,
structure-based drug designs and the use of monoclonal antibodies. In the structure of LOX-1, there is
a hydrophobic tunnel that acts as the primary binding site for the phospholipid moiety of ox-LDL.
Molecules that bind in this tunnel prevent the interaction of ox-LDL and LOX-1 and are currently being
studied. One such molecule developed by Falconi et al., PLAzPC, markedly reduced the interaction
between ox-LDL and LOX-1 [97]. By virtual screening techniques, molecular structure databases have
been analyzed, and 5 molecules were selected by Thakkar et al. that could potentially inhibit LOX-1.
Among them, two of the molecules were shown to significantly inhibit the downstream signaling,
LOX-1 mRNA expression and ox-LDL uptake in endothelial cells [98]. MiRNAs are noncoding RNAs
that modify the gene expression by exerting post-transcription effects. Let7g miRNA has been used to
inhibit the LOX-1 expression and ox-LDL uptake in human aortic smooth muscle cells [99]. Studies
using small interfering RNAs, such as antisense OLR1, showed the downregulation of LOX-1 mRNA
and protein expression using the RNA interference technique. The development of monoclonal
antibodies against LOX-1 is challenging due to the highly conserved C-type lectin domain of LOX-1
among mammalian species [93]. Studies with chimeric chicken-human antibodies have demonstrated
the ability to inhibit the LOX-1 effects and decrease the ox-LDL uptake. These antibodies were
developed after immunizing chicken with recombinant human LOX-1. Further studies to develop
these chimeric molecules, which can be put to clinical use, are being performed.

LOX-1 has also been implicated in collagen deposition leading to scar formation and remodeling
in the ischemic heart. LOX-1 gene deletion has been shown to reduce cardiac remodeling signals,
resulting in a preserved cardiac contractility after a sustained myocardial ischemia [90].
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9. Conclusions

Oxidized LDL through LOX-1 plays a critical role in atherogenesis. It influences multiple cell
types such as endothelial cells, VSMCs, fibroblasts, macrophages and platelets in the atherosclerotic
pathway contributing to endothelial dysfunction, apoptosis, monocyte migration and macrophage
differentiation, smooth muscle proliferation and migration and plaque instability—some of the critical
steps in atherosclerosis. The sLOX-1 receptor is currently being studied as a potential biomarker for
cardiovascular diseases. Furthermore, studies are being conducted that evaluate the use of LOX-1 as a
therapeutic target to modify atherosclerosis and related diseases.
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