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Childhood asthma represents a heterogeneous challenging disease, in particular in its severe forms. The identification
of different asthma phenotypes has stimulated research in underlying molecular mechanisms, such as the endotypes,
and paved the way to the search for related specific biomarkers, which may guide diagnosis, management, and predict
response to treatment. A limited number of biomarkers are currently available in clinical practice in the pediatric
population, mostly reflecting type 2-high airway inflammation. The identification of biomarkers of childhood asthma
is an active area of research that holds a potential great clinical utility and may represent a step forward toward tailored
management and therapy: the so-called Precision Medicine. The aim of the present review is to provide an updated

overview of asthma endotyping, mostly focusing on novel noninvasive biomarkers in childhood asthma.
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Introduction

C HILDHOOD ASTHMA IS A common chronic airway disease
characterized by airway inflammation, airway hyperre-
sponsiveness (AHR), and reversible airway obstruction, af-
fecting around 15% of school-aged children in Europe, with
increasing incidence and prevalence."> Symptoms include
wheezing, shortness of breath, chest tightness, and cough,
ranging in severity from mild symptoms to life-threatening
exacerbations. The primary goal of asthma management and
treatment is to achieve the control of symptoms and under-
lying airway inflammation, aiming at minimizing the risk of
future exacerbations and medication-related side effects, and
preventing the progression of obstructive lung damage during
growth and then later in life.' While the majority of asthmatic
children have mild or moderate disease and can be adequately
controlled with standard medications, a minority (around 5%)
of children with asthma suffer from a severe uncontrolled dis-
ease, carrying a significant health and socioeconomic burden,
and requiring additional but still limited therapeutic options.’
The recognition of different disease variants (phenotypes),
even in childhood, has recently allowed to overcome the so far
rooted and simplified view of asthma as a single disease.*’
Childhood asthma phenotypes may differ in clinical presen-
tation, natural history, inflammatory mechanisms, response to
treatment, and depend on age.® The increasing awareness on
heterogeneity of childhood asthma has also led to the recog-
nition of underlying pathophysiological and/or molecular
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mechanisms (endotypes) and paved the way to the search for
related specific indicators (biomarkers), which may guide di-
agnosis, phenotyping, management, and predict response to
treatment.”® The identification of biomarkers of childhood
asthma is an active area of research that holds a potential great
clinical utility and may represent a step forward toward tai-
lored management and therapy: the so-called Precision Med-
icine, which is an emerging approach for disease treatment
targeted to the needs of individual patients on the basis of
genetic, biomarker, phenotypic, or psychosocial characteris-
tics that distinguish a given patient from other patients with
similar clinical presentations.'®

Phenotypes in Childhood Asthma

Starting from the results of historical longitudinal cohort
studies, epidemiologic and symptom-based criteria have been
conventionally used to describe childhood asthma pheno-
types.'>"'7 Atopy, reduced lung function, and viral and bacterial
respiratory infections in wheezing infants have been identified
as major risk factors for the persistence of asthma. Furthermore,
a greater magnitude of atopy and lower lung function have been
recognized as the main features of children with severe asthma
in comparison with those with mild-to-moderate disease.*®
However, tracking the course of the disease within longitudinal
studies also revealed a limited practical utility of these disease
variants, because of their complex heterogeneity, the possibility
of overlapping features, and their instability over time.
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Advanced statistical methods, such as cluster analysis and
latent class analysis methodology, have recently renewed the
interest in investigating and identifying new childhood asthma
phenotypes.'*** Phenotyping in children has been set on the
basis of multiple variables: the presence or absence of atopy,
the temporal patterns and the triggers of symptoms, the se-
verity of the disease, the patterns of airway inflammation, and
the response to medications, in particular for severe asth-
ma.'®>731 Results from cluster analyses studies on severe
asthma highlighted that childhood-onset severe asthma is
characterized by eosinophilic airway inflammation, male
predominance, severe atopy with multiple sensitizations,
airflow limitation, and early signs of airway remodeling,
presenting itself differently from adult-onset phenotype and
rapidly changing over time or in response to treatment.*> >
However, the large amount of data derived from these sta-
tistical categorizations is still more useful for researchers
than clinicians, and has to be interpreted with caution, due to
the variability of statistical methods used and to the lack of
validation in several populations.*® Furthermore, the current
identification of asthma phenotypes does not provide insight
into the underlying pathogenic mechanisms and has limited
clinical value in predicting outcomes and directing therapy.

Although it is already known that asthma has a strong
genetic component, recent research studies indicate that
variability in genotype contributes significantly to the het-
erogeneity of asthma phenotype and morbidity.>’ Research
on asthma susceptibility genes highlighted the role of
ADAM33, a disintegrin and metalloproteinase domain 33
expressed in fibroblasts and smooth muscle cells, in regu-
lating susceptibility of lung epithelium/fibroblasts to re-
modeling in response to allergic inflammation.® Gene
polymorphisms of ADAM 33 have been associated with an
increased risk for childhood asthma, in particular in the
Asian population, and with an excess decline in lung func-
tion in asthmatic subjects, representing potential markers of
susceptibility and severity of disease.”® Genetic variants
may also influence the response to therapy: one of the most
investigated pharmacogenetic effects has been the effect of
polymorphisms at the gene encoding the B2-adrenergic re-
ceptor, ADRB2, on the bronchodilator response to inhaled
short- and long-acting P agonists. Of particular interest is
the Argl6Gly polymorphism of the ADRB2 gene, which
is associated with enhanced downregulation and uncoupling
of P2-receptors and with differences in pulmonary func-
tion responsiveness to short-acting B agonists in children.*’
Furthermore, the use of long-acting [ agonists as add-on
controller in asthmatic children carrying the Argl6Gly poly-
morphism has been associated with increased risk of asthma
exacerbation.*'"*> Thus, Argl16Gly polymorphism in the B2-
receptor might be considered a potential marker for opti-
mizing therapy in pediatric asthma.

Clinical application of these genetic findings, as well as a
better understanding of the modifying effects of environment
on these genetic susceptibilities, may potentially lead to
identification of new biologic pathways involved in the path-
ogenesis of the disease, the development of new therapeutic
approaches, and the identification of at-risk individuals.

Endotypes in Childhood Asthma

In relation to asthma heterogeneity, the term ‘“‘endotype”
has recently been introduced to describe “‘a subtype of a
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condition defined by a unique or distinctive functional or
pathophysiologic mechanism.””**** Therefore, the definition
of inflammatory patterns of the disease is essential for en-
dotyping asthma and better directing therapy.®

There are two major different endotypes defined for asthma:
type 2 (T2)-high asthma and T2-low asthma, based on the type
of underlying airway immune-mediated inflammation.**** T2-
high asthma is typically characterized by eosinophilic inflam-
mation, initiated by “‘alarmins,”” such as interleukin-25 (IL-25),
IL-33, and thymic stromal lymphopoietin, all of which are
secreted after a trigger in bronchial epithelium (ie, allergens,
microbes, pollutants), and subsequently sustained by the re-
lease of signature cytokines IL-4, IL-5, and IL-13 from cells of
both the innate and adaptive immune systems, including T
helper 2 (Th2) cells, invariant T cells, natural killer (NK) cells,
eosinophil/basophil fr%genitor cells, and type 2 innate lym-
phoid cells (ILC2s).***® Type 2 cytokines actively recruit eo-
sinophils, mast cells, and basophils in the airways, and directly
mediate immunoglobulin E (IgE) synthesis, then contributing
to the hallmarks of asthma pathophysiology, such as mucus
production, subepithelial fibrosis, bronchial remodeling, and
AHR.Y T2-high asthma endotype typically displays a good
response to corticosteroid therapy and, because probably there
are more readily available biomarkers for its identification,
has become the target of biological therapies (ie, anti-IgE, anti-
IL—S).35 Although less known and studied, T2-low asthma
is driven by either a neutrophilic or, less commonly, pauci-
granulocytic inflammatory pattern, sustained by IL-8, IL-17A,
IL-2,2, and other T cell-related cytokines, as well as epithelial
cell-derived cytokines.***’ T2-low asthma endotype is con-
sidered rare but mainly seen in patients with severe disease and
shows a typical corticosteroid insensitivity, such as cortico-
steroid resistance.

In contrast with adults, in whom the cellular pattern of
airway inflammation has been extensively studied with
invasive and semi-invasive techniques [bronchial biopsies,
bronchoalveolar lavage (BAL), and induced sputum], in
children the majority of analyses were performed in the field
of severe asthma.’*>'~>* Three major endotypes of airway
inflammation have been described in children with severe
asthma: eosinophilic, neutrophilic, and paucigranulocytic
inflammation.>'~°

The eosinophilic endotype is the most common in child-
hood; it clinically matches with the early-onset severe asthma,
characterized by uncontrolled symptoms, more atopy, im-
paired lung function, increased AHR, increased number of
exacerbations, and steroid responsiveness compared with the
other phenotypes.”” Unlike in adults, the levels of inflamma-
tory cells in induced sputum have been reported to signifi-
cantly vary over time in children with severe asthma and these
variations were not related to changes in asthma therapy or
asthma control.”® However, a persistent airway eosinophilia
has been also described in a small subset of children with
severe asthma, even after high-dose systemic corticosteroids.>’
Bossley et al. recently characterized the pathology and medi-
ators of inflammation and remodeling in a large cohort of
69 pediatric patients with severe therapy-resistant asthma
(STRA), who underwent fiberoptic bronchoscopy, BAL, and
endobronchial biopsy before a therapeutic trial with cortico-
steroids. Airway eosinophilia to varying degrees, without
neutrophilia or increased mast cell counts, and initial fea-
tures of remodeling were demonstrated in children with
STRA; importantly, signature T2 cytokines were absent in
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the majority of children, with the exception of a small sub-
group, confirming the disease heterogeneity even in the pe-
diatric population.®® Furthermore, this eosinophilic airway
inflammation was likely to persist despite systemic steroids in
the majority of patients.®!*%>

In another study, Andersson et al. reported two subgroups
within the pediatric STRA phenotype, which differ in the
number of intraepithelial neutrophils detected in the bron-
chial biopsy; in the subgroup with increased intraepithelial
airway neutrophilia, an exaggerated epithelial response to
IL-17A was demonstrated, together with increased submu-
cosal and epithelial expression of IL-17 receptor (IL-17R).%?
In the same group, an interesting novel finding was that the
number of intraepithelial airway neutrophils correlated with
better lung function, better symptom control, and lower dose
maintenance inhaled steroids.®

Recently, ILC2s have been identified in BAL, induced
sputum, and peripheral blood from children with STRA®;
these preliminary findings suggest a potential pivotal role of
ILC2s in the molecular mechanisms of pediatric allergic severe
asthma.

As in adults, the functional role of airway neutrophils in
mediating pediatric asthma pathophysiology is still unclear.
Neutrophilic infiltration may be a feature of airway inflam-
mation at all ages and may be mostly triggered by exposure to
viruses and bacterial endotoxins in the pediatric age, subse-
quently leading to asthma symptoms.®> Airway neutrophils
have been assessed in a minority of children with severe
asthma through induced sputum cytology.>> More recently,
an increased number of intraepithelial neutrophils, together
with an increased submucosal and epithelial expression of IL-
17R, have been determined in the lung biopsies of a subgroup
of children with STRA; this finding was associated with
better lung function, better symptom control, and lower dose
maintenance inhaled corticosteroids (ICSG3); even if these
results may question for the first time the association of
neutrophils and poor response with corticosteroids, they re-
quire further validation. Finally, other studies reported the
coexistence of neutrophils with eosinophils in the airway
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tissue, contributing to highlight the complexity of defining
inflammatory endotypes in children with asthma.>*°

Biomarkers in Childhood Asthma

A biomarker is a quantifiable biological indicator that
provides an objective measure of health status or disease.
The ideal biomarker should be ‘‘measured in an analytical
test system with established performance characteristics and
should have a scientific body of evidence that elucidates the
physiologic, pharmacologic, or clinical significance of the
test results.””%® Furthermore, a valid biomarker should have
practical availability and reliability.’

Biomarkers for asthma can be measured in different bi-
ological specimens, including sputum, BAL, exhaled breath
condensate (EBC), bronchial biopsy, urine, and blood.®’
Currently, BAL with bronchoscopy and bronchial biopsy are
the gold standard to assess airway inflammation and re-
modeling in asthma; however, the invasiveness of these
diagnostic methods limits their use in pediatric age in daily
clinical practice.®®*®° Sputum induction still has limited use
outside the research setting, as it is considered semi-invasive
as well as technically complex, especially in children younger
than 8 years.”® Thus, the availability of noninvasive methods
to study and monitor disease inflammation is of main rele-
vance especially in childhood asthma.

Biomarkers for asthma have potential utility for distin-
guishing the inflammatory endotype (T2-high versus T2-low
asthma), predict responsiveness to specific treatments (in
particular, T2 cytokine-targeted therapy), monitor success of
a selected treatment option, and assess the risk of disease
progression.*””! Single and combination biomarkers are now
being recommended for use in the assessment of patients with
asthma, and in particular with severe asthma (Table 1).

T2-high asthma biomarkers

Most of the current established biomarkers available in
clinical practice are related to T2-high inflammation.”*"?

TABLE 1. CURRENT BIOMARKERS IN CHILDHOOD ASTHMA
Biomarker Sample type Associated asthma endotype Proposed use
Eosinophil Serum, sputum T2-high Disease phenotyping
Severity of clinical symptoms
Monitoring of asthma control
Prediction of treatment response
Neutrophil Sputum T2-high/T2-low Disease phenotyping
Under investigation
IgE Serum T2-high Disease phenotyping
Severity of clinical symptoms
Periostin Serum T2-high Disease phenotyping
Severity of clinical symptoms
Diagnosis
Prediction of treatment response
FeNO Exhaled air T2-high Disease phenotyping
Severity of clinical symptoms
Monitoring of asthma control
IL-17 Serum T2-low Disease phenotyping
EBC Exhaled air Not yet determined Under investigation
VOCs Exhaled air Not yet determined Under investigation

EBC, exhaled breath condensate; FeNO, fractional exhaled nitric oxide; IgE, immunoglobulin E; IL, interleukin; T2, type 2; VOCs,

volatile organic compounds.
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These include blood or sputum eosinophils, serum IgE, se-
rum periostin, and fractional exhaled nitric oxide (FeNO).46

Eosinophils. Eosinophil is the central driver of T2 in-
flammation and represents the predominant inflammatory cell
type in the airways of children with severe asthma, plzéying a
major role in maintaining chronic inflammation.%®¢"-"+=76
Although there is no standardized cutoff for eosinophilic in-
flammation, a blood eosinophil count of around 300 cells/uLL
or a sputum eosinophil cell count above 2%-3% of the total
cell count has been used as thresholds.””~"

Several studies demonstrated that blood eosinophil count
well correlates with asthma severity and AHR in children.5%-®
The presence of blood eosinophilia and high FeNO can be
indicative of a good response to ICS, although less so for oral
corticosteroid therapy.” In the Individualized Therapy for
Asthma in Toddlers (INFANT) trial, blood eosinophil counts of
300 cells/uL or greater, together with aeroallergen sensitiza-
tion, have been recently identified as predictors of best response
to daily ICS in preschool asthmatic children requiring step 2
asthma treatment®; these results encourage further studies to
better tailor treatments on preschool children with asthma,
which present with numerous and variable phenotypic pre-
sentations that correspond to different outcomes and still suffer
from significant therapeutic gaps.®> Elevated eosinophil num-
bers in peripheral blood (>400 cells/pL) have been linked to a
higher rate of severe asthma exacerbations.*® Recently, the use
of blood eosinophil count has been assessed as a sensitive and
practical predictive biomarker for biologic treatment in patients
with severe asthma. A decrease in blood eosinophil count has
been associated with a consistent pattern of improved clinical
outcomes in patients with severe asthma receiving omalizumab
(anti-IgE)®’; with particular reference to the pediatric popula-
tion, Busse et al. reported a high eosinophil count (>300 cells/
mL) to be a potential biomarker to predict successful omali-
zumab treatment effects.®® Furthermore, blood eosinophils, in
combination with FeNO, and periostin were shown to identify
patient subgroups that may achieve greater benefit from oma-
lizumab therapy.® Baseline blood eosinophil count threshold
of 150 cells/uL or greater and/or a historical blood eosinophil
count threshold of 300 cells/uL. have been established as a
biomarker to allow selection of adult patients with severe
asthma who are most likely to benefit from mepolizumab (anti
IL-5) therapy.”®®' However, this result cannot be translated in
the pediatric population and clinical studies to assess the effi-
cacy, pharmacokinetics, and pharmacodynamics of mepolizu-
mab in children with severe asthma are currently ongoing
(NCT03292588 and NCT02377427).”

Peripheral blood eosinophilia is considered not as specific
as sputum eosinophil, being potentially influenced by several
confounding factors, such as allergen exposure, parasitic in-
fections, and current corticosteroid therapy. However, the
results of an external validation in two independent cohorts
of patients with mild to moderate asthma showed that blood
eosinophil had the highest accuracy in the identification of
sputum eosinophilia, compared with FeNO and serum
periostin.”® Nevertheless, peripheral blood eosinophilia does
not always reflect pulmonary (airway or mucosal) eosino-
philia in children with severe asthma.’*

When feasible, sputum analysis can provide further infor-
mation about the airway cellular composition and cytokines.
Increased eosinophil number in sputum is a hallmark feature of
atopy and asthma,”?® is associated with AHR and airway
obstruction,””*® inversely correlates with forced expiratory
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volume in 1 second (FEV,),99 and acts as a predictor of severe

asthma exacerbations,mo*102 both in adults and children.

Sputum eosinophilia may also predict clinical response to
corticosteroid therapy (both ICS and systemic treatment)
and to biologic therapy.”®'*!%* In a recent Cochrane re-
vision, sputum analysis for the evaluation of percentage of
sputum eosinophilia is considered beneficial in objectively
monitoring asthma and guiding tailored therapeutic inter-
ventions to maintain control and reduce exacerbations in
adults with asthma, while insufficient data are currently
available for children 38!0

Total and allergen-specific IgE. Total IgE and especially
allergen-specific IgE are the signatures of atopic status, as-
sociated with asthma. More than 80% of children with
asthma show an allergic component; high levels of total IgE
increase the risk of later asthma development in infants with
viral-induced wheezing,'”” while high levels of allergen-
specific IgE (in particular for aeroallergens, such as house
dust mites or furry animals) well correlate with asthma se-
verity, mainly in children.'®® Consequently, allergy screen-
ing should be routinely performed in patients with asthma,
and total IgE should be checked in every child diagnosed
with severe asthma to eventually address an add-on therapy
with omalizumab.'**!1°

Periostin. Periostin is a secreted extracellular matrix
protein that was originally identified in cells of the perios-
teum and involved in bone growth and repair."'" In addition,
periostin is also an IL-4- and IL-13-inducible protein that is
secreted by airway epithelial cells and lung fibroblasts and
can be detected in peripheral blood, as well as in sputum and
EBC.""? In this context, periostin plays a role as a mediator
of several pathogenic processes in asthma, such as airway
remodeling, subepithelial fibrosis, eosinophil recruitment, and
regulation of mucus production from goblet cells.''*™'"
Several reports have suggested that serum periostin could be
a useful biomarker of T2-high inflammation in adult asth-
matic patients, since it has been demonstrated in over-
expression in epithelial cells, upregulation by classic T2
cytokines such as IL-4 and IL-13, and ability to predict a
clinical response to lebrikizumab (anti IL-13) and omali-
zumab treatment in severe asthmatics.*®!''® However, peri-
ostin levels are known to be higher in children than in
adults, most likely due to bone growth, and may overlap
with local production within the airways, thus impairing the
clinical utility in children; periostin levels may be also el-
evated in other concomitant diseases, such as rhinosinusitis
with or without polyposis and atopic dermatitis.''” With these
limitations, pediatric studies on periostin showed significantly
higher values in children with asthma compared with healthy
controls, a correlation between levels of serum periostin and
induced-AHR, and a moderate relationship with blood eo-
sinophilia and IgE in asthmatic children.'"®!"” It still remains
unclear if periostin has a predictive value for identifying se-
vere asthma in children.

Fractional exhaled nitric oxide. Nitric oxide (NO) is a
signaling molecule produced by respiratory epithelial cells,
is found in exhaled breath, functions as a vasodilator and
bronchodilator in the lungs, and is synthesized from L-
arginine by inducible NO synthase enzymes in response to
inflammatory cytokines.'?® In particular, in asthmatic pa-
tients, allergen exposure results in IL-4 and IL-13 expres-
sion, which, acting through signal transducer and activator
of transcription 6, induces iNOS, resulting in significant
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increases in NO levels.'! FeNO measured in exhaled breath
is one of most studied noninvasive biomarkers in recent
years. Its measurement is simple, safe, and well tolerated,
and it has been standardized in school-aged children.'?%!??
FeNO levels may be influenced by several factors, including
smoking, diet, obesity, somatic variables, spirometry or
exercise before testing, flow rate, nasal contamination, and
ambient air.'*?

FeNO level may be useful as a predictive factor for new-
onset asthma in preschool children'?* and has been shown to
correlate with AHR, blood eosinophils, and serum IgE
levels in children.'*>'?® In pediatric asthma, FeNO is now
recognized as a surrogate marker of eosinophilic airway
inflammation and it is used to identify children with aller%ic
asthma who are likely to respond to ICS treatment.'?
Multiple studies have demonstrated that an increased FeNO
value at baseline or increasing FeNO values during ICS
reduction accurately predict an asthma exacerbation.'?!
According to the cutoff values published in the American
Thoracic Society (ATS) guidelines, an FeNO of >35ppb
suggests a likely response to ICS, while an FeNO of <20 ppb
in children indicates a less likely responsiveness to ICS
treatment.'** Although it has been suggested as a useful tool
to guide treatment in childhood asthma, many studies show
contradictory results in terms of its utility, mainly due to the
differences in the design of the trials and in the selection of
patients.'?” The efficacy of tailoring asthma interventions
based on FeNO has been evaluated in comparison with
primary guideline management in asthmatic children in a
recent Cochrane systematic review: the analysis of nine
pediatric studies shows that the use of FeNO to guide
asthma therapy significantly decreased the number of chil-
dren who had one or more exacerbations over the study
period but did not impact on the day-to-day clinical symp-
toms or ICS doses, so that its use cannot be recommended in
routine clinical practice to tailor the dose of ICS for all
children with asthma.'®

Combination of biomarkers. Combination of these bio-
markers has been evaluated to improve the identification of
T2-high inflammation in asthma and to predict response to
therapy. Prior studies in older children have shown the as-
sociation of markers of allergic inflammation, such as IgE
levels (>200kU/L), exhaled NO (values >25 ppb), and eo-
sinophilic cationic grotein with response to ICS in older
asthmatic children."® In a cross-sectional study by Kon-
radsen et al., FeNO, in combination with blood eosinophils,
had a high predictive value for the identification of children
with the highest asthma morbidity, while there was no as-
sociation between asthma morbidity and serum levels of
periostin.”o In another recent Swedish study, simultaneous
increase of both FeNO and blood eosinophil count was
correlated with a higher likelihood of AHR and uncontrolled
asthma in a large cohort of young asthmatic patients.'*' The
combination of blood eosinophils and FeNO has been also
investigated in the setting of pediatric severe asthma of
Severe Asthma Research Program (SARP) study, showing
increased values only in 30%—40% of subjects.**

Exhaled breath condensate. The EBC collection is a novel
noninvasive technique that can be used to investigate several
asthma biomarkers, including markers of oxidative stress (8-
isoprostane, hydrogen peroxide, aldehydes, and nitrite/ni-
trate), markers of inflammation (eicosanoids), pH, tempera-
ture, microRNA profiles, and other cytokines.”” EBC
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analyzes microdroplets collected after cooling exhaled air and
can be easily performed even in younger children with severe
disease.”” Elevated levels of hydrogen peroxide, nitrites and
nitrates, and leukotrienes B4 have been demonstrated in the
EBC of children with asthma'**'** and higher levels of 8-
isoprostane and leukotrienes were both detected in children
with severe asthma.'**'*> EBC technology is actually dedi-
cated to research studies in specialized centers and requires
further standardization of the methodologies used for sample
collection and analysis, before moving it to clinical practice.

Volatile organic compounds. Assessing volatile organic
compounds (VOCs) in exhaled breath is another promising
metabolomics approach for investigating airway inflamma-
tion in asthma.®” VOC analysis captures gaseous molecules
(ie, hydrocarbons such as ethanol, acetone, isoprene, ben-
zene, and many others) from exhaled air, originating from
three main sources: the external environment, and endoge-
nous metabolic processes both human and nonhuman (the
microbiome).'*® Considered a “‘molecular fingerprint” of
breath, a combination of VOCs may represent a safe, non-
invasive, and easy-to-sample tool for diagnosing and moni-
toring pediatric pulmonary diseases such as asthma. Previous
studies performed in adults with asthma suggested good
predictive accuracy of exhaled VOCs for asthma diagnosis
and that several compounds, mainly alkanes, may be signif-
icantly associated with asthma inflammation.'?”-'#®

Although still limited to research settings, preliminary
studies have proved the reliability of VOC assessment in
distinguishing atopic and asthmatic from healthy children
and in predicting exacerbations in asthmatic children.'?%'4
A recent revision of pediatric literature on VOC analysis in
exhaled breath performed on wheezing or asthmatic children
confirmed a moderate to good prediction accuracy (80%—
100%, with a combination of VOCs) in pediatric asthma
diagnosis.136 However, there are still various constraints as-
sociated with standardization of the different breath analysis
techniques and further prospective cohort studies are needed
to validate and introduce exhaled VOC profiling in a clinical
scenario.

Other biomarkers. Novel biomarkers that may be associ-
ated with inflammation, but especially with remodeling
processes, are emerging, since recent studies from pediatric
severe asthma cohort studies showed that the pathophysio-
logical abnormalities of asthma, inflammation, AHR, and
remodeling may develop in parallel.'"*' However, a current
limitation to the path of recognizing mechanisms of re-
modeling and related phenotypes is the relative difficulty in
obtaining repeated invasive biopsies to assess longitudinal
structural changes over time, especially in the pediatric
population. Recently, the high mobility group box type 1
(HMGB1) protein has been proposed as a blood biomarker
potentially able to elucidate one of the mechanisms of
chronic airway dysfunction in asthma.'* HMGBI is an
inflammation marker of the alarmins family gromoting im-
mediate immune response to tissue damage,'** and is one of
the most important damage-associated molecular pattern
molecules, initiating and perpetuating immune responses in
infectious and noninfectious inflammatory diseases.'*® Its
role is to act as a ‘“danger signal’’ orchestrating homeostatic
defensive responses in damaged tissues.'** Major structural
features of HMGB1, a 30kDa nuclear and cytosolic ubig-
uitous protein, are its two DNA-binding domains, termed A
and B box, and a negatively charged C-terminal acidic



ASTHMA PATHOPHYSIOLOGY

region. HMGB1 contains two nuclear localization se-
quences, resides in the nucleus, and functions as a nonhis-
tone chromatin-binding protein.'** Early work demonstrated
that HMGBI1 stabilizes chromatin structure and modulates
gene transcription by bending the DNA helical structure.'*
HMGBI can also be localized to the cytosolic compartment,
implicating that it might also have important functions
outside the nucleus."** As a consequence of infection or
apoptosis, HMGBI1 is released in the extracellular com-
partment either by passive release from necrotic cells or
active production by macrophages, dendritic cells, and
NK cells.'® By binding to toll-like receptors (TLR) 2 and 4,
and the receptor for advanced glycation end-products,'*’
HMGBI upregulates the synthesis of inflammatory cyto-
kines, elicits chemotaxis of inflammatory cells, and supports
proliferation, chemotaxis, and synthesis of metalloprotei-
nases by stromal ﬁbroblasts,148 thereby contributing to the
pathogenesis of both acute and chronic disorders.'*’ As for
the potential pathogenic role of HMGBI1 in the respiratory
tract, a recent study has shown increased levels of the pro-
tein in children with stable, off-therapy, allergic asthma.'>®
Particularly, authors investigated the relationship between
HMGBI levels and lung function parameters, showing that
sputum HMGBI levels were higher in children with asthma
than in healthy controls and, moreover, sputum HMGB1
levels also positively related to the serum total IgE levels in
children with asthma. Finally, an inverse and strict corre-
lation between sputum HMGBI1 levels and pulmonary
function indices was also observed in children with mild,
moderate, and severe asthma.'>°

Existing data on further possible biomarkers of Th2-
mediated asthma need to be validated and their usefulness
for clinical practice remains to be elucidated, in particular in
the pediatric population.

T2-low asthma biomarkers

To date, biomarkers of T2-low asthma have not yet been
established, at least in clinical practice.35 Unlike the eo-
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sinophilic counterpart, sputum neutrophils do not represent
an established marker to define the T2-low asthma en-
dotype, widely varying the different cutoff values used in
the literature from as low as 40% to as high as >76%.%°
Moreover, blood neutrophils have limited accuracy and
ability to predict sputum neutrophils across the spectrum of
asthma severity.">" Serum progranulin, an epithelial-derived
protein known to inhibit neutrophil degranulation, has been
recently proposed as novel biomarker of neutrophilic in-
flammation in severe asthma patients with airflow limita-
tion,"? but the exact mechanism of its anti-inflammatory
action still remains unclear.

IL-17 has been found to play an important role in the
patho%enesis of T2-low asthma, both in adults and chil-
dren.”®? It has been reported that IL-17 and its related
cytokines are highly upregulated in bronchial and nasal
mucosa of adult subjects with neutrophilic asthma prone to
exacerbations.'>® High levels of serum IL-17 have been also
detected in children with asthma and, together with serum
IgE and blood eosinophils, they could have a predictive
value in diagnosing childhood asthma.'>* Furthermore, both
serum IL-17 and IL-17" T cells have been associated with
asthma severity in children.'>>!°

Among the many biomarkers investigated in the airways
and blood of T2-low asthmatics, some of them are giving
promising results for their future use in clinical practice.
Human tumor necrosis factor-like weak inducer of apoptosis
(TWEAK) is a protein expressed in various cell types, in-
cluding inflammatory cells, such as monocytes, macro-
phages, dendritic cells, T cells, and NK cells; acting through
its highly inducible receptor, named fibroblast growth
factor-inducible 14 (Fn14), TWEAK may contribute to the
development of airway inflammation and, in particular,
potentially stimulate human bronchial epithelial cells to
produce proinflammatory IL-8 and granulocyte-macrophage
colony-stimulating factor.'>” Kim et al. evaluated the airway
TWEAK levels in a large population of 230 children with
noneosinophilic asthma: sputum TWEAK levels were sig-
nificantly elevated in children with asthma and higher in
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children with greater asthma severity and poorer control
status; moreover, the authors found a negative correlation
between sputum TWEAK levels and the spirometric pa-
rameters of bronchial obstruction, supporting the possible
association of TWEAK with airway obstruction and re-
modeling.'*® Thus, the TWEAK/Fn14 axis may also repre-
sent a future therapeutic target for limiting airway
remodeling in asthma. YKL-40 is a chitinase-like protein
that has a role in the inflammation and tissue remodeling in
several human diseases. In adults, YKL-40 levels are in-
creased in the blood and lungs of patients with asthma and
correlate with lung function deficits, disease severity, and
persistence.'>® Besides, circulating levels of YKL-40 are
also elevated in children with persistent and severe asth-
ma.'®1%2 Although YKL-40 represents a feasible bio-
marker for T2-low asthma, the exact mechanisms linking
YKL-40 with asthma remain to be determined.

Conclusions

Childhood asthma represents a heterogeneous challeng-
ing disease, in particular in its severe forms. Clinical and
morphologic characteristics of asthma phenotypes, as well
as unique responses to different treatments, do not neces-
sarily provide insights into the underlying pathophysiologic
processes of airway inflammation. A careful assessment of
inflammatory endotypes should be considered a central
component of the workup and management of severe asthma
in children. A limited number of biomarkers are currently
available in clinical practice in the pediatric population,
including blood and sputum eosinophils, serum IgE, peri-
ostin, and FeNO, mostly reflecting different molecular
components of type 2-high airway inflammation (Fig. 1).
Individually or in combination, they may help to improve
diagnosis and predict severity of the disease and response to
both conventional and novel biological targeted therapies.
The type-2 low inflammatory endotype is still poorly char-
acterized in particular in the pediatric population.

Current research efforts are aimed to integrate clinical
characteristics and available combination of biomarkers to
characterize asthma endotypes. Further research in child-
hood asthma biomarkers is needed to improve endotyping
asthma, predicting major clinical outcomes and ultimately
leading to personalized therapies.
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