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The contextual-interference effect is a frequently examined phenomenon in motor skill
learning but has not been extensively investigated in motor adaptation. Here, we first
tested experimentally if the contextual-interference effect is detectable in force field
adaptation regarding retention and spatial transfer, and then fitted state-space models to
the data to relate the findings to the “forgetting-and-reconstruction hypothesis”. Thirty-
two participants were divided into two groups with either a random or a blocked practice
schedule. They practiced reaching to four targets and were tested 10 min and 24 h
afterward for motor retention and spatial transfer on an interpolation and an extrapolation
target, and on targets which were shifted 10 cm away. The adaptation progress
was participant-specifically fitted with 4-slow-1-fast state-space models accounting
for generalization and set breaks. The blocked group adapted faster (p = 0.007)
but did not reach a better adaptation at practice end. We found better retention
(10 min), interpolation transfer (10 min), and transfer to shifted targets (10 min and
24 h) for the random group (each p < 0.05). However, no differences were found for
retention or for the interpolation target after 24 h. Neither group showed transfer to
the extrapolation target. The extended state-space model could replicate the behavioral
results with some exceptions. The study shows that the contextual-interference effect
is partially detectable in practice, short-term retention, and spatial transfer in force
field adaptation; and that state-space models provide explanatory descriptions for the
contextual-interference effect in force field adaptation.

Keywords: motor adaptation, contextual-interference effect, state-space model (SSM), spatial generalization,
motor retention, variability of practice, sensorimotor learning, reaching movements

INTRODUCTION

Motor skills enable people to interact with the environment in many different ways. Motor skills
are not innate but learned throughout life, which indicates the importance of understanding motor
learning processes. In the literature, two types of motor learning are usually distinguished: (1) skill
learning, which “is a set of processes associated with practice or experience leading to relatively
permanent changes in the capability for skilled movement” (Schmidt et al., 2019); and (2) motor
adaptation, where the motor system responds to changes in the body and/or the environment to
return to a previous level of performance under these new environmental conditions (Krakauer
and Mazzoni, 2011). For both types of learning, practice is the most important factor and a central
question of research in motor learning is to understand how different practice protocols (e.g.,
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amount of practice, distribution of practice or variability of
practice) affect motor learning processes on different time scales.

In this regard, the contextual-interference effect (CIE) is
a well-studied phenomenon in motor skill learning. The CIE
states that interleaved (high contextual interference) as opposed
to repetitive (low contextual interference) practice results in
lower performance gains during practice but superior retention
and transfer (Shea and Morgan, 1979). Originally formulated
by Battig (1972) for verbal learning, a large body of research
has supported the CIE in motor skill learning, especially for
simple laboratory tasks but also in more complex sport tasks
(for an overview; see Schmidt et al., 2019). However, compared
to skill learning, the CIE has not been widely studied in the
context of motor adaptation (Thürer et al., 2019). Accordingly,
this study focuses on the analysis of the CIE in a motor
adaptation task.

There are different experimental paradigms to analyze motor
adaptation (Krakauer et al., 2019). In this study, we use
the force field paradigm (Shadmehr and Mussa-Ivaldi, 1994;
Shadmehr, 2017) to study the CIE in motor adaptation. Here,
participants perform reaching movements and experience forces
on their hand, leading them to laterally deviate from straight
trajectories. The deviations predominantly result from a sensory
prediction error, i.e., a mismatch between the predicted and
the experienced movement (Krakauer and Mazzoni, 2011). This
error is assumed to drive trial-by-trial adjustments of an internal
model (Kawato, 1999; Donchin et al., 2003; Shadmehr et al., 2010;
Albert and Shadmehr, 2016). Thereby, the motor commands are
updated. This enables the participants to counteract successively
better the perturbances and to ultimately perform a straight
trajectory. This means that the participants returned to a
previous level of performance (Shadmehr et al., 2010). The
acquired internal model can be interpreted as a motor memory
that is partially transferrable to new situations (Shadmehr,
2017). For example, there is evidence for transfer to different
movement speeds and amplitudes (Goodbody and Wolpert,
1998; Joiner et al., 2010; Mattar and Ostry, 2010). Also,
contralateral transfers could be shown (Criscimagna-Hemminger
et al., 2003; Joiner et al., 2013; Stockinger et al., 2015). A host
of literature found spatial transfer capabilities in force field
adaptation, such as to different reaching directions or to arm
configurations that are shifted by several centimeters (Shadmehr
and Mussa-Ivaldi, 1994; Gandolfo et al., 1996; Ghez et al.,
1999; Shadmehr and Moussavi, 2000; Rezazadeh and Berniker,
2019).

The adaptation progress itself resembles an exponential
function with a fast initial increase followed by a slower, more
gradual increase (Krakauer et al., 2019). This progress can be
modeled well with linear, time-invariant (multi-) state-space
models (SSMs) (Smith et al., 2006). Thereby, the error serves
as input, the update of the internal model as a hidden variable,
and the adjusted, subsequent movement as output (Krakauer and
Mazzoni, 2011). In particular, the fast initial increase is attributed
to a fast process with a high learning rate and rapid decay, and
the subsequent phase to a process with a slower learning rate
but greater retention (Smith et al., 2006). SSMs have successfully
characterized and predicted numerous phenomena in force field

adaptation (Kim et al., 2021). Thus, they offer the possibility of
investigating potential processes underlying practice related to
behavioral changes (Smith et al., 2006).

As described above, adaptation progress, retention, and spatial
transfer characteristics in force field adaptation have been
thoroughly examined. However, no study so far has explicitly
investigated CIE, i.e., the different effects of interleaved and
repetitive practice schedules on retention and spatial transfer in
force field adaptation. Further, despite the large host of studies
in motor skill learning, there is no sole hypothesis to fully
explain the CIE (Wright and Kim, 2019). The three prevailing
hypotheses are “elaboration-and-distinctiveness” (Shea and
Morgan, 1979), “retroactive inhibition” (Shea and Titzer, 1993),
and “forgetting-and-reconstruction” (Lee and Magill, 1983; Lee
et al., 1985). According to the first, interleaved practice requires
performing comparative and distinctive analyses on a trial-
by-trial basis, which increases the cognitive effort compared
to repetitive practice. This increased effort slows down the
acquisition, but fosters better retention performance by a more
distinct or better representation of the task in the memory.
The retroactive inhibition hypothesis explains the CIE such
that learning a similar task in a repetitive manner inhibits
recalling a memory of a preceding, different task. However,
this hypothesis is probably not valid for the CIE in motor
adaptation tasks (Thürer et al., 2018, 2019). The forgetting-and-
reconstruction hypothesis proposes that the action plan for a task
is forgotten over time and vanishes from short-term memory.
If it is repeatedly needed during random practice, it must
always be reconstructed. This, in turn, slows down acquisition,
but fosters retention and transfer. Due to the interplay of
learning and decay, SSMs in particular enable the study of the
CIE in terms of the forgetting-and-reconstruction hypothesis
(Schweighofer et al., 2011).

Accordingly, this study follows a combined approach to
investigate the CIE in force field adaptation. The first objective is
to experimentally investigate if there is a CIE regarding retention
and spatial transfer in a force field adaptation task. The second
objective is to fit an extended SSM to the experimental data
to infer possible latent mechanisms. We hypothesize that: (1)
participants with an interleaved practice schedule achieve a lower
adaptation level at practice end than participants with a repetitive
schedule and adapt slower; (2) participants of the interleaved
group demonstrate better retention and (3) spatial transfer; and
(4) the superior effect of the interleaved practice schedule can be
explained by the two-rate characteristic of the learning process.

MATERIALS AND METHODS

Participants
Thirty-two right-handed (Oldfield, 1971), healthy female and
male volunteers (age 24 ± 3 years) participated in the study.
All participants were naïve to force field adaptation experiments,
informed about the experimental protocol, and gave their
written informed consent. The study protocol was submitted
to and approved by the Ethics Committee of the Karlsruhe
Institute of Technology.
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Apparatus and Task
The participants sat at a KINARM End-Point Lab (BKIN
Technologies, Kingston, Canada), and performed 10 cm point-
to-point movements with their right hand in the transverse
plane. The manipulandum was equipped with a virtual reality
display showing the handle’s position and the start and target
points, but occluding vision of the handle itself, their arms, and
hands (Figure 1A). Participants were instructed to reach from
the start to the target within 500 ± 50 ms. When the target
was reached, its color changed, providing the participants with
feedback on whether the specified time was met. Shortly after
the target was reached and the cursor had resided in it for
800 ms, the manipulandum moved the handle back to the start
for the next trial.

To comprehensively investigate the effects of different practice
schedules on spatial transfer, we considered three different spatial
transfer tasks, for which literature has shown different amounts of
transfer. Following the dial of a clock for orientation, the points
were located as follows (Figures 1B–D): the first start point was
at (0,0). The “practice targets” were positioned at 1.30, 12, 9, and
7.30 h (Figure 1B). Figure 1C shows the “interpolation” (10.30 h)
and “extrapolation” (4.30 h) targets. The second starting point
was shifted 10 cm to 1.30 h (Figure 1D). The remaining four
targets had the same directions as the practice targets but were
shifted like the second starting point (Figure 1D). We expected
a good transfer for the interpolation target, as its direction is
similar to the one practiced (Gandolfo et al., 1996; Castro et al.,
2011; Rezazadeh and Berniker, 2019). In contrast, we expected
no transfer for the extrapolation target as its direction deviates
at least 90 degrees from the practice targets (Ghez et al., 1999;
Castro et al., 2011). Based on studies by Ghez et al. (1999) and
Shadmehr and Moussavi (2000), we expected fractional transfer
for the shifted origin targets.

Experimental Design
Trial Conditions
Three different trial types were used: null field (NF), force field
(FF), and error clamp (EC). During NF trials, the handle was
freely movable without perturbing forces. FF trials were carried
out in a viscous (velocity-dependent), counter-clockwise force
field. Hereby, the force field was specified by the formula

F = k ∗ [cos θ , -sin θ ; sin θ , cos θ] ∗ [ẋ; ẏ];

where k denotes the force field magnitude and was fixed at 20
Ns/m. The angle θ was set to 90◦. The velocity components of
the handle are given by the vector [ẋ; ẏ]. Accordingly, the force
field always deviated the handle’s movement orthogonally to its
movement direction. For EC trials, the manipulandum restricted
the movement to a small channel connecting the start and end
points (Scheidt et al., 2000; Joiner and Smith, 2008). Therefore,
the manipulandum created virtual walls, with a wall viscosity of
10 kNs/m and a wall stiffness of 1 kN/m.

Group Assignment and Schedule
Thirty-two participants were randomly assigned to two groups
called “blocked” and “random” (each N = 16, with 8 females

and 8 males). The experiment consisted of five different phases:
familiarization, baseline, practice, short-term test, and long-term
test. The first three phases were separated by 5 min breaks, and
there was a 10 min break between practice and the short-term
test. The long-term test followed 24 h later. During the practice
phase, there were 30 s breaks after every 80 trials, during which
participants could let go of the handle but remained seated.
The various phases differed in the types of trials and targets
used (Table 1).

To enable the participants to become accustomed to
the manipulandum and the desired movement speed, the
familiarization consisted of 120 NF trials. Targets appeared in
block-randomized order (4 targets × 30 blocks). The baseline
phase consisted of three reaches to each of the practice targets,
and one reach to each of the interpolation, extrapolation, and
shifted origin targets in the NF condition. Then, all targets were
approached once in the EC condition.

Practice consisted of 800 trials. The practice targets of the
random group appeared in a random order, although each target
was reached once within a block of four trials (interleaved
practice). In contrast, each participant in the blocked group
practiced one of the four practice targets 200 times before
proceeding to the next (repetitive practice). Eighty EC trials
were randomly interspersed. Both groups were divided into four
sub-groups (N = 4 each), each of which began with a different
practice target.

The short-term test consisted only of EC trials. Thereby, we
assessed short-term retention and short-term spatial transfer.
First, two blocks of practice targets appeared (retention test),
followed by transfer tests. Two blocks with the inter- and
extrapolation target appeared, then two blocks with the shifted-
origin targets. The targets’ ordering varied within the test blocks
for each participant, with one of each group (blocked and
random) with the same ordering. To exclude a potentially
occurring retroactive inhibition effect, the four subgroups were
further divided into two sub-subgroups. The order of the targets
in the retention test was equal to the order of the subgroup for
the first sub-subgroup and in reverse order for the second sub-
subgroup (e.g., blocked subgroup B1: 200 × 1.30 h, 200 × 12
h, 200 × 9 h, and 200 × 7.30 h; sub-subgroup 1: 1.30, 12, 9,
and 7.30 h; sub-subgroup 2: 7.30, 9, 12, and 1.30 h). The exact
ordering for all participants is shown in Supplementary Table 1.
The long-term tests followed a similar protocol as the short-term
tests, but every second reach to a target was a FF trial, viz., not an
EC trial. The exact ordering is shown in Supplementary Table 1.

Data Analysis
Kinematic data, including hand position and velocity, and
forces measured at the manipulandum’s handle were recorded at
1,000 Hz with KINARM Dexterit-E software (BKIN Technologies
Ltd., Kingston, ON, Canada).

Pre-processing
Following our previous studies (Stockinger et al., 2015), raw
kinematic and force data were filtered with a fourth-order
Butterworth low-pass filter and a cut-off frequency of 6 Hz
(kinematic) and 10 Hz (force). Movement start and end were

Frontiers in Human Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 816197

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-816197 May 4, 2022 Time: 10:57 # 4

Herzog et al. Random Practice Enhances Retention and Transfer

FIGURE 1 | (A) Participant sits at a KINARM End-Point Lab (BKIN Technologies Ltd., dba Kinarm, Kingston, Canada). (B) Start point (0,0) in gray and target points
(practice targets) in black. (C) Start (0,0) in gray, interpolation target (10.30 h), and extrapolation target (4.30 h) in black. (D) Targets with shifted origin. The dotted
gray arrow illustrates the translational shift. In (C,D) the gray semicircle illustrates the area spanned by the practice targets, but this was not visible during the
experiments.

defined as the time points where the hand velocity exceeded
or fell below 10% of the trial’s peak velocity. Segmented
data were time-normalized to 101 time points using cubic
spline interpolation.

Dependent Variables
The dependent variables were calculated with ManipAnalysis
(Stockinger et al., 2012) and self-written Matlab scripts (R2020a;
The MathWorks, Inc., Natick, Massachusetts, United States).
Following studies by Sing et al. (2009) and Heald et al. (2018), we
assessed adaptation with a kinematic and a dynamic parameter.
The maximum perpendicular distance (PDmax) between the
participant’s trajectory and a virtual straight line connecting the
start and target points served as kinematic measure on FF trials. It
quantifies the net motor output as it includes all control processes
involved (Stockinger et al., 2015).

While PDmax quantifies the kinematic output, the force field
compensation factor (FFCF) is a dynamic measure, quantifying
the participant’s force field prediction (Scheidt et al., 2000; Joiner
and Smith, 2008). The FFCF was calculated on EC trials, i.e., when
the kinematic error was kept to zero. The force the participant
applied orthogonally toward the virtual wall was computed
(Factual). The ideal force field profile Fideal was calculated as a
product of the velocity profile of the trial and the force field
matrix. The FFCF was then obtained using linear regression of
Fideal and Factual according to the formula

Factual(t) = a1 ∗ Fideal(t)+ a0 + e(t).

Thereby, e denotes the error that is to be minimized in least-
squares sense, and a0 and a1 are the regression coefficients of
the fit. The coefficient a0 denotes the axis intercept. The slope a1
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serves as the FFCF. If Fideal coincides with Factual, the FFCF is
1. If they are unrelated, the FFCF is 0. All FFCF values after the
baseline are participant- and target-specific baseline-subtracted
values, to ensure only the learning-induced changes in the force
profile are considered (Wagner and Smith, 2008).

The PDmax progress was investigated by fitting (Matlab
lsqcurvefit) the following exponential model to the PDmax curve
(Davidson and Wolpert, 2004; Stockinger et al., 2015):

PDmax(tr) = a0 + a1 ∗ exp(−tr/τ),

where tr is the number of the trial, and τ serves as the time
constant of adaptation used to compare the adaptation progress.
The scalar a0 represents the participant’s performance learning
plateau and a1 the gain. Considering that the blocked group
successively reached to the same and the random group to
varying targets, we used the following approaches to compare
the progress between the two groups. Firstly, we fit the model
to the participant-specific PDmax curves of the whole practice.
The fitting procedure was repeated 1,000 times with random
initial values for ai and τ. The fits with the highest R2 were taken
for further analyses. Secondly, we fit the model to participant-
and target-specific PDmax curves (Krakauer et al., 2000). For
the target-specific fits, we used a bootstrapping procedure as
individual data were noisy, sampling 1,000 times per group with
64 (4 targets× 16 participants) randomly sampled PDmax curves
with replacement and random initial values. Thirdly, we fit the
exponential model to the target-specific mean PDmax curves.

Fitting of the Extended State-Space Model to
Behavioral Data
We fitted the following extended SSM to each participant’s data:

e (t) = f (t)− y(t)

y (t) = xf (t) c(t)+ xs (t) c(t)

xf (t + 1) = Afxf (t)+ c(t)bfe (t)

xs (t + 1) = Asxs (t)+ c(t)bse (t)

Our extended SSM entails a fast process xf and a slow process
xs running in parallel (Smith et al., 2006; Lee and Schweighofer,
2009). Their sum produces the model output y for each trial t.
Model output y and perturbation f correspond to the FFCF and
their difference constitutes the error e. As it is corresponding to
the FFCF, the perturbation f is always equal to one (Trewartha
et al., 2014). However, because no error is experienced during
a block of EC trials, the error e is set to zero during short-term
retention (Albert and Shadmehr, 2018). Each process’s progress
depends on the preceding error, a process-specific error-sensitive
learning (bf , bs) and decay (Af , As) rate. In the formula above,
Af (As) is a 4 × 4 matrix with Af (As) value on the diagonal and
zeros otherwise, bf is a vector [bf bf bf bf ], and bs analogous.

The two-rate SSM as proposed by Smith et al. (2006) cannot
account for multiple targets (Schweighofer et al., 2011; Tanaka
et al., 2012), as long as they cannot be averaged out over a few
trials (Tanaka et al., 2012; Albert and Shadmehr, 2018). Therefore,
we extended the SSMs to have them account for multiple targets
(Schweighofer et al., 2011; Tanaka et al., 2012). The vector c(t)

defines the currently active context (target direction), according
to Lee and Schweighofer (2009). It contains four elements, each
representing one of the practice targets if four contexts are
assumed or a single one if a single context is assumed (see below).

Literature (Donchin et al., 2003; Howard and Franklin,
2015; Rezazadeh and Berniker, 2019) suggests a Gaussian-tuned
trial-by-trial generalization with the mean at about the target
direction, a standard deviation of about 45◦ and almost no
transfer to ± 90◦. Accordingly, the value c(t,a) for the currently
active context a is 1. The values for the others c(t,b) (b ∈ {practice
targets\a}) correspond to the value of the tuning function
(Ingram et al., 2011).

c
(
t, b
)
=

1(N (180), N (b))
1(N (0), N (180))

,

with N (b) =
1
√

2π2
exp

(
−

(
θ
(
b
))2

2σ2

)

Hereby, θ
(
b
)

is the absolute angular difference between the
direction of target a and the direction of target b. As only the
four practice targets are learned during practice, the transfer
targets’ performances are constituted at the time they appear as
follows. The value c for the interpolation target is set as the sum
of the average states of the fast and slow processes. The value c
for the extrapolation target is set to zero as we do not expect
transfer to it (Ghez et al., 1999; Castro et al., 2011). The value
c for a shifted origin trial is set as if it were the practice target
with the same direction. This is a simplification as transfer to
shifted workspaces is evident, however, setting a specific transfer
coefficient was avoided due to controversial results (Shadmehr
and Mussa-Ivaldi, 1994; Shadmehr and Moussavi, 2000; Malfait
et al., 2002; Criscimagna-Hemminger et al., 2003; Mattar and
Ostry, 2007; Berniker et al., 2014).

Based on previous findings that prolonged intervals between
trials led to considerable decrease of previously achieved
adaptation levels (Huang and Shadmehr, 2007; Ethier et al., 2008;
Kim et al., 2015b), we extended our SSM so it accounted for
the forgetting between extended inter-trial pauses and set-breaks
(Kim et al., 2015b; Albert and Shadmehr, 2018). Thus, when a
set-break occurred, a factor d was used, which accounted for
additional decay during breaks (Albert and Shadmehr, 2018).

A =
{

A
Ad+1 ; b =

{
b

Adb
no set break

set break

The factor d was set at 2, 20, and 2,580 for the 30 s, 10 min and
24 h breaks, respectively, being multiples of the average inter-trial
interval (Albert and Shadmehr, 2018; Coltman et al., 2019).

Fitting was performed to minimize the root mean squared
error (RMSE) between the model output and the experimental
data (Matlab fmincon). The stability of the model fits and
sensitivity of the constraints and initial values were evaluated
with a grid search and bootstrapping procedure (Tanaka et al.,
2012; McDougle et al., 2015; Sadeghi et al., 2018). Bootstrapping
was performed 1,000 times per group with 16 randomly sampled
participants with replacement and random initial values. We

Frontiers in Human Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 816197

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-816197 May 4, 2022 Time: 10:57 # 6

Herzog et al. Random Practice Enhances Retention and Transfer

varied the number of processes (4-slow-1-fast, 1-slow-4-fast,
and 4-slow-4-fast). We excluded 1-fast-1-slow as such a model
would only be able to account for performance decreases after
target changes by altering the decay parameter d or an overall
worse fit. In case of the 4-slow-1-fast model, Af and bf were
scalar values. Analogously, for the 1-slow-4-fast model, As and
bs were scalar values. We varied the search space for Af ∈

{]0,1[,]0.5,1[,]0.5,0.9[}, As ∈ {]0,1[,]0.9,1[}, bf ∈ {]0,1[,]0,0.5[},
and bs ∈ {]0,1[,]0,0.5[} (Albert and Shadmehr, 2018; Forano and
Franklin, 2020). Fitting was robust with respect to the constraints
(Supplementary Table 2), so we chose a 4-slow-1-fast model
as it can reproduce a larger amount of force field adaptation
phenomena (Lee and Schweighofer, 2009). Parameters were
constrained to 0.5 < Af < 0.9 < As < 1 and 0 < bs < bf ≤ 0.5,
ensuring each process met the appropriate scale (McDougle et al.,
2015; Forano and Franklin, 2020). Initial values of xf and xs were
constrained to be within [0,0.5], as no participant showed an
initial FFCF value> 0.5.

Statistics
Adaptation Progress
Adaptation to the force field during the practice phase was
assessed with ANOVAs (Group: Blocked vs. Random, Time: Start,
End) on the two dependent variables PDmax and FFCF. For
PDmax, the first eight and last eight trials of the practice phase
were used for both groups. This number of trials was selected
so that each target direction was included twice in each sample.
For FFCF, each participant’s first and last EC trial was selected to
constitute the start and end sample. The PDmax progresses were
compared between the groups with a Mann-Whitney U-test on
the time constant of adaptation τ.

Retention
To test for differences between groups, short-term retention
was tested with one ANOVA on FFCF values (Group: Blocked
vs. Random, Time: Practice end, Short-term) and long-term
retention with two separate ANOVAs on PDmax and FFCF
values (Group: Blocked vs. Random, Time: Practice end, Long-
term). The sample for “practice end” constituted the last
four trials of the practice (blocked) or the last trials per
target (random). The first four EC trials of the short-term
retention and the four EC trials (FF for PDmax) of the
long-term retention were selected, respectively, for the short-
term and long-term sample. For each time point, values were
averaged per participant, so that each sample contained 16
values per group.

Spatial Transfer
Spatial transfer was tested in two steps. First, we determined
whether transfers had taken place with one-sample t-tests vs.
0 separately for each group and spatial transfer task. Second,
if there was transfer, we tested for differences between the
groups with t-tests as we expected differences in the amount
of transfer between the groups. These tests were repeated for
short-term (FFCF values) and long-term (PDmax and FFCF

values) tests. All short-term samples consisted of participant-
specific mean values. All long-term samples consisted of single-
trial values.

Modeling Results and Robustness
To assess whether the SSM reflects behavioral findings, all tests for
adaptation, retention, and spatial transfer were carried out on the
predicted model data. Additionally, we tested whether the slow
and fast process at the practice end, as well as the error-sensitive
learning rates, differ between the groups.

The ranges of the 95% confidence intervals (CIs) were
determined by the 2.5th and 97.5th percentile values over every
1,000 fits. For all statistics conducted, the significance level was
set a priori at two-sided p = 0.05. The normal distribution of
the data was tested with the Kolmogorov-Smirnov test, and
homoscedasticity with Levene’s test. If several analyses were
performed regarding the same construct, the Holm-Bonferroni
method was used to adjust the significance level of the post-hoc
t-tests. The effect sizes were determined with partial eta squared
(ηp

2), Cohen’s |d| or Cohen’s |r| (Mann-Whitney U-test). Mean
and standard deviation of R2 were calculated with forth-and-back
Fishers z-transformations. All statistical tests were carried out in
SPSS (IBM Corp., v26.0. Armonk, NY).

RESULTS

Practice Performance
Participants’ hand trajectories in both groups during baseline,
start, and end of practice resembled those typically observed in
force field adaptation (Figure 2; Shadmehr and Mussa-Ivaldi,
1994). During baseline, trajectories were almost straight. At
practice start, they showed high deviations along the force field
direction. At the end of practice, the trajectories resembled those
of the baseline phase.

We analyzed adaptation with the two variables PDmax and
FFCF. Their progression during the practice is shown in
Figures 3, 4. Remarkably, FFCF (PDmax) values of the blocked
group showed negative (positive) peaks around trial numbers
200, 400, and 600, i.e., every time the target changed for
the blocked group.

To test the first part of our first hypothesis that participants
with an interleaved practice schedule achieve a lower adaptation
level at practice end than participants with a repetitive schedule,
we used one ANOVA for the PDmax and one for the FFCF
values. We expected a significant time and interaction effect.
The ANOVA with respect to the PDmax values showed a time
effect [F(1,30) = 65.431, p < 0.001, ηp

2 = 0.686], confirming
that the participants adapted. The ANOVA showed no group
[F(1,30) = 1.118, p = 0.299, ηp

2 = 0.036] or interaction effect
[F(1,30) = 0.168, p = 0.685, ηp

2 = 0.006]. Using post-hoc tests, we
compared the time effect separately for the two groups and found
differences in both cases [blocked: t(15) = 4.197, p < 0.001, |d|
= 1.049; random: t(15) = 10.525, p< 0.001, |d| = 2.631; Figure 3],
which indicates that both groups adapted. However, there was no
group difference regarding the adaptation level at practice end.
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TABLE 1 | Practice schedule.

Familiarization Baseline Practice Short-term test§ Long-term test§

Targets pr pr, in, ex, so pr pr, in, ex, so pr, in, ex, so

Number and type
of trials

120 NF 18 NF, 10 EC 720 FF, 80 EC 20 EC 10 EC, 10 FF

Trials per target 30 Practice targets: 3 NF, 1 EC
Others: 1 NF, 1 EC

200 2 1 EC, 1 FF

Trial ordering
Blocked group

Random† 3x pr, in, ex, so (NF), pr, in,
ex, so (EC)

N = 4: 1.30, 12, 9, 7.30 h*
N = 4: 12, 9, 7.30, 1.30 h*
N = 4: 9, 7.30, 1.30, 12 h*
N = 4: 7.30, 1.30, 12, 9 h*

N = 8: pr, in, ex, so
N = 8: pr, ex, in, so

N = 8: pr, in, ex, so‡

N = 8: pr, ex, in, so‡

Trial ordering
Random group

Random† 3x pr, in, ex, so (NF), pr, in,
ex, so (EC)

Random† N = 8: pr, in, ex, so
N = 8: pr, ex, in, so

N = 8: pr, in, ex, so‡

N = 8: pr, ex, in, so‡

There was a 10 min break between practice and the short-term test, and 24 h between the short- and long-term tests. Between all other phases, there were 5 min breaks.
Targets are abbreviated: practice targets (pr), interpolation (in), extrapolation (ex), and shifted origin (so). *Each target was reached 200 times before switching to the next.
†The order was random, but all targets were reached within four trials. ‡Each target group was reached in the EC condition first and then in FF. §Detailed ordering for
every participant is listed in Supplementary Table 1.

FIGURE 2 | Mean trajectories of the NF baseline (A,D), the first (B,E) and last FF practice trials (C,F) separated for the two groups. At practice start, trajectories
deviated from the straight trajectories seen during baseline, but became similar to baseline again at practice end.

In addition, we tested the force field prediction with the FFCF.
Again, we found a time effect [F(1,30) = 104.641, p < 0.001,
ηp

2 = 0.777], but neither a group [F(1,30) = 0.775, p = 0.386,
ηp

2 = 0.025] nor an interaction effect [F(1,30) = 1.176, p = 0.287,
ηp

2 = 0.038]. Post-hoc tests also showed a time effect for both
groups [blocked: t(15) = −7.846, p < 0.001, |d| = 1.962; random:
t(15) = −6.961, p < 0.001, |d| = 1.740; Figure 4]. Consequently,
the FFCF yielded the same results as the PDmax.

To test the second part of our first hypothesis that the
random group adapts slower, we compared the PDmax progress.
Regarding the whole curve of practice, the time constant of
adaptation τ was higher for the random group, indicating
slower adaptation compared to the blocked group [U = 57.000,
p = 0.007; random: τ = 77 trials (SEM 10), R2 = 0.133 (SEM
0.044); blocked: τ = 22 trials (SEM 19), R2 = 0.175 (SEM 0.023),
Figure 5A]. Regarding the target-specific curve of the practice,

i.e., without intervening trials for the random group, the median
time constant of adaptation τ was 23.6 for the random and 19.1
trials for the blocked group. However, fits were poor, as 21.4%
of the whole pool of bootstrap samples yielded an R2 below 0.1,
and the confidence intervals were (0.83, 327.12) for the random
and (0.35, 941.9) trials for the blocked group. As a third step, we
compared the two groups based on the fit to their target-specific
mean progressions. Here, the time constant of adaptation τ was
37.9 for the random group and 23.9 trials for the blocked group
(Figure 5B). The quality of the fit R2 was 0.75 (random group)
and 0.85 (blocked group).

In summary, the statistical results of the practice phase show
that both groups adapted to the force field. Compared to the
blocked group, the random group did not reach a different
adaptation level at practice end but adapted slower. Therefore,
we cannot confirm the first part of our first hypothesis that
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FIGURE 3 | Adaptation progress and retention by PDmax . The blue and red solid curves show the mean values of the respective groups, and the shaded area the
corresponding standard error. The gray shaded rectangles pinpoint the trials used for statistics. Symbols indicate statistically significant differences (p < 0.05) in
adaptation level for the blocked group (∗) and the random group (†) obtained by post-hoc t-tests.

FIGURE 4 | Adaptation progress and retention by FFCF. The blue solid curve shows the FFCF values of the blocked group, and red of the random group. The gray
shaded rectangles pinpoint the trials used for statistics. Symbols indicate statistically significant differences (p < 0.05) in adaptation level for the blocked group (∗),
the random group (†), and between the groups (‡) obtained by post-hoc t-tests.

participants with an interleaved practice schedule achieve a lower
adaptation level at practice end, but can confirm that adaptation
is slower in the random group.

Retention
Our second hypothesis was that random practice improves
retention. We tested for retention at two time points: 10 min
(short-term retention) and 24 h (long-term retention) after
practice. For each comparison, we used ANOVA to compare

the adaptation levels at the end of practice to those of
the retention test.

The ANOVA for the short-term retention revealed time
[F(1,30) = 11.992, p = 0.002, ηp

2 = 0.286], group [F(1,30) = 6.317,
p = 0.018, ηp

2 = 0.174], and interaction effects [F(1,30) = 5.494,
p = 0.026, ηp

2 = 0.155] for the FFCF. With post-hoc tests, we
only found a time effect for the blocked group [t(15) = 7.513,
p < 0.001, |d| = 0.879], which revealed that the adaptation level
decreased from practice end to short-term retention test. In
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FIGURE 5 | PDmax progression fits. The blue and red solid curves show the mean values of the respective groups, and the shaded area the corresponding standard
error. The black curves illustrate the PDmax progression fits, the fit over the groups’ means. In (A) the fits were calculated over all trials and in (B) by target.

addition, we found that the random group showed a superior
performance in the short-term retention test compared to the
blocked group [t(30) =−5.854, p< 0.001, |d| = 2.138; Figure 4].

We used two ANOVAs to test for long-term retention, one for
the PDmax values and one for FFCF values. For PDmax, we found
a time effect [F(1,30) = 89.390, p< 0.001, ηp

2 = 0.749], indicating
a decrease of the adaptation level. We found neither a group
[F(1,30) = 0.002, p = 0.962, ηp

2 < 0.001], nor an interaction effect

[F(1,30) = 4.182, p = 0.050, ηp
2 = 0.122]. Hence, the performance

did not differ between the groups. Post-hoc tests revealed a time
effect for both groups [blocked: t(15) = −8.081, p < 0.001,
|d| = 2.020; random: t(15) = −5.273, p < 0.001, |d| = 1.318;
Figure 3], indicating that both groups’ adaptation levels were
lower 24 h after practice end. We also conducted an ANOVA on
the FFCF values. It also revealed a time effect [F(1,30) = 123.535,
p < 0.001, ηp

2 = 0.805] but likewise no group [F(1,30) = 0.154,
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FIGURE 6 | Spatial transfer 10 min (left column) and 24 h (right column) after practice. Top: interpolation target, middle: extrapolation target, bottom: targets with
shifted origin. All values are mean and standard error over the blocked (blue) and random (red) groups. The gray shaded semicircle illustrates the area spanned by
the practice trials for orientation. Trajectories are means over the groups. Group differences (p < 0.05) are indicated by the ‡ symbol.
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p = 0.697, ηp
2 = 0.005] or interaction effect [F(1,30) = 0.076,

p = 0.784, ηp
2 = 0.003]. As with PDmax, post-hoc tests revealed a

time effect for both groups [blocked: t(15) = 11.299, p < 0.001,
|d| = 2.825; random: t(15) = 6.275, p < 0.001, |d| = 1.569,
Figure 4].

In summary, the random group’s retention was better 10 min
after practice but did not differ from the blocked group 24 h
after practice. Hence, we can accept our second hypothesis
regarding short-term retention, but must reject it regarding long-
term retention.

Spatial Transfer
Our third hypothesis was that random practice improves spatial
transfer. We tested for transfer at two time points: 10 min (short-
term transfer) and 24 h (long-term transfer) after practice, with
three different kinds of targets: interpolation, extrapolation, and
shifted origin (Figure 6).

For the short-term transfer, we first tested for every transfer
task whether there was transfer for either group. If there was
transfer, we tested which group performed better. Both groups
showed transfer for the interpolation [blocked: t(15) = 7.490,
p < 0.001, |d| = 1.934; random: t(15) = 11.821, p < 0.001,
|d| = 3.052] and shifted origin targets [blocked: t(15) = 12.179,
p < 0.001, |d| = 3.145; random: t(15) = 15.122, p < 0.001,
|d| = 3.904]. No group showed transfer for the extrapolation
target [blocked: t(15) = 0.279, p = 0.784, |d| = 0.072; random:
t(15) = 0.036, p = 0.972, |d| = 0.009]. Then, we tested for
differences between the blocked and the random group on
the interpolation and shifted origin target. The random group
showed a better interpolation and shifted origin transfer than
the blocked group [interpolation: t(30) = −4.453, p < 0.001,
|d| = 1.626; shifted origin: t(30) =−4.627, p< 0.001, |d|= 1.689].

Analogously to the short-term transfer tests, we first tested
whether the groups showed long-term transfer to the different
targets. Like with the short-term tests, both groups showed
transfer for the interpolation [blocked: t(15) = 7.900, p < 0.001,
|d| = 2.050; random: t(15) = 11.871, p < 0.001, |d| = 3.065]
and shifted origin targets [blocked: t(15) = 15.875, p < 0.001,
|d| = 4.099; random: t(15) = 15.685, p < 0.001, |d| = 4.043].
No group showed transfer for the extrapolation target [blocked:
t(15) = −0.913, p = 0.376, |d| = 0.236; random: t(15) = −0.634,
p = 0.535, |d| = 0.164]. We then examined if there was a
group difference for the interpolation and shifted origin targets.
The groups did not differ for the interpolation target [PDmax:
t(30) = 0.727, p = 0.473, |d| = 0.266; FFCF: t(30) = −1.642,
p = 0.111, |d| = 0.600]. Regarding the long-term tests for
the shifted origin targets, we found that PDmax values did
not differ between the groups [t(29.726) = 0.342, p = 0.734,
|d| = 0.125]. However, we found better transfer for the random
group regarding the FFCF [t(30) =−2.582, p = 0.015, |d|= 0.943].

In summary, the random group revealed a better interpolation
test performance than the blocked group 10 min after practice.
We found no group difference 24 h after practice for the
interpolation test. No group showed transfer to the extrapolation
target, neither 10 min, nor 24 h after practice. In the shifted origin
transfer task, the random group outperformed the blocked group
10 min as well as 24 h after practice (FFCF).

We hypothesized that interleaved practice fosters transfer
but found mixed results. We can therefore only partially
accept the hypothesis.

State-Space Model to Model the
Contextual-Interference Effect
General Characteristics of the Model Data
The SSM captured the overall adaptation progress, retention
and transfer for both groups [RMSEblocked = 0.27 (CI 0.03),
RMSErandom = 0.31 (CI 0.02), R2

blocked = 0.78 (CI 0.04),
R2

random = 0.70 (CI 0.04); Figure 7]. The error-sensitive learning
rates were bf ,blocked = 0.31 (CI 0.07), and bf ,random = 0.23 (CI
0.05), as well as bs,blocked = 0.04 (CI 0.03), and bs,random = 0.04
(CI 0.01). The decay rates were Af ,blocked = 0.79 (CI 0.10), and
Af ,random = 0.86 (CI 0.05), as well as As,blocked = 0.99 (CI 0.01),
and As,random = 0.99 (CI 0.01). The decay factors during breaks
were dblocked = 1.05 (CI 0.56), and drandom = 0.23 (CI 0.21).
Differences in the learning rates of the fast process between
the groups were not significant but revealed a large effect
size, indicating a slower rate and thus a slower adaptation for
the random group [bf ,blocked vs. bf ,random: t(26.33) = −2.052,
p = 0.050, |d|= 0.800].

We tested for differences in the processes’ values at the end of
practice as they can possibly explain differences in the retention
performances. For the slow process, the difference was not
significant with a medium effect size [blocked: mean 0.51 (SE
0.05); random: mean 0.66 (SE 0.06), t(30) = 1.802, p = 0.082,
|d| = 0.658]. The difference of the fast process’ activity was not
significant either, with a weak correlation [blocked: mean 0.30
(SE 0.04); random: mean 0.24 (SE 0.04); U = 96.000, Z =−1.206,
p = 0.239, |r|= 0.22].

Additional Analysis of the Model Data
To examine in more detail whether the model can replicate
the performance trends over time induced by the random and
blocked practice protocols, the same statistics as for the FFCF
values (section “Practice Performance, Retention, and Spatial
Transfer) were calculated from the model data and can be
found in Supplementary Material 3. The statistical results of the
model data were consistent with the behavioral results except
for the practice start, the extrapolation target, and the long-
term retention test. Thus, with regard to our fourth hypothesis,
our SSM allows to provide and discuss explanatory mechanisms
underlying some, but not all behavioral results.

DISCUSSION

The CIE is a well-studied phenomenon in motor skill learning. It
states that interleaved (high contextual interference) as opposed
to repetitive (low contextual interference) practice results in
lower performance gains during practice, but superior retention
and transfer (Shea and Morgan, 1979; Schmidt et al., 2019).
The aims of the study were to investigate whether a CIE can
be observed with respect to retention and spatial transfer in a
force field adaptation task, and whether a SSM can reproduce
the CIE and thus partly explain the underlying mechanisms of
the CIE. The main findings of our study are: (1) a random
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FIGURE 7 | Results of the SSM fit showing mean motor output (black) and model fit (purple) with slow (brown) and fast (green) processes. The thin dotted brown
lines illustrate the different states of the slow process. The dashed vertical lines separate the different phases. Means are calculated over the eight participants of
each group (blocked: A,B; random: C,D) whose schedules start with the extrapolation before the interpolation target (A,C) or vice versa (B,D) during the spatial
transfer phase.

practice schedule does not lead to different performance levels at
practice end but to a slower adaptation than a blocked schedule.
A random schedule is superior to a blocked schedule in (2)
short-term retention and (3) spatial transfer. (4) SSMs reflect the
experimental findings with some exceptions and provide possible
explanatory mechanisms.

Random Practice Does Not Lead to
Different Performance Levels at Practice
End but to a Slower Adaptation
Participants of both groups adapted to the force field
perturbation. Based on the typical results of the CIE in skill
learning (Wright and Kim, 2019), we expected and hypothesized
that the adaptation at practice end would be worse for the
random group than for the blocked group. However, we found
no difference between the groups. Former studies on the CIE in
our lab are inconsistent in this regard. The finding in this study
concurs well with Thürer et al. (2017, 2019) but differs to Thürer
et al. (2018). In the latter, a difference was only found for the
enclosed area parameter (kinematic error) but not for the FFCF.
However, these studies cannot be directly compared to ours, since
they varied the force field magnitude rather than the reaching
direction. A possible explanation for the same adaptation level

at practice end is the long duration of the practice phase of our
study. Usually, adaptation progression plateaus after 300−600
trials when different reaching directions are practiced (Gandolfo
et al., 1996; Shadmehr and Brashers-Krug, 1997). Other CIE
studies have also shown that adverse effects of random practice
can be overcome during long acquisition phases (Maslovat et al.,
2004; Pauwels et al., 2014).

Participants with a random schedule adapted slower than
those with a blocked schedule, as indicated by the blocked
group’s lower time constant of adaptation and the higher error-
sensitive learning rate of the fast process (large effect size).
The difference in the higher error-sensitive learning rate of
the fast process indicates that the blocked group shows faster
adaptation, especially in the movements at the beginning. The
finding that participants in the blocked group adapted faster
is in good agreement with CIE findings in the skill learning
literature (Shea and Morgan, 1979; Magill and Hall, 1990)
as well as with motor adaptation tasks (Thürer et al., 2018).
However, not all studies explicitly compared adaptation speed
(Thürer et al., 2017, 2019). Although not explicitly measured, but
apparent, the blocked group seemed to adapt faster in the study
of Schweighofer et al. (2011). In motor adaptation studies, there
is support that increased environmental variability slows down
adaptation or, in other words, a consistent environment speeds
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up the adaptation rate (Wei and Körding, 2009; Gonzalez Castro
et al., 2014). Nonetheless, to the best of our knowledge, no study
so far has compared a blocked with a random schedule regarding
different movement directions in terms of adaptation speed. With
the help of the SSMs, this could be described as follows. The
faster adaptation can be explained by the fact that in blocked
practice, the learning gain toward the next trial is maximal,
since the same movement direction is practiced. In contrast,
the learning gain after a trial in random practice only partially
serves the next trial, as it has a different movement direction
(section “State-Space Models Provide Further Explanations for
the Contextual-Interference Effect/Practice”).

During practice, the blocked group showed a decrease in the
FFCF and an increase in PDmax every time the target changed.
Yet, the values did not fully revert to the baseline level. A possible
explanation could be the breaks that took place after 200 trials.
A closer look at behavioral results of force field adaptation
studies (Taubert et al., 2016; Heald et al., 2018) also showed
that performance decreases after short breaks, although the
performance decreases are much smaller in these studies than
in our study. Also, the random group took the same breaks, but
no distinct steps are visible in their performances. Therefore,
we suggest, with the help of our SSM, that the performance
decrease can be explained by the contextual switches when a new
target appeared. Due to the constant target change, the random
group learned each target equally, either as it was practiced itself
or by the Gaussian trial-by-trial generalization. This resulted in
constant fluctuations rather than distinct steps in the adaptation
progress. In contrast, the blocked group always learned the
recurrent target the most and the others only by the Gaussian
trial-by-trial generalization. The target after the target change
was therefore less learned by the blocked group which resulted
in the visible steps (section “State-Space Models Provide Further
Explanations for the Contextual-Interference Effect/Practice”).

Random Practice Yields Better
Short-Term Retention but Not
Necessarily Long-Term Retention
We hypothesized that random practice results in better retention
performance. Therefore, we assessed the performance 10 min
(short-term) and 24 h (long-term) after practice. While short-
term retention benefitted from random practice, long-term
retention did not. Furthermore, for both groups, long-term
retention showed a lower adaptation level than short-term
retention. These results match with those of Schweighofer et al.
(2011) for both short- and long-term retention. However, based
on our SSM, we cannot fully support in our study that the
better retention performance is merely due to a higher level of
the slow process (section “State-Space Models Provide Further
Explanations for the Contextual-Interference Effect/Retention”).
Our results on long-term retention are partially consistent with
our previous studies. Thürer et al. (2017) found a difference
only in FFCF, but not in PDmax. While Thürer et al. (2018)
did not find a group difference, Thürer et al. (2019) did find
an advantage in the random group (only kinematic metric
assessed). However, these comparisons are difficult as in these

studies force field magnitudes were varied rather than movement
directions. A better retention performance is often seen for
randomly practicing groups in motor skill learning (Shea and
Morgan, 1979). It must be noted, however, that motor adaptation
is just a temporary transient adjustment of an existing internal
model and that, generally, adaptation rapidly returns to baseline
performance, which is in stark contrast with skill learning
(Krakauer et al., 2019).

Factoring out differences in the practice schedule, there is
much support in the literature stating that retention worsens with
time in motor adaptation (Huberdeau et al., 2015b; Krakauer
et al., 2019). Thereby, the passage of time plays a crucial
role as the adapted state passively decays over time without
any interfering trials in-between (Criscimagna-Hemminger and
Shadmehr, 2008; Kitago et al., 2013). Furthermore, the adapted
state also reverts toward baseline if EC trials are inserted (Scheidt
et al., 2000; Kitago et al., 2013). These two findings concur
well with the results of our retention tests: long-term retention
is worse than short-term retention. In between the two tests,
there was a 24 h pause and the short-term retention trials were
only EC trials. However, the decrease in performance after 24 h
without practice can be caused by a warm-up decrement being
a temporary loss of an internal state that had been acquired
(Kantak and Winstein, 2012; Schmidt et al., 2019). Therefore, if
we had inserted a few FF trials before the long-term retention
tests, maybe a group difference would have been visible.

Random Practice Yields Better
Short-Term Transfer but Not Necessarily
Long-Term Transfer
To the best of our knowledge, studies so far have only examined
the influence of the CIE on intermanual but not spatial transfer
in force field adaptation (Thürer et al., 2018, 2019). According
to skill learning studies (Goode and Magill, 1986; Wright and
Kim, 2019), we expected a superior transfer performance from
the random group. In light of this, and for the purpose of a
comprehensive examination of spatial transfer, we investigated
three different spatial transfer tasks: interpolation, extrapolation,
and shifted origin. Since the time passing between practice
and test trials plays a major role in force field adaptation
(Criscimagna-Hemminger and Shadmehr, 2008; Krakauer et al.,
2019), first short- and then long-term transfer test results are
discussed separately.

Short-Term
Both groups showed transfer for the interpolation and shifted
origin targets. Remarkably, performance decreased to no transfer
for the extrapolation target.

We then found benefits for the random group compared to
the blocked group in short-term transfer for the interpolation
target as well as for the shifted origin targets. Our SSMs
provide a possible explanation, relating the better transfer in
the random group to the higher and more balanced activity of
the slow process (section “State-Space Models Provide Further
Explanations for the Contextual-Interference Effect/Transfer”).
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Factoring out the group differences, the superior transfer
performance in the short-term interpolation task compared to
the extrapolation task finds support in the literature. Many
studies have shown that transfer is local to the practiced
movement directions in the work space and decreases with
increasing angular difference between the targets (Gandolfo
et al., 1996; Castro et al., 2011; Rezazadeh and Berniker, 2019).
The performance results of both groups in the inter- and
extrapolation tasks correspond to these findings. In addition, we
found that practicing in one workspace transfers to a shifted
one. These results correspond to previous studies (Shadmehr
and Mussa-Ivaldi, 1994; Shadmehr and Moussavi, 2000; Malfait
et al., 2002; Criscimagna-Hemminger et al., 2003; Mattar and
Ostry, 2007; Berniker et al., 2014). The shifted origin targets had
the same direction as the practice targets in view of extrinsic
coordinates. Yet, we did not explicitly control for the coordinate
system in which the targets are moved. Furthermore, there is
controversy over which coordinate systems are responsible for
successful transfer (Franklin et al., 2016).

Long-Term
Analogously to the short-term transfer, we first separately tested
both groups for transfer and then tested for differences between
the groups. Both groups showed transfer for the interpolation and
shifted origin trials but not for the extrapolation target. This is
alike our findings for the short-term transfer. However, in the
long-term transfer tests, the random group did not outperform
the blocked group, except for the transfer test for the shifted
origin trials. For the latter, we only saw benefits when we assessed
performance with the FFCF but not with PDmax. Potentially, this
is due to the different control mechanism the two parameters
quantify (Stockinger et al., 2015): the FFCF serves as a measure of
the force field prediction and thus the internal model, whereas the
PDmax reflects the net motor output. The theoretical framework
of optimal feedback control (OFC) (Todorov and Jordan, 2002;
Scott, 2004; Todorov, 2004) and its extension robust optimal
feedback control (Crevecoeur et al., 2019) may help understand
why differences in FFCF values but not in PDmax values are
visible. OFC assumes a tradeoff between the reliance on internal
models and sensory feedback. Furthermore, the reliance on
sensory feedback is upregulated when accurate internal models
cannot be formed (e.g., due to uncertainty) (Franklin et al.,
2012, 2017). We speculate that the shift in start and end
points increased the uncertainty about the environment. This
uncertainty especially increased for the blocked group but not
for the random group since the latter group already experienced
higher uncertainty inherent in their practice schedule. Therefore,
the blocked group could have increased their feedback gains
following the target shift allowing for more vigorous corrective
responses when encountering the force field (Crevecoeur et al.,
2019). Collectively, the increased feedback gains and thus the
more vigorous corrections during the ongoing movement in the
blocked group would essentially cancel out the difference in the
force field prediction (FFCF) yielding in a similar motor net
output (PDmax).

We saw a group difference for the shifted-origin trials in both
short- and long-term tests but no group difference in the long-
term tests for the interpolation target. Possibly, a retrieval effect

may have played a role. This refers to the phenomenon that
relearning of a force field occurs at a more rapid rate than initial
learning and of overcoming a warmup-decrement (Krakauer,
2005; Krakauer and Shadmehr, 2006; Haith and Krakauer, 2014;
Huberdeau et al., 2015a,b; Schmidt et al., 2019). Maybe the warm-
up decrement was overcome through the FF trials during the
long-term tests until the long-term shifted origin tests started.
Then, the better transfer performance of the random group,
which was found during the short-term tests, could emerge again.

State-Space Models Provide Further
Explanations for the
Contextual-Interference Effect
In addition to the experimental testing of the CIE, we developed
SSMs to explain potential superior performance effects of the
random practice schedule by the two-rate characteristic of the
learning process. Except for the practice start, the extrapolation
test, and partially long-term retention, the SSM could reproduce
the performance trends in the behavioral data. Therefore, its
underlying processes provide explanations to some but not all
behavioral findings.

Practice
In the blocked group (Figures 7A,B), both processes were active
throughout practice. When the target changed, activity in the
fast process always increased, and decreased in the slow process.
During the periods when the blocked group approached the same
target 200 times, the context did not change and the Gaussian
trial-by-trial learning had the strongest effect on the recurrent
context. Whenever the target changed, the responsible context
for the new target became active. Since the new context has been
solely learned by trial-by-trial generalization and became active
for the first time then, this resulted in a lower adaptation for the
new context than for the preceding at the time the new context
became active. When the new context became active, fast process
activity increased and contributed more to the overall adaptation
than at the end of the preceding context. Every time a new context
became active, the preceding one was increasingly forgotten. The
observation that first the fast process and then the slow process
lead to adaptation when the target changed can be related to the
respective process characteristics (Huberdeau et al., 2015b).

The fast process is sensitive to reward and its activity level
rises fast, whereas the slow process seems to be more error-driven
and rises more slowly. Regarding the underlying physiological
cause, the literature suggests that adaptation, in the beginning, is
achieved by stiffening the arm either as a result of an impedance
control strategy (Milner and Franklin, 2005; Heald et al., 2018)
or to upregulate feedback gains (Crevecoeur and Scott, 2014;
Crevecoeur et al., 2019) as the internal model was inaccurate for
the new target (Franklin et al., 2012). When targets changed after
every 200 trials, participants probably analogously first used these
reactive responses as a result of a reward-based mechanism and
then—on a slower timescale—adapted an internal model which
was able to predict the force field (Franklin et al., 2012). Another
possibility could be that the visible change of the target addressed
the explicit component of the learning process, which has been
shown to resemble the fast process (McDougle et al., 2015).
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Though, we did not control for explicit and implicit processes and
thus this remains speculative.

In the random group (Figures 7C,D), overall performance was
determined by activity of the fast process until approximately
halfway through practice. Toward the end of practice, the slow
process became very active, and the activity of the fast process
decreased. Both slow and fast processes revealed fluctuations
which resulted from the continuous context switches. Whenever
the target changed, the responsible context became active. The
time that passed until the target was reached again caused a
decrease in activity of the corresponding context. However, since
the time was short, the decrease was only small, which resulted in
the fluctuations.

Retention
Participants with a random practice schedule showed better
short-term retention than participants with a blocked practice
schedule. There were no differences between the long-term
retention performances. Schweighofer et al. (2011) explained,
without a statistical test, the increased immediate retention
performance of the random group with a more pronounced
activation of the slow process during practice. This ultimately
led to a higher level of the slow process at practice end when
compared to the slow process level of the blocked group. They
explained that the slow process, which started from a higher level
at practice end and then decayed slowly in the random group,
led to better retention. In our study, we also observed a higher
level of the random group’s slow process, yet the difference was
not significant with a medium effect. It must be noted that we
did not test retention for each target individually. With respect
to the forgetting-and-reconstruction hypothesis, it could be that
in the blocked group the earlier a target was practiced the more
it got forgotten. So, the earliest practiced targets got considerably
forgotten. In contrast to the random group in which all targets
were practiced in a block-randomized manner and no target got
forgotten more than another. Possibly, this difference between
the slow processes of the two groups yields different average
retention values and thus is reflected in the worse retention for
the blocked group.

Joiner and Smith (2008) showed the slow process to be
the main contributor for the adaptation level during long-term
retention (24 h), whereas the fast process does not contribute.
This holds true for our modeling results as the adaptation level
during long-term retention is only influenced by the slow process
level. Also, our SSM is able to reflect the decrease of adaptation
for both groups after 24 h. However, it fails to reproduce
the experimental finding that the groups’ performances do not
differ significantly. Possibly, it is not only the decay of the
slow process that is responsible for the long-term retention
performance. Other mechanisms may happen, like a fractional
transition of the fast process into the slow process as suggested
by Criscimagna-Hemminger and Shadmehr (2008) or model-free
learning mechanisms occurring along with error-based learning
(Huang et al., 2011). With regard to this, our experimental
procedure and state-space modeling did not allow us to verify if
the described phenomenon happened. Additionally, maybe the
decrease in retention results from the interference of daily task

reaching movements, like grabbing a cup of coffee in front of you,
and thereby promoting wash-out, which we did not consider with
the SSM approach. Thus, this question cannot be addressed here
and remains speculative.

Transfer
To be applicable to adaptation to multiple targets, SSM must also
include multiple contexts (Schweighofer et al., 2011; Tanaka et al.,
2012; Albert and Shadmehr, 2018). However, new targets did not
appear after adaptation in any of these studies. This contrasts with
our study, as the interpolation, extrapolation, and shifted origin
targets were not practiced. Hence, we used a simplified approach
to let the SSMs account for the new targets (section “Materials
and Methods”). Our SSMs reproduced the statistical results we
found in our behavioral analyses results with little exceptions
(Supplementary Data 3). Therefore, it seems that the Gaussian
trial-by-trial generalization can account for transfer to new
targets. The SSMs provide a possible explanation for the better
short-term interpolation transfer performance of the random
group in light of the forgetting-and-reconstruction hypothesis.
Since the activity of the slow process for the four contexts
increased much more uniformly in random than in blocked
practice and resulted in a higher value for the interpolation target,
this possibly explains the higher transfer for the interpolation
target of the random group. The SSM fits showed minor transfer
for the extrapolation target for both groups stemming from the
fast process. The fast process does not consist of context-specific
states, and so cannot revert from a high value to zero within
a single trial. For the shifted origin targets, the context of the
practice target with the same direction served as the context of
the respective shifted-origin target. This is a simplification in the
sense that we do not consider whether the context of the direction
is embedded in an intrinsic, extrinsic, or a mixed coordinate
system (Berniker et al., 2014). However, for the purposes of our
study, this simplification seems valid as the SSM reproduced the
behavioral data.

The SSM can also account for the fact that no significant
differences were found for the long-term interpolation test.
In the absence of error, i.e., during EC trials or breaks, the
adaptation level decays exponentially (Orozco et al., 2021). Due
to the exponential decay, the difference of the slow process
between the two groups which was possibly responsible for
the group difference in the short-term interpolation test also
quickly became smaller. As a result, significant differences
no longer occurred after 24 h. The model data are in line
with the experimental findings of the long-term transfer test
for the shifted origin targets, i.e., a superior performance of
the random group. The SSM supports the explanation based
on a possible retrieval effect and warmup-decrement (section
“Random Practice Yields Better Short-Term Transfer but Not
Necessarily Long-Term Transfer”). Every second block during
long-term retention and tests, we used FF trials. With them,
the SSMs accounted again for learning and the values of the
processes increased.

Despite support in the literature (Smith et al., 2006), there is
criticism that SSMs cannot validly account for the underlying
mechanisms of all savings or retrieval phenomena in force field
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adaptation (Herzfeld et al., 2014; Krakauer et al., 2019). Based
on SSMs, savings are explained with the higher onset value of
the slow process after being re-exposed to the force field (Smith
et al., 2006). However, savings are also found after a prolonged
washout period during which the slow process diminishes almost
to zero (Zarahn et al., 2008). A possible extension to SSMs is the
use of variable error sensitivities (Zarahn et al., 2008; Herzfeld
et al., 2014; Coltman et al., 2019) or different parallel states as
supposed by Lee and Schweighofer (2009).

Operationalization of the Contextual
Interference in Force Field Adaptation
The size of the CIE seems to be dependent on the type of variation
practiced (Magill and Hall, 1990). In this regard, a certain amount
of challenge seems to be critical (Guadagnoli and Lee, 2004).
This means that, up to a certain degree, the more difficult or
dissimilar the tasks are, the better participants would benefit
from an interleaved practice schedule. In this adaptation study,
participants practiced reaching to different targets in a force field.
Even though, there is fractional transfer of learning between
neighboring targets (Donchin et al., 2003; Howard and Franklin,
2015; Rezazadeh and Berniker, 2019), we propose that reaching to
different directions can be considered dissimilar in the context of
an CIE as it requires different joint movements (Morasso, 1981)
and muscle activations (Flanders, 1991; Karst and Hasan, 1991;
Thoroughman and Shadmehr, 1999). Furthermore, transfer of
learning to neighboring targets seems to decrease with increasing
direction difference (Gandolfo et al., 1996). Taken together,
reaching to different directions in the force field may constitute
a sufficient interference and thus a challenge in the context of the
CIE to provoke better retention and transfer for the interleaved
group. Studies in a similar laboratory setting, where practicing
one task variation can presumably transfer to the others, also
showed a CIE: Schweighofer et al. (2011) found a CIE in grip force
pattern, Chalavi et al. (2018) in a visuomotor task, Lelis-Torres
et al. (2018) in a manual aiming task, and Thürer et al. (2019),
where force field magnitudes varied. We therefore considered the
different reaching directions to be dissimilar enough to see a CIE.

Neuronal Mechanisms Related to the
Contextual-Interference Effect and
State-Space Model
Recent studies have started to address the question of the
underlying neuronal mechanisms related to the decomposition
of adaptation into two distinct processes (Kim et al., 2015a;
Sarwary et al., 2018; Farrens and Sergi, 2019). Kim et al. (2015a)
demonstrated in a visuomotor adaptation that slow formation
of memory relates to activity in the inferior parietal cortex and
anterior-medial part of the cerebellum; and fast formation to
areas in the prefrontal and parietal lobes and the posterior part
of the cerebellum. Studies of the CIE associated the improved
retention and transfer performance of a random schedule to
increased activity in the parietal lobe (Thürer et al., 2018) or
the dorsolateral prefrontal cortex (Kantak et al., 2010), and
showed increased activity with blocked practice in the motor
cortex (Kantak et al., 2010). SSMs as applied in our study are
descriptive models of behavior and so do not allow us to infer the

underlying neural mechanisms (Krakauer et al., 2019). Especially,
it is yet unresolved whether the processes can be associated with
short- and long-term memory to fully support the forgetting-
and-reconstruction hypothesis (Schweighofer et al., 2011). As the
CIE is detectable in both motor adaptation and skill learning
studies, and these two types of motor learning are likely to
have overlapping neural circuitry (Krakauer et al., 2019), future
studies may further investigate the CIE and the neural differences
between blocked and random practice which lead to the different
behavioral results.

Limitations
There are a few limitations that need to be considered. Firstly, we
used two approaches (fit over all trials vs. by target) to compare
adaptation speed by comparing the PDmax progression, which
both come with limitations. Comparing τ over all trials obscures
the difference between practicing targets block-wise vs. in a row,
yielding a τ for the random group around four times larger than
τ for the blocked group. However, if τ is compared by target,
the occurring transfer of learning between the different targets
and the decay of learning of a target until it is reached again
is obscured for the random group. Furthermore, let t be the
nth trial for target i. For the blocked group, t would be trial
number (n+200+n+400+n+600+n)/4 = 300+n on average.
For the random group, t would be between trial numbers 4n-
3 and 4n. Thus, on average, t appears earlier in the random
schedule than in the blocked for the first half of the trials, where
adaptation progresses most (4n < 300+n; n = 1 ≤ n ≤ 99). The
blocked group would therefore have more practice trials before
t. Secondly, the interspersed FF trials during the long-term tests
may blur the results of the CIE. The savings or retrieval effect
likely plays a more dominant role than the CIE for our long-
term tests. Future research may assess the CIE after a 24 h break
without an FF trials effect to gain more insights into the CIE in
motor adaptation because, in motor skill learning, an increased
retention is also observed after 48−72 h (Wright and Kim, 2019).
Thirdly, our SSMs did not account for biomechanical differences
of the different reaching directions (Molier et al., 2011; Rand
and Rentsch, 2017). Another limitation of our SSM is that it
did not account for possible non-linear error sensitivity (Fine
and Thoroughman, 2007; Wei and Körding, 2009) or context-
dependent decay (Ingram et al., 2013).

CONCLUSION

The study shows that the CIE, which has been primarily
investigated in motor skill learning studies, can partially lead to
better retention and spatial transfer in motor adaptation tasks.
Studying the influence of different practice schedules on retention
and transfer is of theoretical as well as of practical interest. The
study of the CIE in motor adaptation helps to better understand
the underlying processes, as skill learning and motor adaptation
are likely to make use of some shared neural circuitry and the
causes of the CIE are still inconclusive. The study of the effects of
different practice schedules also aims at providing practitioners
with the most efficient practice schedules which ultimately may
help foster the learning and execution of motor skills.

Frontiers in Human Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 816197

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-816197 May 4, 2022 Time: 10:57 # 17

Herzog et al. Random Practice Enhances Retention and Transfer

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Karlsruhe Institute of
Technology. The participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

MH, AF, PM, BT, and TS were involved in the design of the
study, involved in the interpretation and discussion of the results,

provided critical feedback, revised, and contributed to the final
manuscript. MH and PM carried out all data collection. MH
carried out the data analysis and took the lead in writing the
manuscript. All authors contributed to the article and approved
the submitted version.

ACKNOWLEDGMENTS

We acknowledge support by the KIT-Publication Fund of the
Karlsruhe Institute of Technology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2022.816197/full#supplementary-material

REFERENCES
Albert, S. T., and Shadmehr, R. (2016). The neural feedback response to error as

a teaching signal for the motor learning system. J. Neurosci. 36, 4832–4845.
doi: 10.1523/JNEUROSCI.0159-16.2016

Albert, S. T., and Shadmehr, R. (2018). Estimating properties of the fast and
slow adaptive processes during sensorimotor adaptation. J. Neurophysiol. 119,
1367–1393. doi: 10.1152/jn.00197.2017

Battig, W. F. (1972). “Intratask interference as a source of facilitation in transfer
and retention,” in Topics in Learning and Performance, eds R. F. Thompson and
J. F. Voss (New York, NY: Academic Press).

Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M., and Kording, K.
(2014). Motor learning of novel dynamics is not represented in a single global
coordinate system: evaluation of mixed coordinate representations and local
learning. J. Neurophysiol. 111, 1165–1182. doi: 10.1152/jn.00493.2013

Castro, L. N. G., Wu, H. G., and Smith, M. A. (2011). “Adaptation to dynamic
environments displays local generalization for voluntary reaching movements,”
in Proceedings of the EMBC 2011: 33rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Boston, MA, 4050–4052.
doi: 10.1109/IEMBS.2011.6091006

Chalavi, S., Pauwels, L., Heise, K.-F., Zivari Adab, H., Maes, C., Puts, N. A. J., et al.
(2018). The neurochemical basis of the contextual interference effect. Neurobiol.
Aging 66, 85–96. doi: 10.1016/j.neurobiolaging.2018.02.014

Coltman, S. K., Cashaback, J. G. A., and Gribble, P. L. (2019). Both fast and slow
learning processes contribute to savings following sensorimotor adaptation.
J. Neurophysiol. 121, 1575–1583. doi: 10.1152/jn.00794.2018

Crevecoeur, F., and Scott, S. H. (2014). Beyond muscles stiffness: importance of
state-estimation to account for very fast motor corrections. PLoS Comput. Biol.
10:e1003869. doi: 10.1371/journal.pcbi.1003869

Crevecoeur, F., Scott, S. H., and Cluff, T. (2019). Robust control in human
reaching movements: a model-free strategy to compensate for unpredictable
disturbances. J. Neurosci. 39, 8135–8148. doi: 10.1523/JNEUROSCI.0770-19.
2019

Criscimagna-Hemminger, S. E., and Shadmehr, R. (2008). Consolidation patterns
of human motor memory. J. Neurosci. 28, 9610–9618. doi: 10.1523/
JNEUROSCI.3071-08.2008

Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., and Shadmehr, R.
(2003). Learned dynamics of reaching movements generalize from dominant to
nondominant arm. J. Neurophysiol. 89, 168–176. doi: 10.1152/jn.00622.2002

Davidson, P. R., and Wolpert, D. M. (2004). Scaling down motor memories: de-
adaptation after motor learning. Neurosci. Lett. 370, 102–107. doi: 10.1016/j.
neulet.2004.08.003

Donchin, O., Francis, J. T., and Shadmehr, R. (2003). Quantifying generalization
from trial-by-trial behavior of adaptive systems that learn with basis functions:

theory and experiments in human motor control. J. Neurosci. 23, 9032–9045.
doi: 10.1523/JNEUROSCI.23-27-09032.2003

Ethier, V., Zee, D. S., and Shadmehr, R. (2008). Spontaneous recovery of motor
memory during saccade adaptation. J. Neurophysiol. 99, 2577–2583. doi: 10.
1152/jn.00015.2008

Farrens, A. J., and Sergi, F. (2019). “Identifying the neural representation of fast and
slow states in force field adaptation via fMRI,” in Proceedings of the 2019 IEEE
16th International Conference on Rehabilitation Robotics (ICORR), (Piscataway,
NJ: IEEE), 1007–1012. doi: 10.1109/ICORR.2019.8779512

Fine, M. S., and Thoroughman, K. A. (2007). Trial-by-trial transformation of
error into sensorimotor adaptation changes with environmental dynamics.
J. Neurophysiol. 98, 1392–1404.

Flanders, M. (1991). Temporal patterns of muscle activation for arm movements
in three- dimensional space. J. Neurosci. 11, 2680–2693. doi: 10.1523/
JNEUROSCI.11-09-02680.1991

Forano, M., and Franklin, D. W. (2020). Timescales of motor memory formation
in dual-adaptation. PLoS Comput. Biol. 16:e1008373. doi: 10.1371/journal.pcbi.
1008373

Franklin, D. W., Batchelor, A. V., and Wolpert, D. M. (2016). The sensorimotor
system can sculpt behaviorally relevant representations for motor learning.
eneuro 3:e0070-16. doi: 10.1523/ENEURO.0070-16.2016

Franklin, S., Wolpert, D. M., and Franklin, D. W. (2012). Visuomotor feedback
gains upregulate during the learning of novel dynamics. J. Neurophysiol. 108,
467–478.

Franklin, S., Wolpert, D. M., and Franklin, D. W. (2017). Rapid visuomotor
feedback gains are tuned to the task dynamics. J. Neurophysiol. 118, 2711–2726.
doi: 10.1152/jn.00748.2016

Gandolfo, F., Mussa-Ivaldi, F. A., and Bizzi, E. (1996). Motor learning by field
approximation. Proc. Natl. Acad. Sci. U.S.A. 93, 3843–3846.

Ghez, C., Krakauer, J. W., Sainburg, R., and Ghilardi, M. (1999). “Spatial
representations and internal models of limb dynamics in motor learning,” in
The Cognitive Neurosciences, ed. M. Gazzaniga (Cambridge, MA: The MIT
Press), 501–514.

Gonzalez Castro, L. N., Hadjiosif, A. M., Hemphill, M. A., and Smith, M. A. (2014).
Environmental consistency determines the rate of motor adaptation. Curr. Biol.
24, 1050–1061. doi: 10.1016/j.cub.2014.03.049

Goodbody, S. J., and Wolpert, D. M. (1998). Temporal and amplitude
generalization in motor learning. J. Neurophysiol. 79, 1825–1838. doi: 10.1152/
jn.1998.79.4.1825

Goode, S., and Magill, R. A. (1986). Contextual interference effects in learning three
badminton serves. Res. Q. Exerc. Sport 57, 308–314.

Guadagnoli, M. A., and Lee, T. D. (2004). Challenge point: a framework for
conceptualizing the effects of various practice conditions in motor learning.
J. Mot. Behav. 36, 212–224. doi: 10.3200/JMBR.36.2.212-224

Frontiers in Human Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 816197

https://www.frontiersin.org/articles/10.3389/fnhum.2022.816197/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2022.816197/full#supplementary-material
https://doi.org/10.1523/JNEUROSCI.0159-16.2016
https://doi.org/10.1152/jn.00197.2017
https://doi.org/10.1152/jn.00493.2013
https://doi.org/10.1109/IEMBS.2011.6091006
https://doi.org/10.1016/j.neurobiolaging.2018.02.014
https://doi.org/10.1152/jn.00794.2018
https://doi.org/10.1371/journal.pcbi.1003869
https://doi.org/10.1523/JNEUROSCI.0770-19.2019
https://doi.org/10.1523/JNEUROSCI.0770-19.2019
https://doi.org/10.1523/JNEUROSCI.3071-08.2008
https://doi.org/10.1523/JNEUROSCI.3071-08.2008
https://doi.org/10.1152/jn.00622.2002
https://doi.org/10.1016/j.neulet.2004.08.003
https://doi.org/10.1016/j.neulet.2004.08.003
https://doi.org/10.1523/JNEUROSCI.23-27-09032.2003
https://doi.org/10.1152/jn.00015.2008
https://doi.org/10.1152/jn.00015.2008
https://doi.org/10.1109/ICORR.2019.8779512
https://doi.org/10.1523/JNEUROSCI.11-09-02680.1991
https://doi.org/10.1523/JNEUROSCI.11-09-02680.1991
https://doi.org/10.1371/journal.pcbi.1008373
https://doi.org/10.1371/journal.pcbi.1008373
https://doi.org/10.1523/ENEURO.0070-16.2016
https://doi.org/10.1152/jn.00748.2016
https://doi.org/10.1016/j.cub.2014.03.049
https://doi.org/10.1152/jn.1998.79.4.1825
https://doi.org/10.1152/jn.1998.79.4.1825
https://doi.org/10.3200/JMBR.36.2.212-224
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-816197 May 4, 2022 Time: 10:57 # 18

Herzog et al. Random Practice Enhances Retention and Transfer

Haith, A. M., and Krakauer, J. W. (2014). Motor learning: the great rate debate.
Curr. Biol. 24, R386–R388. doi: 10.1016/j.cub.2014.03.077

Heald, J. B., Franklin, D. W., and Wolpert, D. M. (2018). Increasing muscle
co-contraction speeds up internal model acquisition during dynamic motor
learning. Sci. Rep. 8:16355. doi: 10.1038/s41598-018-34737-5

Herzfeld, D. J., Vaswani, P. A., Marko, M. K., and Shadmehr, R. (2014). A
memory of errors in sensorimotor learning. Science 345, 1349–1353. doi: 10.
1126/science.1253138

Howard, I. S., and Franklin, D. W. (2015). Neural tuning functions underlie both
generalization and interference. PLoS One 10:e0131268. doi: 10.1371/journal.
pone.0131268

Huang, V. S., and Shadmehr, R. (2007). Evolution of motor memory during the
seconds after observation of motor error. J. Neurophysiol. 97, 3976–3985. doi:
10.1152/jn.01281.2006

Huang, V. S., Haith, A., Mazzoni, P., and Krakauer, J. W. (2011). Rethinking
motor learning and savings in adaptation paradigms: model-free memory for
successful actions combines with internal models. Neuron 70, 787–801.

Huberdeau, D. M., Krakauer, J. W., and Haith, A. M. (2015b). Dual-process
decomposition in human sensorimotor adaptation. Curr. Opin. Neurobiol. 33,
71–77. doi: 10.1016/j.conb.2015.03.003

Huberdeau, D. M., Haith, A. M., and Krakauer, J. W. (2015a). Formation of a long-
term memory for visuomotor adaptation following only a few trials of practice.
J. Neurophysiol. 114, 969–977. doi: 10.1152/jn.00369.2015

Ingram, J. N., Flanagan, J. R., and Wolpert, D. M. (2013). Context-dependent
decay of motor memories during skill acquisition. Curr. Biol. 23, 1107–1112.
doi: 10.1016/j.cub.2013.04.079

Ingram, J. N., Howard, I. S., Flanagan, J. R., and Wolpert, D. M. (2011). A single-
rate context-dependent learning process underlies rapid adaptation to familiar
object dynamics. PLoS Comput. Biol. 7:e1002196. doi: 10.1371/journal.pcbi.
1002196

Joiner, W. M., Ajayi, O., Sing, G. C., and Smith, M. A. (2010). Linear
hypergeneralization of learned dynamics across movement speeds reveals
anisotropic, gain-encoding primitives for motor adaptation. J. Neurophysiol.
105, 45–59. doi: 10.1152/jn.00884.2009

Joiner, W. M., and Smith, M. A. (2008). Long-term retention explained by a model
of short-term learning in the adaptive control of reaching. J. Neurophysiol. 100,
2948–2955. doi: 10.1152/jn.90706.2008

Joiner, W. M., Brayanov, J. B., and Smith, M. A. (2013). The training
schedule affects the stability, not the magnitude, of the interlimb transfer
of learned dynamics. J. Neurophysiol. 110, 984–998. doi: 10.1152/jn.01072.
2012

Kantak, S. S., and Winstein, C. J. (2012). Learning–performance distinction and
memory processes for motor skills: a focused review and perspective. Behav.
Brain Res. 228, 219–231. doi: 10.1016/j.bbr.2011.11.028

Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., and Winstein, C. J. (2010).
Neural substrates of motor memory consolidation depend on practice structure.
Nat. Neurosci. 13, 923–925. doi: 10.1038/nn.2596

Karst, G. M., and Hasan, Z. (1991). Initiation rules for planar, two-joint arm
movements: agonist selection for movements throughout the work space.
J. Neurophysiol. 66, 1579–1593. doi: 10.1152/jn.1991.66.5.1579

Kawato, M. (1999). Internal models for motor control and trajectory planning.
Curr. Opin. Neurobiol. 9, 718–727. doi: 10.1016/S0959-4388(99)00028-8

Kim, H. E., Avraham, G., and Ivry, R. B. (2021). The psychology of reaching: action
selection, movement implementation, and sensorimotor learning. Annu. Rev.
Psychol. 72, 61–95. doi: 10.1146/annurev-psych-010419-051053

Kim, S., Oh, Y., and Schweighofer, N. (2015b). Between-trial forgetting due to
interference and time in motor adaptation. PLoS One 10:e0142963. doi: 10.1371/
journal.pone.0142963

Kim, S., Ogawa, K., Lv, J., Schweighofer, N., and Imamizu, H. (2015a). Neural
substrates related to motor memory with multiple timescales in sensorimotor
adaptation. PLoS Biol. 13:e1002312. doi: 10.1371/journal.pbio.1002312

Kitago, T., Ryan, S. L., Mazzoni, P., Krakauer, J. W., and Haith, A. M. (2013).
Unlearning versus savings in visuomotor adaptation: comparing effects of
washout, passage of time, and removal of errors on motor memory. Front. Hum.
Neurosci. 7:307. doi: 10.3389/fnhum.2013.00307

Krakauer, J. W. (2005). Adaptation to visuomotor transformations:
consolidation, interference, and forgetting. J. Neurosci. 25, 473–478.
doi: 10.1523/JNEUROSCI.4218-04.2005

Krakauer, J. W., and Mazzoni, P. (2011). Human sensorimotor learning:
adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21, 636–644. doi: 10.1016/
j.conb.2011.06.012

Krakauer, J. W., and Shadmehr, R. (2006). Consolidation of motor memory. Trends
Neurosci. 29, 58–64. doi: 10.1016/j.tins.2005.10.003

Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., and Haith, A. M. (2019).
Motor learning. Compr. Physiol. 9, 613–663.

Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., and Ghez, C. (2000). Learning
of visuomotor transformations for vectorial planning of reaching trajectories.
J. Neurosci. 20, 8916–8924. doi: 10.1523/JNEUROSCI.20-23-08916.2000

Lee, J.-Y., and Schweighofer, N. (2009). Dual adaptation supports a parallel
architecture of motor memory. J. Neurosci. 29, 10396–10404. doi: 10.1523/
JNEUROSCI.1294-09.2009

Lee, T. D., and Magill, R. A. (1983). The locus of contextual interference in
motor-skill acquisition. J. Exp. Psychol. Learn. Mem. Cogn. 9:730.

Lee, T. D., Magill, R. A., and Weeks, D. J. (1985). Influence of practice schedule on
testing schema theory predictions in adults. J. Mot. Behav. 17, 283–299.

Lelis-Torres, N., Ugrinowitsch, H., Apolinário-Souza, T., and Lage, G. M. (2018).
THE CONTEXTUAL INTERFERENCE EFFECT IN THE LEARNING OF A
MANUAL AIMING TASK. J. Phys. Educ. 29:e2904. doi: 10.4025/jphyseduc.
v29i1.2904

Magill, R. A., and Hall, K. G. (1990). A review of the contextual interference effect
in motor skill acquisition. Hum. Mov. Sci. 9, 241–289.

Malfait, N., Shiller, D. M., and Ostry, D. J. (2002). Transfer of motor learning across
arm configurations. J. Neurosci. 22, 9656–9660. doi: 10.1523/JNEUROSCI.22-
22-09656.2002

Maslovat, D., Chua, R., Lee, T. D., and Franks, I. M. (2004). Contextual
interference: single task versus multi-task learning. Motor Control 8, 213–233.
doi: 10.1123/mcj.8.2.213

Mattar, A. A. G., and Ostry, D. J. (2007). Modifiability of generalization in dynamics
learning. J. Neurophysiol. 98, 3321–3329. doi: 10.1152/jn.00576.2007

Mattar, A. A. G., and Ostry, D. J. (2010). Generalization of dynamics learning
across changes in movement amplitude. J. Neurophysiol. 104, 426–438. doi:
10.1152/jn.00886.2009

McDougle, S. D., Bond, K. M., and Taylor, J. A. (2015). Explicit and implicit
processes constitute the fast and slow processes of sensorimotor learning.
J. Neurosci. 35, 9568–9579. doi: 10.1523/JNEUROSCI.5061-14.2015

Milner, T., and Franklin, D. W. (2005). Impedance control and internal model use
during the initial stage of adaptation to novel dynamics in humans. J. Physiol.
567, 651–664. doi: 10.1113/jphysiol.2005.090449

Molier, B. I., Prange, G. B., Buurke, J. H., and van Asseldonk, E. H. F.
(2011). “Influence of reaching direction on visuomotor adaptation: an
explorative study,” in Proceedings of the 2011 IEEE International Conference on
Rehabilitation Robotics, (Piscataway, NJ: IEEE), 1–5. doi: 10.1109/ICORR.2011.
5975374

Morasso, P. (1981). Spatial control of arm movements. Exp. Brain Res. 42, 223–227.
doi: 10.1007/BF00236911

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Orozco, S. P., Albert, S. T., and Shadmehr, R. (2021). Adaptive control of movement
deceleration during saccades. PLoS Comput. Biol. 17:e1009176. doi: 10.1371/
journal.pcbi.1009176

Pauwels, L., Swinnen, S. P., and Beets, I. A. M. (2014). Contextual interference
in complex bimanual skill learning leads to better skill persistence. PLoS One
9:e100906. doi: 10.1371/journal.pone.0100906

Rand, M. K., and Rentsch, S. (2017). Eye–hand coordination during visuomotor
adaptation: effects of hemispace and joint coordination. Exp. Brain Res. 235,
3645–3661. doi: 10.1007/s00221-017-5088-z

Rezazadeh, A., and Berniker, M. (2019). Force field generalization and the internal
representation of motor learning. PLoS One 14:e0225002. doi: 10.1371/journal.
pone.0225002

Sadeghi, M., Ingram, J. N., and Wolpert, D. M. (2018). Adaptive coupling
influences generalization of sensorimotor learning. PLoS One 13:e0207482. doi:
10.1371/journal.pone.0207482

Sarwary, A. M. E., Wischnewski, M., Schutter, D. J. L. G., Selen, L. P. J., and
Medendorp, W. P. (2018). Corticospinal correlates of fast and slow adaptive
processes in motor learning. J. Neurophysiol. 120, 2011–2019. doi: 10.1152/jn.
00488.2018

Frontiers in Human Neuroscience | www.frontiersin.org 18 May 2022 | Volume 16 | Article 816197

https://doi.org/10.1016/j.cub.2014.03.077
https://doi.org/10.1038/s41598-018-34737-5
https://doi.org/10.1126/science.1253138
https://doi.org/10.1126/science.1253138
https://doi.org/10.1371/journal.pone.0131268
https://doi.org/10.1371/journal.pone.0131268
https://doi.org/10.1152/jn.01281.2006
https://doi.org/10.1152/jn.01281.2006
https://doi.org/10.1016/j.conb.2015.03.003
https://doi.org/10.1152/jn.00369.2015
https://doi.org/10.1016/j.cub.2013.04.079
https://doi.org/10.1371/journal.pcbi.1002196
https://doi.org/10.1371/journal.pcbi.1002196
https://doi.org/10.1152/jn.00884.2009
https://doi.org/10.1152/jn.90706.2008
https://doi.org/10.1152/jn.01072.2012
https://doi.org/10.1152/jn.01072.2012
https://doi.org/10.1016/j.bbr.2011.11.028
https://doi.org/10.1038/nn.2596
https://doi.org/10.1152/jn.1991.66.5.1579
https://doi.org/10.1016/S0959-4388(99)00028-8
https://doi.org/10.1146/annurev-psych-010419-051053
https://doi.org/10.1371/journal.pone.0142963
https://doi.org/10.1371/journal.pone.0142963
https://doi.org/10.1371/journal.pbio.1002312
https://doi.org/10.3389/fnhum.2013.00307
https://doi.org/10.1523/JNEUROSCI.4218-04.2005
https://doi.org/10.1016/j.conb.2011.06.012
https://doi.org/10.1016/j.conb.2011.06.012
https://doi.org/10.1016/j.tins.2005.10.003
https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
https://doi.org/10.1523/JNEUROSCI.1294-09.2009
https://doi.org/10.1523/JNEUROSCI.1294-09.2009
https://doi.org/10.4025/jphyseduc.v29i1.2904
https://doi.org/10.4025/jphyseduc.v29i1.2904
https://doi.org/10.1523/JNEUROSCI.22-22-09656.2002
https://doi.org/10.1523/JNEUROSCI.22-22-09656.2002
https://doi.org/10.1123/mcj.8.2.213
https://doi.org/10.1152/jn.00576.2007
https://doi.org/10.1152/jn.00886.2009
https://doi.org/10.1152/jn.00886.2009
https://doi.org/10.1523/JNEUROSCI.5061-14.2015
https://doi.org/10.1113/jphysiol.2005.090449
https://doi.org/10.1109/ICORR.2011.5975374
https://doi.org/10.1109/ICORR.2011.5975374
https://doi.org/10.1007/BF00236911
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1371/journal.pcbi.1009176
https://doi.org/10.1371/journal.pcbi.1009176
https://doi.org/10.1371/journal.pone.0100906
https://doi.org/10.1007/s00221-017-5088-z
https://doi.org/10.1371/journal.pone.0225002
https://doi.org/10.1371/journal.pone.0225002
https://doi.org/10.1371/journal.pone.0207482
https://doi.org/10.1371/journal.pone.0207482
https://doi.org/10.1152/jn.00488.2018
https://doi.org/10.1152/jn.00488.2018
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-816197 May 4, 2022 Time: 10:57 # 19

Herzog et al. Random Practice Enhances Retention and Transfer

Scheidt, R. A., Reinkensmeyer, D. J., Conditt, M. A., Rymer, W. Z., and Mussa-
Ivaldi, F. A. (2000). Persistence of motor adaptation during constrained, multi-
joint, arm movements. J. Neurophysiol. 84, 853–862. doi: 10.1152/jn.2000.84.2.
853

Schmidt, R. A., Lee, T. D., Winstein, C. J., Wulf, G., and Zelaznik, H. N. (2019).
Motor Control and Learning: A Behavioral Emphasis, 6th Edn. Champaign, IL:
Human Kinetics.

Schweighofer, N., Lee, J.-Y., Goh, H.-T., Choi, Y., Kim, S. S., Stewart, J. C.,
et al. (2011). Mechanisms of the contextual interference effect in individuals
poststroke. J. Neurophysiol. 106, 2632–2641. doi: 10.1152/jn.00399.2011

Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional
motor control. Nat. Rev. Neurosci. 5, 532–545. doi: 10.1038/nrn1427

Shadmehr, R. (2017). Learning to predict and control the physics of our
movements. J. Neurosci. 37, 1663–1671. doi: 10.1523/JNEUROSCI.1675-
16.2016

Shadmehr, R., and Brashers-Krug, T. (1997). Functional stages in the formation
of human long-term motor memory. J. Neurosci. 17, 409–419. doi: 10.1523/
JNEUROSCI.17-01-00409.1997

Shadmehr, R., and Moussavi, Z. M. K. (2000). Spatial generalization from learning
dynamics of reaching movements. J. Neurosci. 20, 7807–7815. doi: 10.1523/
JNEUROSCI.20-20-07807.2000

Shadmehr, R., and Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics
during learning of a motor task. J. Neurosci. 14, 3208–3224. doi: 10.1523/
JNEUROSCI.14-05-03208.1994

Shadmehr, R., Smith, M. A., and Krakauer, J. W. (2010). Error correction, sensory
prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108.
doi: 10.1146/annurev-neuro-060909-153135

Shea, J. B., and Morgan, R. L. (1979). Contextual interference effects on the
acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn.
Mem. 5, 179–187.

Shea, J. B., and Titzer, R. C. (1993). The influence of reminder trials on contextual
interference effects. J. Mot. Behav. 25, 264–274.

Sing, G. C., Joiner, W. M., Nanayakkara, T., Brayanov, J. B., and Smith, M. A.
(2009). Primitives for motor adaptation reflect correlated neural tuning to
position and velocity. Neuron 64, 575–589. doi: 10.1016/j.neuron.2009.10.001

Smith, M. A., Ghazizadeh, A., and Shadmehr, R. (2006). Interacting adaptive
processes with different timescales underlie short-term motor learning. PLoS
Biol. 4:e179. doi: 10.1371/journal.pbio.0040179

Stockinger, C., Pöschl, M., Focke, A., and Stein, T. (2012). Manipanalysis – A
software application for the analysis of force field experiments. Int. J. Comput.
Sci. Sport 11, 52–57.

Stockinger, C., Thürer, B., Focke, A., and Stein, T. (2015). Intermanual
transfer characteristics of dynamic learning: direction, coordinate frame, and
consolidation of interlimb generalization. J. Neurophysiol. 114, 3166–3176. doi:
10.1152/jn.00727.2015

Tanaka, H., Krakauer, J. W., and Sejnowski, T. J. (2012). Generalization and
multirate models of motor adaptation. Neural Comput. 24, 939–966. doi: 10.
1162/NECO_a_00262

Taubert, M., Stein, T., Kreutzberg, T., Stockinger, C., Hecker, L., Focke, A.,
et al. (2016). Remote effects of non-invasive cerebellar stimulation on error

processing in motor re-learning. Brain Stimul. 9, 692–699. doi: 10.1016/j.brs.
2016.04.007

Thoroughman, K. A., and Shadmehr, R. (1999). Electromyographic correlates of
learning an internal model of reaching movements. J. Neurosci. 19, 8573–8588.
doi: 10.1523/JNEUROSCI.19-19-08573.1999

Thürer, B., Gedemer, S., Focke, A., and Stein, T. (2019). Contextual interference
effect is independent of retroactive inhibition but variable practice is not always
beneficial. Front. Hum. Neurosci. 13:165. doi: 10.3389/fnhum.2019.00165

Thürer, B., Stockinger, C., Putze, F., Schultz, T., and Stein, T. (2017). Mechanisms
within the parietal cortex correlate with the benefits of random practice in
motor adaptation. Front. Hum. Neurosci. 11:403. doi: 10.3389/fnhum.2017.
00403

Thürer, B., Weber, F. D., Born, J., and Stein, T. (2018). Variable training but
not sleep improves consolidation of motor adaptation. Sci. Rep. 8:15977. doi:
10.1038/s41598-018-34225-w

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci.
7, 907–915. doi: 10.1038/nn1309

Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a theory of
motor coordination. Nat. Neurosci. 5:1226.

Trewartha, K. M., Garcia, A., Wolpert, D. M., and Flanagan, J. R. (2014). Fast but
fleeting: adaptive motor learning processes associated with aging and cognitive
decline. J. Neurosci. 34, 13411–13421. doi: 10.1523/JNEUROSCI.1489-14.2014

Wagner, M. J., and Smith, M. A. (2008). Shared internal models for feedforward
and feedback control. J. Neurosci. 28, 10663–10673. doi: 10.1523/JNEUROSCI.
5479-07.2008

Wei, K., and Körding, K. (2009). Relevance of error: what drives motor adaptation?
J. Neurophysiol. 101, 655–664. doi: 10.1152/jn.90545.2008

Wright, D. L., and Kim, T. (2019). “Contextual interference,” in Skill Acquisition in
Sport, eds N. J. Hodges and A. M. Williams (New York, NY: Routledge), 99–118.
doi: 10.4324/9781351189750-6

Zarahn, E., Weston, G. D., Liang, J., Mazzoni, P., and Krakauer, J. W. (2008).
Explaining savings for visuomotor adaptation: linear time-invariant state-space
models are not sufficient. J. Neurophysiol. 100, 2537–2548.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Herzog, Focke, Maurus, Thürer and Stein. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 19 May 2022 | Volume 16 | Article 816197

https://doi.org/10.1152/jn.2000.84.2.853
https://doi.org/10.1152/jn.2000.84.2.853
https://doi.org/10.1152/jn.00399.2011
https://doi.org/10.1038/nrn1427
https://doi.org/10.1523/JNEUROSCI.1675-16.2016
https://doi.org/10.1523/JNEUROSCI.1675-16.2016
https://doi.org/10.1523/JNEUROSCI.17-01-00409.1997
https://doi.org/10.1523/JNEUROSCI.17-01-00409.1997
https://doi.org/10.1523/JNEUROSCI.20-20-07807.2000
https://doi.org/10.1523/JNEUROSCI.20-20-07807.2000
https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1016/j.neuron.2009.10.001
https://doi.org/10.1371/journal.pbio.0040179
https://doi.org/10.1152/jn.00727.2015
https://doi.org/10.1152/jn.00727.2015
https://doi.org/10.1162/NECO_a_00262
https://doi.org/10.1162/NECO_a_00262
https://doi.org/10.1016/j.brs.2016.04.007
https://doi.org/10.1016/j.brs.2016.04.007
https://doi.org/10.1523/JNEUROSCI.19-19-08573.1999
https://doi.org/10.3389/fnhum.2019.00165
https://doi.org/10.3389/fnhum.2017.00403
https://doi.org/10.3389/fnhum.2017.00403
https://doi.org/10.1038/s41598-018-34225-w
https://doi.org/10.1038/s41598-018-34225-w
https://doi.org/10.1038/nn1309
https://doi.org/10.1523/JNEUROSCI.1489-14.2014
https://doi.org/10.1523/JNEUROSCI.5479-07.2008
https://doi.org/10.1523/JNEUROSCI.5479-07.2008
https://doi.org/10.1152/jn.90545.2008
https://doi.org/10.4324/9781351189750-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Random Practice Enhances Retention and Spatial Transfer in Force Field Adaptation
	Introduction
	Materials and Methods
	Participants
	Apparatus and Task
	Experimental Design
	Trial Conditions
	Group Assignment and Schedule

	Data Analysis
	Pre-processing
	Dependent Variables
	Fitting of the Extended State-Space Model to Behavioral Data

	Statistics
	Adaptation Progress
	Retention
	Spatial Transfer
	Modeling Results and Robustness


	Results
	Practice Performance
	Retention
	Spatial Transfer
	State-Space Model to Model the Contextual-Interference Effect
	General Characteristics of the Model Data
	Additional Analysis of the Model Data


	Discussion
	Random Practice Does Not Lead to Different Performance Levels at Practice End but to a Slower Adaptation
	Random Practice Yields Better Short-Term Retention but Not Necessarily Long-Term Retention
	Random Practice Yields Better Short-Term Transfer but Not Necessarily Long-Term Transfer
	Short-Term
	Long-Term

	State-Space Models Provide Further Explanations for the Contextual-Interference Effect
	Practice
	Retention
	Transfer

	Operationalization of the Contextual Interference in Force Field Adaptation
	Neuronal Mechanisms Related to the Contextual-Interference Effect and State-Space Model
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References




