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ABSTRACT The crop of pigeon has specific characteris-
tics as producing crop milk in the lactating period. How-
ever, the exact mechanisms underlying the regulation of
crop lactation remain unclear. miRNAs, the essential regu-
lators of gene expression, are implicated in various physio-
logical and biological activities. In this study, we discovered
a new miRNA that regulated phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit delta (PIK3CD)
and crop fibrocyte proliferation. Results of the luciferase
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reporter assay suggested that miR-193-5p suppressed
PIK3CD expression by targeting a conserved binding site
in the 30-untranslated region (UTR) of PIK3CD mRNA.
MiR-193-5p promoted crop fibrocyte proliferation and
migration, whereas PIK3CD inhibited these effects. These
findings suggested an important regulatory role of miR-
193-5p in crop fibrocyte proliferation, suggesting that miR-
193-5p and PIK3CDmight be important regulators of crop
milk production.
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INTRODUCTION

Both male and female pigeons could produce a curd-
like substance in their crops called crop milk
(Gillespie et al., 2011). Similarly, male and female fla-
mingos and male emperor penguins could produce crop
milk, whereas in other birds, crops only had the function
of food storage (Gillespie et al., 2011). Crop produced
crop milk 2 d before the first egg hatches following the
regulation of hormone as prolactin (Dumont, 1965).
Studies of the synthesis of crop milk by crop have been
conducted since 1786, and prolactin has been shown to
play an important role in lipid accumulation, fatty acid
transportation and de novo synthesis at the hormone
level (Dumont, 1965; Wan et al., 2019). In the lactation
period, the germinal cell layer of the crop proliferated
quickly and formed the nutritive cell layer in response to
prolactin (Dumont, 1965; Wan et al., 2019). With the
consist proliferation of crop fibrocyte, it began to be cor-
nified and sloughed off to produce milk (Gillespie et al.,
2013). But the physiological mechanism of lactation in
pigeon is not similar to that in mammals. Mammalian
mammary glands are glandular tissues, but the crop of
pigeon is not glandular (Gillespie et al., 2011). Thus, it
is necessary to reveal the molecular mechanism regulat-
ing crop milk protein synthesis, fatty acid synthesis,
fatty acid transporters, and the differentially expressed
gene enriched pathways (Xie et al., 2017; Chen et al.,
2019; Xie et al., 2019; Chen et al., 2020).
Phosphoinositide 3-kinase (PI3K) plays a key role in

physiological activities as metabolic regulations by acti-
vating serine-threonine protein kinase AKT and its
downstream effector (Du et al., 2018). PI3K can be
divided into 3 classes according to their substrate speci-
ficity and structures. Class Ⅰ PI3K can be divided into
subclasses ⅠA and ⅠB. The catalytic isoforms of Class ⅠA
including p110a, p110b, and p110d are encoded by
PIK3CA, PIK3CB, and PIK3CD, respectively
(Thorpe et al., 2015; Singh et al., 2016; Bilanges et al.,
2019). When the growth factors or ligand bind to tyro-
sine kinases receptor, phosphatidylinositol 4,5-bisphos-
phate (PIP2) is phosphorylated by PI3Ks, then
phosphatidylinositol 3,4,5-trisphosphate (PIP3) is gen-
erated (Raimondi and Falasca, 2012). Then the pleck-
strin homology (PH) domain-containing proteins such
as AKT could be recruited by PIP3 to the plasma mem-
brane. These events activate the signaling cascade to
promote metabolic activities (Kriplani et al., 2015).

http://orcid.org/0000-0002-9400-009X
http://orcid.org/0000-0002-9400-009X
https://doi.org/10.1016/j.psj.2022.102378
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chen.jilan@163.com


2 MA ET AL.
MicroRNAs (miRNAs) are noncoding RNAs made up
of approximately 21 to 25 nucleotides, which can regu-
late gene expression post-transcriptionally and control
diverse biological processes including cell proliferation,
division, migration, and apoptosis (Bartel, 2004; He and
Hannon, 2004; Bartel, 2009; Pennisi, 2014). miRNAs
inhibit gene expression by targeting the 30-untranslated
region (UTR) of mRNA to induce mRNA degradation
and suppress of translation (Bartel, 2004; Bartel, 2009).
Many studies have showed that miRNAs played impor-
tant roles in regulating milk production and milk compo-
sition synthesis. As report, miR-103, miR-17-5p, and
miR-148a expressed in goat mammary epithelial cells
enhanced milk fat synthesis by facilitating lipid droplet
formation, whereas miR-181a, miR-34b, and miR-130a
expressed in bovine mammary epithelial cells inhibited
the synthesis of milk fat by downregulating the genes
participated in lipid synthesis (Lin et al., 2013;
Chen et al., 2017; Wang et al., 2019). However, few stud-
ies have examined the crop milk synthesis regulated by
miRNAs. We identified the miRNAs associated ceRNA
networks regulating crop milk production by transcrip-
tome sequencing, and we found miR-193-5p was an
important miRNAs in lactation which targeted PIK3CD
(Ge et al., 2020; Ma et al., 2020).
MATERIALS AND METHODS

Fibrocytes Isolation, Culture, and
Identification

Fibrocytes were obtained from the crop of pigeon.
Crops were isolated from the incubated pigeon eggs at
17 d under sterile conditions. The tissues were rinsed
with PBS and minced to 1 mm3 of pieces. The minced
tissues were added to centrifuge tubes containing 0.25%
pancreatic enzymes, then the tubes were put in a 37℃
waterbath and digested for 30 min. The tissue digests
were mixed with DMEM (Gibco, Grand island, NY) and
centrifuged 2 times (5 min, 1,000 r/min), then a 200-mm
sterile nylon mesh filter was used to prepare cellular sus-
pensions (Zhang et al., 2021). Cells were cultured in
DMEM (Gibco) containing 100 IU/mL penicillin, 100
mg/mL streptomycin, and 10% fetal bovine serum
(Gibco), incubated in a humidified incubator at 37℃ in
5% CO2, and identified by immunofluorescence
(Galligan and Fish, 2017; Zhou et al., 2020).
Plasmid Construction

To construct dual-luciferase miRNA target reporter
vector, the segment sequences of PIK3CD 30-UTR that
contained the putative miR-193-5p binding sequence
were amplified by PCR, and then subcloned into
XhoⅠand NotⅠrestriction sites in the psi-check-2 dual
luciferase reporter vector. The wild-type and mutant
PIK3CD 30- UTRs were named as psi-check-wt and psi-
check-mut, respectively. MiR-193-5p mimic and miR-
193-5p inhibitor were designed and synthesized by
Shanghai Generay (Shanghai, China). Interfering RNA
(siRNA) against PIK3CD was synthesized by Shanghai
Gima (Shanghai, China).
Cell Transfection and Dual-Luciferase
Activity Assay

Lipofectamine LTX Reagent (Invitrogen Ligies,
Carlsbad, CA) was used for cell transfection according
to manufacturer’s directions. Dual-luciferase reporter
assays were performed as previously described
(Cai et al., 2017; Ma et al., 2018). HEK293T cells were
cotransfected with 100 ng of luciferase-PIK3CD mRNA
30-UTRs constructs and with 50 nM of either miR-193-
5p mimic or mimic NC together with the Renilla lucifer-
ase construct using Lipofectamine 3,000 (Invitrogen).
After 48 h, HEK293T cells were collected, and the lucif-
erase and Renilla luciferase activities were determined
by Dual-Luciferase Reporter Assay System (Promega,
Madison, WI) according to the manufacturer’s instruc-
tions (Hou et al., 2020).
Cell Proliferation Assay

The cell proliferation assay was performed using the
Cell Counting Kit-8 according to the manufacturer’s
instructions. A total of 2 £ 104 fibrocytes cells per well
were seeded into 96-well plates, and transfected with
miR-193-5p mimic, mimic NC, miR-193-5p inhibitor,
inhibitor NC, siRNA NC, siRNA PIK3CD, and siRNA
FITC, respectively. The CCK-8 was added to each well
(10 mL/well) at 24 h, 36 h, 48 h, 60 h, and 72 h post-
transfection, and incubated at 37℃ for 2 h. The absor-
bance at 450 nm was measured using the microplate
reader. All experiments were performed in triplicate
(Han et al., 2016; Yang et al., 2020).
Migration Assay

A total of 1.5 £ 105 cells/well were seeded in the
24-well plates. The migration ability of fibrocytes was
detected at 24 h after transfection using wound heal-
ing assay as previous description (Jonkman et al.,
2014). The gap was created by scratching a confluent
monolayer with a pipette tip. Then the plates were
put into the incubator at 37℃ for 24 h. Microscopy
was used to monitor the status of migration into the
cell-free area.
Statistical Analysis

Data were expressed as the means § SD. All experi-
ments were repeated at least 3 times. Statistical differen-
ces between 2 groups were determined by Student’s t
test and 1-way ANOVA was used to compare 3 or more
groups. The value of P < 0.05 was considered to be
statistically significant.



Figure 1. miR-193-5p binding sites. The specific binding sites of
miR-193-5p in PIK3CD 30-UTR, mutation sites were designed accord-
ing to this sequence.

Figure 2. The PIK3CD 30-UTR was a target of miR-193-5p. miR-
193-5p targeted PIK3CD directly as measured by luciferase reporter
assays. Luciferase activities of PIK3CD-luc were markedly decreased in
cells transfected with miR-193-5p compared to control. The values
were means § SD. *P < 0.05, **P < 0.01.
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RESULTS

MiR-193-5p Targets PIK3CD and Inhibits Its
Expression

By using TargetScan6.2 software prediction, we found
the presence of miR-193-5p targeted at 3814-3833 nt at
PIK3CD 30−UTR (Figure 1). To clarify the relationship
between miR-193-5p and PIK3CD gene, the luciferase
reporter system was used. We constructed the wild-type
and mutant plasmids. The wild-type PIK3CD reporter
vector (PIK3CD-30-UTR-wt), the mutant plasmids
(PIK3CD-30-UTR-mut), miR-193-5p mimic and
mimic NC were co-transfected into HEK-293T cells.
Figure 3. Effects of miR-193-5p on proliferation of pigeon crop fibrobla
Kit-8. The fibrocytes cells were transfected with miR-193-5p mimic, mimic
SD. *P < 0.05, **P < 0.01.
The luciferase assay showed that miR-193-5p signifi-
cantly inhibited the relative luciferase activity of the
PIK3CD-30-UTR-wt, whereas the relative luciferase
activity of the PIK3CD-30-UTR-mut was not altered.
Therefore, miR-193-5p could negatively regulated
PIK3CD expression by targeted binding to the site in
30-UTR region of PIK3CD (Figure 2).
MiR-193-5p Promotes Proliferation of Pigeon
Fibrocyte

To evaluate the biological function of miR-193-5p,
we used the CCK-8 assay to assess the effects of
miR-193-5p on proliferation of pigeon fibrocyte. We
transfected miR-193-5p mimic, a negative control
(mimic NC), miR-193-5p inhibitor and a negative
control (inhibitor NC) to the pigeon fibrocyte, then
cell proliferation was measured. As shown in Figure 3,
cells proliferation increased significantly in miR-193-
5p mimic group compared with mimic NC group at
36 h and 60 h after transfection (P < 0.05), whereas
cells proliferation decreased significantly in miR-193-
5p inhibitor group compared with inhibitor NC group
at 24 h, 36 h, 60 h, and 72 h after transfection (P <
0.05). The results suggested that miR-193-5p overex-
pression promoted cell proliferation, and miR-193-5p
inhibition decreased cell proliferation.
We used Annexin V-FITC/PI apoptosis kit to test

apoptosis of pigeon fibrocyte transfected with miR-193-
5p mimic, mimic NC, miR-193-5p inhibitor, and inhibi-
tor NC. Cells transfected with miR-193-5p mimic and
mimic NC didn’t show apoptosis signal both in early
and late detection, whereas cells transfected with miR-
193-5p inhibitor showed significant apoptosis both in
early and late detection (Figure 4).
Migration of pigeon fibrocyte transfected with these 4

vectors was tested by scratch assays in vitro. Compared
with cells transfected with mimic NC, cells transfected
with miR-193-5p mimic completely repaired after 24 h
of scratch (Figure 5), whereas cells transfected with
miR-193-5p inhibitor repaired slowly than that trans-
fected with inhibitor NC, which was completely repaired
after 24 h of scratch (Figure 5).
sts. The cell proliferation assay was performed using the Cell Counting
NC, miR-193-5p inhibitor, and inhibitor NC. The values were means §



Figure 4. Effects of miR-193-5p on apoptosis of pigeon crop fibroblasts. (A) Transfected with mimic in 0 h; (B) transfected with mimic NC in 0
h; (C) transfected with inhibitor in 0 h; (D) transfected with inhibitor NC in 0 h; (E) transfected with mimic in 24 h; (F) transfected with mimic NC
in 24 h; (G) transfected with inhibitor in 24 h; (H) transfected with inhibitor NC in 24 h.

Figure 5. Effects of miR-193-5p on wound healing repair of pigeon crop fibroblasts. (A) Transfected with mimic in 0 h; (B) transfected with
mimic NC in 0 h; (C) transfected with inhibitor in 0 h; (D) transfected with inhibitor NC in 0 h; (E) transfected with mimic in 24 h; (F) transfected
with mimic NC in 24 h; (G) transfected with inhibitor in 24 h; (H) transfected with inhibitor NC in 24 h.
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PIK3CD Inhibits Proliferation of Pigeon
Fibroblast Cell

To investigate the role of PIK3CD in proliferation of
pigeon fibroblast cell, PIK3CD siRNA and a negative
control (siRNA NC) were transfected in the pigeon
Figure 6. Effects of PIK3CD on proliferation of crop fibroblasts in
pigeons. The cell proliferation assay was performed using the Cell
Counting Kit-8. The fibrocytes cells were transfected with PIK3CD-
siRNA and siRNA NC. The values were means § SD. *P < 0.05,
**P < 0.01.
fibroblast cell. The CCK-8 assay showed cells trans-
fected with PIK3CD siRNA increased significantly than
that transfected with siRNA NC at 24 h, 36 h, 48 h, 60
h, and 72 h after transfection (Figure 6). The scratch
assays showed cells transfected with PIK3CD siRNA
proliferated much quicker than that transfected with
siRNA NC (Figure 7). All these results showed that
PIK3CD could inhibit the proliferation of pigeon fibro-
blast cell.
DISCUSSION

Although much progress has been made in investigat-
ing the regulatory mechanism of crop milk production
(Bartel, 2004; Lin et al., 2013; Chen et al., 2017;
Zhang et al., 2020), the role of gene regulation is still
poorly understood. miRNA plays an important role in
regulating tissue growth and metabolism acting as an
endogenous post-transcriptional gene regulator, and it
always negatively regulates the translation of specific
target genes by binding to their 30-UTRs (Bartel, 2009).
However, compared to other species, little is known



Figure 7. Effects of PIK3CD on wound healing repair of pigeon crop fibroblasts. (A) Transfected with PIK3CD-siRNA in 0 h; (B) transfected
with siRNA NC in 0 h; (C) transfected with PIK3CD-siRNA in 24 h; (D) transfected with siRNA NC in 24 h.
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about the function of miRNAs in crop milk production.
In previous study, we identified miRNA associated
ceRNA networks regulating crop milk production, and
71 miRNAs were identified differentially expressed.
MiR-193-5p was predicted as an important ceRNA
located in the central position of many regulatory axes
affecting lactation, and PIK3CD gene was predicted as a
potential target of miR-193-5p (Ge et al., 2020). Lactat-
ing crops showed a significant high-level expression of
miR-193-5p compared with non-lactating crops by small
RNA sequencing (P < 0.01), whereas in lactating crops,
the expression of PIK3CD was significantly lower than
in non-lactating crops (P < 0.01, Ge et al., 2020).

In the present study, we researched the targeting rela-
tionship of miR-193-5p and PIK3CD, and assessed the
function of miR-193-5p in fibrocyte proliferation and
crop milk production. miRNAs regulate post-transcrip-
tional gene expression by binding to the 30-UTR of tar-
get genes (Rashidi et al., 2022). miR-193a generate 2
arms including 3P and 5P, also known as dominant arm
and passenger arm, respectively (Wang et al., 2019;
Azar et al., 2021). Dysregulation of miR-193-3P and
miR-193-5P could cause many diseases such as cancer
(Lv et al., 2014; Wang et al., 2019), Parkinson and
chronic myeloid leukaemia (Dong et al., 2016;
Prinsloo et al., 2017). However, few reports described
their functions in nutrition synthesis, and especially the
function of miR-193-5p in regulation of crop milk pro-
duction has remained unknown. Here, we first analyzed
the expression of miR-193-5p and PIK3CD in lactating
and non-lactating crops, and their regulation of pigeon
crop fibrocyte in vitro.

We found that expression of miR-193-5p was upregu-
lated in the lactating crop compared with the non-lac-
tating crop, and miR-193-5p promoted crop fibrocyte
proliferation in vitro. Similarly, Fan et al. (2021)
reported that miR-193a-5P could promote the synthesis
of polyunsaturated fatty acids (PUFAs) by targeting
fatty acid desaturase 1 (FADS1) in bovine mammary
epithelial cells, and miR-193a-5P expression was posi-
tively correlated with the expression of genes associated
with milk fatty acid metabolism, including RLOVL
fatty acid elongase (ELOVL6) and diacylglycerol
O-acyltransferase 2 (DGAT2) (Fan et al., 2021).
Lactation is a complex activity regulated by endocrine
regulation and changes in gene activity, and the activity
is accompanied with various cellular processes as
proliferation, differentiation, survival, and apoptosis
(Dysin et al., 2021). As previous report, many studies
have shown that mammary gland development was
controlled by miRNAs by regulating proliferation and
apoptosis of mammary epithelial cells, as well as the
formation of mammary ducts and acinus (Avril-
Sassen et al., 2009; Shimono et al., 2009). The number of
epithelial cells influenced the dairy yield of milk
(Boutinaud et al., 2004), and in pigeon the lactating
crop was also accompanied by extensive proliferation
and folding of the germinal epithelium (Gillespie et al.,
2011). So our results verified that miR-193-5p could
accelerate the proliferation of crop fibrocyte and process
crop milk production.
To further validate the relationship of miR-193-5p

and its predicted target gene PIK3CD, the luciferase
activity assay was used. The results suggested that miR-
193-5p negatively impacted PIK3CD by targeting the
30-UTR sequence of PIK3CD. PI3Ks are a family of lipid
kinases regulating variety of biological responses in dif-
ferent cells (Li et al., 2015). PIK3CD, a subunit of PI3K,
has mostly been found to regulate progression of cancer
and various metabolic disease (Fang et al., 2012;
Tzenaki and Papakonstanti, 2013; Shi et al., 2014). The
reports of PIK3CD functions were not consistent. Most
of the results showed it could promote cell proliferation,
whereas only few reported it suppressed cell prolifera-
tion. Xie et al. (2020) showed miR-224 could suppress
diffuse large B-cell lymphoma (DLBCL) cells by
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targeted inhibition of PIK3CD, which could promote
proliferation of HBL1, a DLBCL cell line (Xie et al.,
2020). Chen et al. (2019) showed that PIK3CD induced
cell growth and invasion in colorectal cancer by activat-
ing AKT/GSK-3b/b-catenin signaling, but the studies
of Song et al. (2019) suggested that overexpression of
PIK3CD-AS1 inhibited proliferation, colony formation,
and cell cycle progression of hepatocellular carcinoma
(HCC) cells (Chen et al., 2019). However, little is
known about the function of PIK3CD in mammary
glands development and metabolism of milk. We first
reported PIK3CD suppressed crop fibrocyte prolifera-
tion as the targeted gene of miR-193-5p.

In conclusion, we found miR-193-5p was upregulated in
lactating pigeon crop and it promoted crop fibrocytes pro-
liferation and migration, which indicated its promotion of
crop milk production. PIK3CD was proved to be a func-
tional target of miR-193-5p, which was negatively regulated
by miR-193-5p. PIK3CD was downregulated in lactating
pigeon crop and it inhibited cell crop fibrocytes prolifera-
tion and migration. The results provided novel insights into
the regulation of crop milk production by miRNAs.
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