OPEN

Bivalirudin Anticoagulant Therapy With or Without Platelet Glycoprotein IIb/IIIa Inhibitors During Transcatheter Coronary Interventional Procedures

A Meta-Analysis

Jiabei Li, MD, Shiyong Yu, MD, Dehui Qian, MD, Yun He, MD, and Jun Jin, MD

Abstract: The safety and effectiveness of using the direct thrombin inhibitor bivalirudin during transcatheter coronary interventional procedures remains uncertain.

This study aimed to systematically assess anticoagulation with bivalirudin alone or bivalirudin plus glycoprotein (GP) IIb/IIIa inhibitors (bivalirudin-based anticoagulant therapy) in patients undergoing percutaneous coronary intervention (PCI) procedures by a meta-analysis of randomized controlled trials (RCTs).

Systematical searches of the MEDLINE, EMBASE, and Cochrane databases were conducted. RCTs comparing bivalirudin-based anticoagulant therapy with a comparable heparin therapy in patients undergoing PCI were eligible. Risk ratios (RRs) with 95% confidence intervals (CIs) served as summary statistics.

A total of 38,096 patients from 17 RCTs were randomized to the bivalirudin group (n = 18,878) or heparin group (n = 19,218) in the meta-analysis. No significant differences in death, myocardial infarction or reinfarction, ischemia-driven revascularization, or in-stent thrombosis were observed between the 2 groups (all P > 0.05). Notably, bivalirudin-based therapy showed a highly significant 34% decrease in the incidence of major bleeding (RR = 0.66; 95% CI 0.54–0.81; P < 0.001) and a 28% reduction in the need for blood transfusion (RR = 0.72; 95% CI 0.56–0.91; P < 0.01). Meta-regression analyses demonstrated that additional administration of GP IIb/IIIa receptor inhibitors (P = 0.01), especially eptifibatide (P = 0.001) and tirofiban (P = 0.002), was likely to increase the major bleeding risk associated with bivalirudin.

Bivalirudin, in comparison to heparin, is associated with a markedly lower risk of major bleeding, and the additional use of GP IIb/IIIa inhibitors may weaken this benefit.

(Medicine 94(32):e1067)

Abbreviations: CI = confidence interval, GP = glycoprotein, PCI = percutaneous coronary intervention, RCT = randomized controlled trial, RR = risk ratio, UFH = unfractionated heparin.

INTRODUCTION

n patients undergoing transcatheter procedures for the treatment of coronary diseases, the optimal antithrombotic regimens for maximizing clinical efficacy and minimizing the risk of bleeding complications have been widely investigated over the past decade. The relatively new direct thrombin inhibitor bivalirudin, which offers a low bleeding risk, might be promising as an alternative to unfractionated heparin (UFH), which is routinely used during coronary interventional procedures. Before the widespread use of clopidogrel or prasugrel pretreatment, bivalirudin was associated with lower incidences of periprocedural major bleeding as well as ischemic outcomes compared to UFH.¹ Subsequently, the widely recommended oral dual antiplatelet therapy (clopidogrel or prasugrel and aspirin) seemed to weaken the benefit of bivalirudin, which was considered to be a significant decrease in bleeding risk without better clinical efficacy.² Recently, the addition of platelet glycoprotein (GP) IIb/IIIa receptor inhibitors to anticoagulant therapy during transcatheter procedures has provided a clinical benefit of reducing ischemic outcomes.³⁻⁵ However, in conjunction with antiplatelet agents, the efficacy and safety of bivalirudin relative to UFH have not been well established. A previous meta-analysis compared bivalirudin mono- or bivalirudin-based (bivalirudin plus routine or provisional GP IIb/IIIa inhibitors) anticoagulant therapy versus heparin-based anticoagulation (UFH plus routine or provisional GP IIb/IIIa inhibitors) in patients undergoing percutaneous coronary intervention (PCI).⁶ However, the influence of the adjunctive use of GP IIb/ IIIa inhibitors and other important clinical factors on ischemic and bleeding endpoints was not defined in the study. Recently, 2 meta-analyses investigated the clinical utility of bivalirudin versus UFH during PCI without planned use of GP IIb/IIIa inhibitors⁷ and only with the use of GP IIb/IIIa inhibitors,⁸ respectively. Neither study comprehensively showed the efficacy and safety profile of bivalirudin in patients undergoing coronary interventional procedures. Additionally, more recently reported results of several new trials and longer-term observations from previous trials can potentially contribute to the development of antithrombotic therapy during the procedures. $^{9-12}$ We therefore performed a meta-analysis of randomized controlled trials (RCTs) to systematically evaluate the efficacy and safety of bivalirudin mono- or bivalirudinbased anticoagulant therapy in patients undergoing PCI. Meanwhile, the effects of additional use of GP IIb/IIIa inhibitors and

Editor: Mistiaen Wilhelm.

Received: March 9, 2015; revised: May 25, 2015; accepted: May 30, 2015. From the Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, China.

Correspondence: Jun Jin, Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China (e-mail: Jinjun123mjd@126.com).

JL and SY contributed equally to this work.

JBL and JJ carried out the studies and data analyses and drafted the manuscript. SYY carried out the sample analyses. DHQ participated in the design of the study and performed the statistical analysis. YH conceived of the study, participated in its design and coordination, and helped to draft the manuscript. All authors read and approved the final manuscript.

The authors have no conflicts of interest to disclose.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN: 0025-7974

DOI: 10.1097/MD.000000000001067

other clinical factors on ischemic and bleeding outcomes were also investigated in the meta-analysis.

METHODS

Literature Review

A computerized literature search was conducted of studies published from January 1990 through January 2015 in the MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials databases using the following search terms: bivalirudin, hirulog, heparin, low-molecular-weight heparin, unfractionated heparin, UFH, coronary artery/heart disease, myocardial infarction, acute coronary syndrome, unstable angina, angioplasty, percutaneous coronary intervention, PCI, invasive strategy, randomized, and human. In addition, an extensive manual searching was also performed using crossreferences from the eligible articles and relevant reviews. The search was restricted to English-language literature.

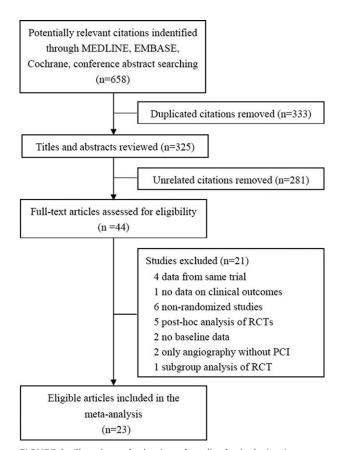
Study Eligibility

RCTs were eligible for inclusion if they compared the efficacy or safety of bivalirudin mono- or bivalirudin-based anticoagulant therapy with comparable heparin therapy during PCI and reported clinical outcomes of interest. Bivalirudin/heparin-based regimens were defined as anticoagulation with bivalirudin/heparin (UFH or low-molecular-weight heparin) plus planned or provisional GP IIb/IIIa inhibitors (eg, abcix-imab, tirofiban, or eptifibatide). Subgroup analyses within the eligible trials were excluded. Moreover, articles published before the year 2000 and those in the form of study designs, editorials, and reviews also were excluded.

Data Extraction and Quality Assessment

Two investigators (JL and SY) reviewed all the citations in duplicate to identify eligible studies and independently conducted data extraction and quality assessment using a standardized approach. Data regarding ischemic outcomes (eg, death, nonfatal myocardial infarction or reinfarction, ischemia-driven revascularization, or in-stent thrombosis) and bleeding complications (eg, major bleeding or blood transfusion) were extracted from each of the eligible studies. The reviewers resolved differences through consensus, and any disagreements were resolved by the principal investigator of the present study (JJ). All eligible trials were assessed by the following quality criteria recommended by the Cochrane Collaboration: sequence generation of the allocation; concealment of allocation; blinding of participants, personnel, and outcome assessors; use of intention to treat analysis; and description of withdrawals and dropouts. In addition, the Jadad scale,¹³ a numerical score between 0 and 5, was used to qualitatively assess the quality of the included studies.

Data Synthesis and Analyses


We used risk ratios (RRs) with 95% confidence intervals (CIs) to express the combined results of individual studies. The pooled effects were calculated according to the Mantel–Haenszel random effects model. For studies with no event of interest in a treatment group, 1.0 was added to all cells for continuity correction.¹⁴ Heterogeneity across studies was quantified using the I² statistic. I² values greater than 25%, 50%, and 75% were considered evidence of low, moderate, and severe statistical heterogeneity, respectively. Sensitivity analyses, in which the pooled estimates were recalculated omitting 1 study at a time,

were conducted to assess the impact of individual studies on the summary estimate of effect. Subgroup analyses were performed to assess the impacts of anticoagulant regimens, clinical settings, invasive strategies, and follow-up duration on overall estimates. Meta-regression analyses were also performed to determine the influences of clinical and demographic factors on the overall results. We assessed publication bias using a Begg funnel plot.¹⁵ Pooling analyses were performed with the Rev-Man 5.2 software (The Cochrane Collaboration, Copenhagen, Denmark), and meta-regression analyses were conducted with STATA 10.0 software (Stata Corp., College Station, TX). The results were considered statistically significant at P < 0.05 (2-sided). The study was performed in compliance with the Quality of Reporting of Meta-analyses (QUOROM) guidelines.¹⁶

RESULTS

Study Selection and Characteristics

The process of study selection is illustrated in Figure 1. The electronic searches identified 658 items. After removing the duplicates, we initially screened 325 citations, of which 281 were excluded upon reviewing the titles and abstracts. Forty four potentially eligible studies were scrutinized further by elaborative review of the full text. Finally, 23 articles^{10–12,17–36} involving 17 RCTs were eligible for the final analysis (Figure 1).

FIGURE 1. Flowchart of selection of studies for inclusion in metaanalysis. RCTs = randomized controlled trials, PCI = percutaneous coronary intervention.

TABLE 1. B	aseline Charact	eristics of St	udies Inclu	Baseline Characteristics of Studies Included in the Meta-Analysis	nalysis				
Study Name, year	Study Design	Participants	No. Enrolled (H/B)	Comparisons	Heparin Treatment	Bivalirudin Treatment	GPI, % (H/B)	Primary Endpoints	Follow-up, months
ACUITY, 2006, 2007	Open-label, multicenter	NSTE-ACS for PCI	4603/4604	Heparin (UFH or enoxaparin) + planned GPI vs, bivalirudin + planned GPI	UFH (47.9%): 60 U/kg iv bolus +12 U/kg/h during procedure (ACT 200–250s);	 mg/kg iv bolus (before angiography) + 0.52 mg/kg/h iv (during angiography) +0.5 mg/kg iv bolus (before PC1) + 1.75 mg/kg/h (during PCI) 	96.6%/96.7%; Eptifbatide: 59.6%/60.9%; tirofiban: 19.2%/19.7%; abciximab: 17.8%/16.3%	 A composite endpoint of death, MI, or unplanned revascularization), 	1,12
					enoxaparin (47.4%): 1 mg/kg ih bid(before) + 0.3-0.75 mg/kg iv (inst hefore)	0		2. Major bleeding	
ARMYDA-7 BIVALVE, 2012	Open-label, two centers	CHD for PCI	203/198	UFH + provinsional GPI vs bivalirudin + provisional GPI	75 U/kg iv bolus	0.75 mg/kg iv bolus + 1.75 mg/kg/h (during PCI)	14%/12%	 Cardiac death, MI, target vessel revascularization, or definite or probable stent thrombosis Any bleeding event 	-
ARNO, 2010	Open-label, simple center	CHD for PCI	425/425	UFH + protamine + provisional GPI vs bivalitudin + provisional GPI	100 U/kg, iv bolus (ACT 250-300s) + protmine 0.5 mg/100 U (just after PCI)	0.75 mg/kg iv bolus + 1.75 mg/kg/h (during PCI)	Abciximab: 28%/15%	in-hospital major bleeding	In-hospital, 1,6
BAS, 2001	Double-blind, multicenter	NSTE-ACS for PCI	2039/2059	UFH vs bivalirudin	175 U/kg iv bolus + 15 U/kg/h for 18–24 hours	1 mg/kg iv bolus (just before PCI) + 2.5 mg/kg/h for 4 hours + 0.2 mg/kg/h for 14-20 hours	0%/0%	Death, MI, or repeated coronary angioplasty.	In-hospital, 6
CACHET, 2002	Open-label, two centers	CHD for PCI	94/30	UFH + planned GPI vs bivalirudin + planned GPI	70 U/kg iv bolus (ACT > 200s)	1 mg/kg iv bolus +2.5 mg/kg/h for 4 hours	Abciximab: 100%/100%	A composite endpoint of death, MI, or surgical or repeat percutaneous coronary revascularization	In-hospital
EUROMAX, 2013	Open-label, multicenter	STEMI for primary PCI	1109/1089	heparin (UFH or enoxaparin) + planned or provisional GPI vs bivalirudin	UFH: 60–100 U/kg iv bolus;	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	69.1%/11.5%	composite of death or major bleeding	_
					enoxaparın: 0.5 mg/kg, iv				
HEAT-PPCI, 2014	Open-label, simple center	STEMI for primary PCI	914/915	UFH + provisional GPI vs bivalirudin + provisional GPI	70 U/kg iv bolus	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	Abciximab:18.7%/15.9%	 Death, reinfarction, or unplanned target lesion revascularization Maior hleeding 	-
HORIZONS-AMI, 2008, 2011	Open-label, multicenter	STEMI for primary PCI	1802/1800	UFH + planned GPI vs bivalirudin + provisional GPI	60 U/kg iv bolus (ACT 200–250s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	94.5%/7.2%; abciximab: 52%/4.3%;	1. death, reinfarction, target-vessel revascularization for ischemia	1,36
							Eptifibatide: 45.6%/3.2%; tirofiban: 0.2%/0.1%	2. Major bleeding	
ISAR REACT 3, 2008, 2010	Double-blind, multicenter	CHD for PCI	2281/2289	UFH vs bivalirudin	140 U/kg iv bolus (ACT > 250s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	0.2%0.2%	 A composite endpoint of death, MI, urgent target-vessel revascularization Major bleeding 	1,12
ISAR-REACT 4, 2011,2013	Double-blind, Double-dummy, multicenter	NSTE-ACS for PCI	861/860	UFH + planned GPI vs bivalirudin	70 U/kg iv bolus (ACT > 200s monitored only at one center)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	Abciximab: 100%/0%	A composite endpoint of death, MI, urgent target-vessel revascularization, or major blooding	1,12
NAPLES, 2009	Open-lable, simple center	CHD with diabetes for PCI	168/167	UFH + planned GPI vs bivalirudin	70 U/kg iv bolus (ACT > 250s)	0.75 mg/kg iv bolus (just before PCI) +1.75 mg/kg/h	Tirofiban: 100%/0%	A composite endpoint of death, MI, urgent revascularization, or all bleeding	I
NAPLES III, 2015	Double-blind, simple center	CHD at increased bleeding risk for PCI		UFH + provisional GPI vs bivalirudin + provisional GPI	UFH: 70 U/kg iv bolus (ACT > 250s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	Tirofiban: 1.3%/0.5%	In-hospital major bleeding	In-hospital, 1. 12
PROTECT- TIMI-30, 2006	Open label, multicenter	NSTE-ACS for PCI	573/284*	heparin (UFH or enoxaparin) + planned GPI vs bivalirudin	UFH: 50 U/kg iv bolus (ACT 200–250s);	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	Eptifibatide: 100%/0%	1. Coronary flow reserve.	In-hospital

Study Name, year	Study Design	Participants	No. Enrolled (H/B)	Comparisons	Heparin Treatment	Bivalirudin Treatment	GPI, % (H/B)	Primary Endpoints	Follow-up, months
					enoxaparin: 0.5 m@/kg. iv			2. TIMI major bleeding	
REPLACE-1, 2004	Open label, multicenter	CHD for PCI	524/532	UFH + provisional GPI vs bivalirudin + provisional GPI	60-70 U/kg iv bolus (ACT 200-300s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	72.5%/71.1%; abciximab: 34%/34.6%;	1. A composite endpoint of death, MI, or repeat revascularization	In-hospital
							Eptifibatide: 30.4%/31.1%; tirofiban: 7.9%/5.4%	2. Major bleeding	
REPLACE-2, 2003, 2004	Double-blind, multicenter	CHD for PCI	3008/2994	UFH + planned GPI vs bivalirudin + provisional GPI	65 U/kg iv bolus (ACT 200–300s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	96.3%/7.2%; Abciximab: 42.9%/3.5%	 A composite endpoint of death, MI, 1,6,12 urgent repeat revascularization 	1,6,12
							Eptifibatide: 53.4%/3.7%	In-hospital	
								2. Major bleeding	
TENACITY, 2011	Double-blind, multicenter	ACS for PCI	198/185	UFH + planned GPI vs bivalirudin + planned GPI	50 U/kg iv bolus (ACT > 225s)	0.75 mg/kg iv bolus (just before PCI) + 1.75 mg/kg/h	Abciximab: 50%/51.4%	A composite endpoint of death, MI, or urgent target vessel revascularization	_
							Tirofiban: 50%/48.6%		
Xiang, 2013	Single-blind, multicenter	CHD for PCI	108/109	UFH + provisional GPI vs bivalirudin + provisional GPI	130 U/kg iv bolus (ACT > 225s)	0.75 mg/kg iv bolus (just before PCI) +1.75 mg/kg/h	Tirofiban: 3.7%/0.9%	1. Death, MI, target vessel revascularization	1
								2. Major bleeding	
ACS = acute of alevation acute of	ACS = acute coronary syndrome, ACT = activated clotting time, AMI = acute voition points coronary syndrome DC1 - neuroinaneous coronary intervention CT	T = activated clotti	ing time, AMI =	acute myocardial infarction,	CHD = coronary heart disease	ACS = acute coronary syndrome, ACT = activated clotting time, AMI = acute myocardial infarction, CHD = coronary heart disease, GPI = glycoprotein IIb/IIIa inhibitors, H/B = heparin/bivalindin, MI = myocardian acute coronary activity and the activity of the coronary devices in myocardial inforction. ITBH = unfactionated hearing	ors, H/B = heparin/bivalirudin, inferction 11EH — unfractionate	myocardial infaction, CHD = coronary heart disease, GPI = glycoprotein IIb/IIIa inhibitors, H/B = heparin/bivalinudin, MI = myocardial infarction, NSTE-ACS = non-ST segment T-MI - ST semment alevation meroscellal inferetion TMI - throm-blocies in meroscellal inferetion 1EH - inferetioneted hencein	non-ST segment

Medicine • Volume 94, Number 32, August 2015

A total of 38,096 patients included in the present study was randomized to the bivalirudin-treatment group (n = 18,878;49.6%) or UFH-treatment group (n = 19,218; 50.4%). The study and demographic characteristics are shown in Tables 1 and 2, respectively. Among the included 17 trials, 3^{20,21,26} compared bivalirudin monotherapy versus UFH monotherapy, 318,22,33 compared bivalirudin versus UFH with planned GP IIb/IIIa inhibitors, 5^{10,11,19,30,35} compared bivalirudin versus UFH with provisional GP IIb/IIIa inhibitors, and 6^{12,24,28,29,32,36} compared bivalirudin monotherapy or bivalirudin plus provisional GP IIb/ IIIa inhibitors versus UFH with planned GP IIb/IIIa inhibitors. Five trials^{12,18,21,29,33} focused on patients with non-ST segment elevation acute coronary syndrome, three^{10,24,36} on patients with ST-segment elevation myocardial infarction, and nine^{11,19,20,22,26,28,30,32,35} on patients with unselected coronary heart diseases. Fourteen trials focused on patients with unselected coronary heart diseases. Fourteen trials focused on patients undergoing elective PCI, and three^{10,24,36} on those undergoing primary PCI. Six trials^{20–22,29,30,35} reported in-hospital outcomes, thir-teen^{10,11,17,19,20,23,25,27,28,31,33,35,36} reported 30-day outcomes, three^{20,21,32} reported 6-month outcomes, five^{12,18,26,32,35} reported 12-month outcomes, and only one²⁴ reported 36-month outcomes (Table 1). All the included trials reported clinical events of allcause death, myocardial infarction or reinfarction, or major bleeding, and a composite outcome of death, myocardial infarction or reinfarction, and revascularization. The mean age of patients in the individual trials ranged from 58 to 70 years, and most participants were male (65.1% to 83.4%). The incidence of diabetes ranged from 13% [how effective are antithrombotic therapies in primary percutaneous coronary intervention (HEAT-PPCI)]¹⁰ to 100% [novel approaches for preventing or limiting events (NAPLES)],²⁸ and the prevalence of previous myocardial infarction ranged from about 11% [the harmonizing outcomes with revascularization and Stents in acute myocardial infarction (HORIZONS-AMI)]²³ to 45% (NAPLES).²⁸ Transcatheter procedures were performed in the individual trials mainly through transfemoral access except for HEAT-PPCI trial¹⁰ (Table 2). In addition, all patients received contemporary evidence-based medical therapy. Postprocedural antiplatelet therapy included aspirin (80-325 mg/day) indefinitely and/or clopidogrel (75 mg/day) for at least 6 to 12 months. The level of evidence for each article was graded with a score of 2 to 5 according to the Jadad quality score (eTable 1, http://links.lww.com/MD/A342).

Composite Outcomes

groups and in different heparin groups

The combined numbers of patients in different dose bivalirudin

The pooled analysis showed that bivalirudin was associated with a similar rate of the composite endpoint as compared with UFH (RR = 1.01; 95% CI 0.94–1.08; P = 0.85; $I^2 = 42\%$). Moreover, the neutral finding was also consistently found in subgroup analyses regardless of anticoagulant regimens, clinical settings, or follow-up duration (Table 3). Additionally, meta-regression analyses did not reveal a substantial influence of clinical or demographic factors on the results (all P > 0.05; eTable 2, http://links.lww.com/MD/A342).

All-Cause Death

Overall, 559 of 18,878 patients died from all causes in the bivalirudin-treatment group compared with 584 of 19,218 patients in the UFH-treatment group, with no significant difference between the groups (RR = 0.97; 95% CI 0.85–1.11; P = 0.65; $I^2 = 10\%$; Figure 2A). Moreover, subgroup analyses stratified by anticoagulant regimens did not reveal statistically significant differences in all-cause mortality between the 2 groups (all P > 0.05). However, when the intracoronary stenting and

	Mean		Current				Renal	Previous	Oral Dual	Any Stent	DES	Femoral,
Study Name, year	Age, years	Male, %	Smoker ,%	Diabetes, %	Hypertension, %	Hyperlipidemia, %	Insufficiency, %	MI, %	Antiplatelet, % (A/T)	Implanted, $\%$	Implanted, %	%
ACUITY, 2006, 2007	63*	6.69	29.1	28.1	67	57.2	19.1	31	92.9/68.0	56.4	36.7	NA
ARMYDA-7 BIVALVE, 2012	70	71	15	63	91	NA	21	44	100/100	NA	28	98
ARNO, 2010	68.9	76	17.5	21.5	09	50	0	39.5	100/100	86.5	76.5	98
BAS, 2001	63	68	NA	21	NA	NA	0	18.1	100/0	NA	NA	100
CACHET, 2002	63	75	NA	NA	NA	NA	NA	NA	100/NA	88	NA	100
EUROMAX, 2013	61	76	42.1	14	44	37	NA	8.8	100/98	91.7	31.8	53
HEAT-PPCI, 2014	63	71	42.5	13.8	41.5	37.5	NA	12	100/100	92.5	79.8	18.9
HORIZONS-AMI,	60	76.5	46.1	16.5	53.5	43	16.7	10.9	99.8/98.5	95.4	86.7	NA
2008, 2011												
ISAR REACT 3, 2008–2010	67	76.5	14.5	27.5	89.2	79.7	NA	31.1	100/100	94.3	87.7	NA
ISAR-REACT 4,	67.5	76.9	23.8	29	85.5	68.6	NA	20.4	100/100	95.7	88.5	100
2011, 2013												
NAPLES, 2009	65.3	65.1	20.6	100	76.4	63.9	37.8	44.7	100/100	100	82.4	100
NAPLES III, 2015	78	52.5	20.7	44	83.5	56.5	45.8	40	100/100	9.66	82.5	100
PROTECT-TIMI-30,	60	67	36.9	40.5	65.6	55.3	NA	21.3	100/100	100	62	NA
		0.07				V I V		,	100/00	u G		Ē
KEPLACE-1. 2004	04.4	09.9	19.4	50.2	12.4	NA	NA	41.0	100/89.8	C8	NA	97.1
REPLACE-2, 2003, 2004	62.6	74.4	26.6	27.1	67	NA	NA	37	100/86	85.4	NA	NA
TENACITY, 2011	63	73	27	30.5	80	82.5	NA	31	100/100	99.5	06	NA
Xiang, 2013	58	83.4	NA	NA	NA	NA	NA	41.9	100/100	99.1	95.4	74.5

		Composite Outc	omes			All-Cause Dea	ath			Major Bleedi	ng	
Subgroup	No. of Patients	RR (95% CI)	P Value	I^2	No. of Patients	RR (95% CI)	P Value	I^2	No. of Patients	RR (95% CI)	P Value	I^2
Participants*												
NSTE-ACS	16,071	1.02 [0.95, 1.09]	0.59	0%	16,071	1.13 [0.88, 1.45]	0.32	19%	12,168	0.69 [0.42, 1.13]	0.14	51%
STEMI	7629	1.15 [0.90, 1.47]	0.27	63%	7629	0.92 [0.69, 1.22]	0.56	44%	7629	0.67 [0.43, 1.05]	0.08	77%
Unselected CHD	14,392	0.90 [0.76, 1.06]	0.20	54%	14,396	0.89 [0.70, 1.12]	0.32	0%	14,394	0.62 [0.50, 0.75]	< 0.001	1%
Follow-up duration		. , ,				. , ,						
In-hospital	6777	0.99 [0.88, 1.12]	0.93	7%	6779	1.26 [0.75, 2.13]	0.38	21%	6135	0.39 [0.30, 0.50]	< 0.001	17%
30 days	32,152	1.03 [0.92, 1.16]	0.58	44%	32,154	1.00 [0.88, 1.14]	0.98	1%	27,278	0.70 [0.62, 0.79]	< 0.001	74%
6 months	10,755	0.95 [0.81, 1.13]	0.58	70%	10,755	0.89 [0.46, 1.74]	0.74	70%	850	0.32 [0.13, 0.78]	0.01	_
12 months	16,335	1.02 [0.95, 1.09]	0.58	0%	22,337	0.98 [0.85, 1.14]	0.83	0%	-	-	-	_

TABLE 3. Subgroup Analyses

 $CHD = coronary \ heart \ disease, \ CI = confidence \ interval, \ NSTE-ACS = non-ST \ segment \ elevation \ acute \ coronary \ syndrome, \ RR = risk \ ratio, \ STEMI = ST \ segment \ myocardial \ infarction.$

The longest follow-up data in the individual trials were included in the pooled subgroup analysis.

antithrombotic regimen–rapid early action for coronary treatment (ISAR-REACT) 4 study¹² or the evaluate the relative protection against post-PCI microvascular dysfunction and post-PCI ischemia among anti-platelet and anti-thrombotic agents-thrombolysis in myocardial infarction-30 (PROTECT-TIMI-30) study²⁹ were removed from the subgroup of bivalirudin alone or bivalirudin plus provisional GP IIb/IIIa inhibitors versus UFH plus planned GP IIb/IIIa inhibitors, we found that the intrasubgroup difference became statistically significant (P = 0.02 and 0.045, respectively). Nevertheless, this process did not markedly influence the overall estimate. Moreover, in subgroup analyses and meta-regression analyses, the predefined clinical factors did not have statistically significant influences on the pooled result (Table 3 and eTable 2, http://links.lww.com/MD/A342).

Myocardial Infarction or Reinfarction, Ischemia-Driven Revascularization, and In-Stent Thrombosis

Meta-analytic pooling for myocardial infarction or reinfarction, ischemia-driven revascularization, and in-stent thrombosis showed that bivalirudin did not provide a greater advantage relative to UFH (myocardial infarction or reinfarction: RR = 1.02; 95% CI 0.91–1.16; P = 0.70; $I^2 = 39\%$; ischemiadriven revascularization: RR = 1.03; 95% CI 0.92–1.15; P = 0.58; $I^2 = 40\%$; and in-stent thrombosis: RR = 1.37; 95% CI 0.93–2.00; P = 0.11; $I^2 = 48\%$; Figure 2B). Subgroup analyses stratified by anticoagulant regimens demonstrated that bivalirudin plus provisional GP IIb/IIIa inhibitors seemed likely to increase the risk of in-stent thrombosis compared with UFH plus provisional GP IIb/IIIa inhibitors (RR = 3.09; P < 0.001; Figure 2B). Notably, the HEAT-PPCI study¹⁰ was likely to greatly contribute to the negative result, because the statistical difference disappeared after the removal of this study from the subgroup.

Major Bleeding and Blood Transfusion

Bivalirudin showed a highly significant 34% decrease in the incidence of major bleeding (RR = 0.66; 95% CI 0.54–0.81; P < 0.001; $I^2 = 53\%$; Figure 3) and a 28% reduction in the need for blood transfusion (RR = 0.72; 95% CI 0.56–0.91; P < 0.01; $I^2 = 39\%$) compared with UFH. Moreover, the benefit of bivalirudin in lowering the risk of major bleeding and subsequent need for blood transfusion was statistically significant in the subgroup of bivalirudin alone or bivalirudin plus provisional GP IIb/IIIa inhibitors versus UFH plus planned GP IIb/IIIa inhibitors (P < 0.01). Furthermore, the beneficial effect of bivalirudin was consistently shown in the subgroup analyses stratified by follow-up duration (P < 0.05; Table 3). Notably, the bleeding risk with bivalirudin appeared to increase gradually and significantly with the increase in the use of GP IIb/IIIa inhibitors (lnRR = 0.52; P = 0.012, Figure 4A), especially eptifibatide (P = 0.001, Figure 4B) and tirofiban (P = 0.002, Figure 4C, eTable 2, http://links.lww.com/MD/A342).

There was no evidence for publication bias among the included studies. Funnel plots were generated for the composite endpoint, all-cause death, and major bleeding, and essential symmetries were found. Begg tests based on these data did not show any statistical significances (all P > 0.10; eFigure, http://links.lww.com/MD/A342).

DISCUSSION

This meta-analysis mainly showed that bivalirudin monoand bivalirudin-based anticoagulant therapies were associated with a lower bleeding risk compared with UFH therapy. The use of GP IIb/IIIa inhibitors may weaken the benefit of bivalirudin in reducing the bleeding risk. In addition, bivalirudin, in comparison to UFH, did not significantly increase the incidence of the individual and composite ischemic endpoints of all-cause death, myocardial infarction or reinfarction, and ischemia-driven coronary revascularization as well as in-stent thrombosis.

The combination of a potent anticoagulant (heparin or bivalirudin) with antiplatelet therapy (aspirin, clopidogrel, or GP IIb/IIIa inhibitors) is routinely used during transcatheter coronary interventional procedures. Recently, the use of bivalirudin as a specific and reversible direct thrombin inhibitor is gradually increasing in order to overcome the limitations encountered with heparin during coronary interventional procedures.³⁷ Bivalirudin carries no risk of heparin-induced thrombocytopenia, does not require a binding cofactor such as antithrombin III, and does not activate platelets.³⁸ Pharmacologically, these characteristics make bivalirudin an ideal alternative to heparin, especially in patients with antithrombin III deficiency or relatively low platelet levels. Indeed, the present meta-analysis indicated the favorable effect of bivalirudin on lowering the bleeding risk and transfusion rate compared with UFH, and the benefit remained consistent in different observation periods. In the era of antiplatelet monotherapy or dual antiplatelet therapy, a growing body of evidence

Study or Subgroup		Idin Total	Hepa Events		Weight	Risk Ratio M-H, Random, 95% C	Risk Ratio M-H. Random, 95% Cl
1.2.1 bivalirudin vs. heparin							
ARNO, 2010(6m)	5	425	10	425	1.5%	0.50 [0.17, 1.45]	
BAS, 2001	36	1977	22	1926	5.7%	1.59 [0.94, 2.70]	
ISAR REACT 3, 2010	43	2289	39	2281	8.1%	1.10 [0.72, 1.69]	T
Subtotal (95% CI)		4691		4632	15.3%	1.12 [0.69, 1.82]	
Total events	84		71				
Heterogeneity: Tau ² = 0.09; (Test for overall effect: Z = 0.4			P = 0.15)	; ² = 48 ⁴	%		
1.2.2 bivalirudin+GPI vs. he	parin+GPI						
ACUITY, 2007	173	4604	172	4603	24.7%	1.01 [0.82, 1.24]	+
CACHET, 2002	1	31	1	95	0.2%	3.06 [0.20, 47.56]	
TENACITY, 2011	0	185	2	198	0.2%	0.21 [0.01, 4.43]	
Subtotal (95% CI)	1.74	4820		4896	25.1%	1.00 [0.82, 1.23]	•
Total events	174		175				
Heterogeneity: Tau ² = 0.00; 0	Chi² = 1.64,			; 12 = 0%			
Test for overall effect: Z = 0.0				100			
1.2.3 bivalirudin+provision		198	-provisio	203		0.0010 10 75 04	
ARMYDA-7 BIVALVE, 2012	1		100		0.2%	3.08 [0.13, 75.04]	-
HEAT-PPCI, 2014	47	915	39	914	8.7%	1.20 [0.80, 1.82]	
NAPLES III, 2015	20	418	21	419	4.5%	0.95 [0.53, 1.73]	
REPLACE-1. 2004	0	532	3	524	0.2%	0.14 [0.01, 2.72]	
Xiang, 2013	1	109	0	108	0.2%	2.97 [0.12, 72.18]	
Subtotal (95% CI)		2172		2168	13.7%	1.11 [0.80, 1.55]	•
Total events	69		63				
Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.6			P = 0.55)	; 2 = 0%			
CONTRACTOR AND ADDRESS	57750 SA (65	- CO					
1.2.4 bivalirudin+provision							
EUROMAX, 2013	32	1089	34	1109	6.8%	0.96 [0.60, 1.54]	
HORIZONS-AMI, 2011	102	1800	134	1802	19.4%	0.76 [0.59, 0.98]	-
ISAR-REACT 4, 2014	40	860	34	861	7.6%	1.18 [0.75, 1.84]	-
NAPLES, 2009	1	168	1	169	0.2%	1.01 [0.06, 15.95]	
PROTECT-TIMI-30, 2007	1	284	0	573	0.2%	6.04 [0.25, 147.85]	
REPLACE-2, 2004(12m)	56	2994	72	3008	11.8%	0.78 [0.55, 1.10]	
Subtotal (95% CI)		7195		7522	45.9%	0.85 [0.71, 1.01]	•
Total events	232		275			and the second second	
Heterogeneity: Tau ² = 0.00; (df = 5 (f		12 = 0%	0		
Test for overall effect: Z = 1.8			0.40)				
Total (95% CI)		18878		19218	100.0%	0.97 [0.85, 1.11]	•
Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4	559 Chi ² = 17.70	, df = 16	584 6 (P = 0.3			0.97 [0.85, 1.11]	0.01 0.1 1 10
Total events Heterogeneity: Tau ² = 0.01; 0 Test for overall effect: Z = 0.4	559 Chi ² = 17.70 45 (P = 0.65	, df = 16	6 (P = 0.3	34); f² = 1	10%	0.97 [0.85, 1.11]	0.01 0.1 1 10 Favours bivalirudin Favours her
Total events	559 Chi ² = 17.70 45 (P = 0.65	, df = 16) 5. df = 3	6 (P = 0.3	94); (* = 1 96), (* = 1	10%	0.97 [0.85, 1.11] Risk Ratio	
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup	559 Chi ² = 17.70 45 (P = 0.65 s: Chi ² = 3.2 Bivaliru Events), df = 16) 5. df = 3 Idin	6 (P = 0.3 8 (P = 0.3 Hepa	14); (² = 1 16), (² = 1 rin	10% 7.6%		Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivaliru <u>Events</u>	, df = 16) 5. df = 3 idin Total	6 (P = 0.3 6 (P = 0.3 Hepa Events	94); (² = 1 96), (² = 7 rin Total	10% 7.6% Weight	Risk Ratio M-H. Random, 95% C	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m)	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivaliru Events	df = 16) 5. df = 3 idin <u>Total</u> 425	6 (P = 0.3 3 (P = 0.3 Hepa <u>Events</u> 1	94); (² = 1 96), (² = 1 rin <u>Total</u> 425	10% 7.6% <u>Weight</u> 2.3%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences <u>Study or Subgroup</u> 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivaliru <u>Events</u>	df = 16) 5. df = 3 ddin <u>Total</u> 425 2289	6 (P = 0.3 6 (P = 0.3 Hepa Events	4); P = 1 6), P = 7 rin Total 425 2281	10% 7.6% <u>Weight</u> 2.3% 14.2%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI)	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivaliru Events 1 2 16	df = 16) 5. df = 3 idin <u>Total</u> 425	6 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16	94); (² = 1 96), (² = 1 rin <u>Total</u> 425	10% 7.6% <u>Weight</u> 2.3%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events	559 Chi ² = 17.70 I5 (P = 0.65 s: Chi ² = 3.2 Bivalin Events 1 2 16 18	df = 16) 5. df = 3 idin <u>Total</u> 425 2289 2714	6 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16 17	44); ² = 1 (6), ² = 7 rin <u>Total</u> 425 2281 2706	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences <u>Study or Subgroup</u> 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C	559 Chi ² = 17.70 I5 (P = 0.65 s: Chi ² = 3.2 Bivaliru Events 1 16 18 Chi ² = 0.30,	df = 16) 5. df = 3 idin <u>Total</u> 425 2289 2714 df = 1 (F	6 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16 17	44); ² = 1 (6), ² = 7 rin <u>Total</u> 425 2281 2706	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin Events 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88	df = 16) 5. df = 3 idin <u>Total</u> 425 2289 2714 df = 1 (F	6 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16 17	44); ² = 1 (6), ² = 7 rin <u>Total</u> 425 2281 2706	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. heterogeneity.	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin Events 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88	df = 16) 5. df = 3 idin <u>Total</u> 425 2289 2714 df = 1 (F	6 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16 17	44); ² = 1 (6), ² = 7 rin <u>Total</u> 425 2281 2706	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007	559 Chi ² = 17.70 45 (P = 0.65 5: Chi ² = 3.2 Bivaliru Events 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88 eperin+GPI	(, df = 16)) 5. df = 3 udin <u>Total</u> 425 2289 2714 df = 1 (F	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58);	14); ² = 1 16), ² = 7 17 10 12 12 12 12 12 12 12 12 12 12	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random. 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI)	559 Chi ² = 17.70 45 (P = 0.65 5: Chi ² = 3.2 Bivaliru Events 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88 eperin+GPI	df = 16) 5. df = 3 din <u>Total</u> 425 2289 2714 df = 1 (F) 2609	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58);	44); ² = 1 16), ² = 7 rin Total 425 2281 2706 ; ² = 0% 2561	10% 7.6% Weight 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random. 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin: Events 1 2 16 1 2 16 18 18 Chi ² = 0.30, 15 (P = 0.88 cparin+GPI 39 39	df = 16) 5. df = 3 din <u>Total</u> 425 2289 2714 df = 1 (F) 2609	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58); 31	44); ² = 1 16), ² = 7 rin Total 425 2281 2706 ; ² = 0% 2561	10% 7.6% Weight 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random. 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 16 18 Chi ² = 0.30 15 (P = 0.88 sparin+GPI 39 39	df = 16) 5. df = 3 ddin <u>Total</u> 425 2289 2714 df = 1 (F) 2609 2609	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58); 31	44); ² = 1 16), ² = 7 rin Total 425 2281 2706 ; ² = 0% 2561	10% 7.6% Weight 2.3% 14.2% 16.5%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) (SAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.5	559 559 17.70 15 (P = 0.65 5 (Chi ² 3.2 Bivalint Events 1 2 18 Chi ² = 0.30, 15 (P = 0.88 sparin+GPI 39 39 8 38 (P = 0.38	df = 16) 5. df = 3 ddin Total 425 2289 2714 df = 1 (F) 2609 2609	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58); 31 31	4); ² = 1 (6), ² = 7 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5% 19.0%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provisional	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 1 2 16 18 Chi ² = 0.30 15 (P = 0.88 sparin+GPI 39 39 5 88 (P = 0.38 al GPI vs. h	(, df = 16) 5. df = 3 udin <u>Total</u> 425 2289 2714 df = 1 (F 2609 2609 2609	5 (P = 0.3 8 (P = 0.3 Hepa <u>Events</u> 1 16 17 P = 0.58); 31 31	44); ² = 1 66), ² = 7 rin <u>Total</u> 425 2281 2706 ; ² = 0% 2561 2561	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5% 19.0%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: Z = 0. Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 6 Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Heterogeneily: Not applicable Test for overall effect: Z = 0.5 1.5.3 bivalirudin+provision: ARMYDA-7 BIVALVE, 2012	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 7 2 16 18 Chi ² = 0.30, 15 (P = 0.88 chi ² = 0.30, 15 (P = 0.68 separin+GPI 39 8 39 8 30 8 16 17 18 18 18 18 18 18 18 18 18 18	(, df = 16) 5. df = 3 udin Total 425 2289 2714 df = 1 (f 2609 2609) eparin+ 198	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 7 9 = 0.58); 31 31 31 • provisic 0	94); (² = 1 16), (² = 7 rin 425 2281 2706 ; (² = 0% 2561 2561 2561 0001 GPI 203	10% 7.6% <u>Weight</u> 2.3% 14.2% 16.5% 19.0% 19.0%	Risk Ratio M-H, Random. 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; O Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BivALVE, 2012 HEAT-PPCI, 2014	559 559 17.70 15 (P = 0.65 5 (Chi ² 3.2) Bivalint Events 1 2 18 Chi ² = 0.30, 15 (P = 0.88 eparin+GPI 39 39 88 (P = 0.38 al GPI vs. h 1 31	(, df = 16)) 5. df = 3 din Total 425 2289 2714 df = 1 (F)) 2609 2609 2609)) eparin+ 198 915	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58); 31 31 - provisic 0 8	i4); ² = 1 i6), ² = 7 Total 425 2281 2706 2561 2561 203 914	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 1.3% 12.7%	Risk Ratio M-H, Random, <u>95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BiVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 7 2 16 18 Chi ² = 0.30, 15 (P = 0.88 chi ² = 0.30, 15 (P = 0.68 separin+GPI 39 8 39 8 30 8 16 17 18 18 18 18 18 18 18 18 18 18	(, df = 16)) 5. df = 3 ddin Total 425 2289 2714 df = 1 (f)) 2609 2609)) eparin+ 198 915 418	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 7 9 = 0.58); 31 31 31 • provisic 0	14); ² = 1 16), ² = 7 Total 425 2281 2706 1 ² = 0% 2561 2561 914 419	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: 2 Test for overall effect: 2 Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicabil Test for overall effect: Z = 0.5 1.5.3 bivalirudin+provision: ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI)	559 559 559 559 - 0.65 5 (P = 0.65 5 (P = 0.65 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88 39 39 39 39 39 39 39 39 39 30 4 1 1 1 1 1 1 1 1 1 1 1 1 1	(, df = 16)) 5. df = 3 din Total 425 2289 2714 df = 1 (F)) 2609 2609 2609)) eparin+ 198 915	5 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 P = 0.58); 31 31 -provisio 0 8 3 3	i4); ² = 1 i6), ² = 7 Total 425 2281 2706 2561 2561 203 914	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 1.3% 12.7%	Risk Ratio M-H, Random, <u>95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicabli Test for overall effect: Z = 0.1 1.5.3 bivalirudin+provision: ARMYDA-7 BivALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events	559 559 17.70 15 (P = 0.65 5 (Chi ² 3.2) Bivalint Events 1 2 16 Chi ² = 0.30, 15 (P = 0.88 sparin+GPI 39 39 8 38 (P = 0.38 al GPI vs. h 1 31 4 36	(, df = 1f)) 55. df = 3 udin 425 2289 27714 df = 1 (f)) 2609 2609 2609 2609 2609 2609 2609 2609	6 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 7 9 = 0.58) 31 31 31 31 31 31 31 31 31 31	14); ² = 1 16), ² = 1 Total 4255 2281 27706 2561 2561 203 914 419 1536	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 1.3% 5.2% 19.3%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BiVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 16 18 Chi ² = 0.30, 15 (P = 0.88 sparin+GPI 39 39 88 (P = 0.38 al GPI vs. h 1 31 4 4 Chi ² = 1.55,	(, df = 16)) 5. df = 3 idin Total 425 2289 2714 df = 1 (f)) 2609 2609)) eparin+ 198 915 418 1531 df = 2 (f	6 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 7 9 = 0.58) 31 31 31 31 31 31 31 31 31 31	14); ² = 1 16), ² = 1 Total 4255 2281 27706 2561 2561 203 914 419 1536	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 1.3% 5.2% 19.3%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicabli Test for overall effect: Z = 0.1 1.5.3 bivalirudin+provision: ARMYDA-7 BivALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Total events Heterogeneity: Tau ² = 0.00; C Total events Heterogeneity: Tau ² = 0.00; C	559 559 559 17.70 15 (P = 0.65 5; Chi ² = 3.2 Bivalint Events 1 2 18 Chi ² = 0.30, 15 (P = 0.88 sparin+GPI 39 39 8 38 (P = 0.38 al GPI vs. h 1 31 4 36 Chi ² = 1.55, 30 (P = 0.00	(, df = 1()) () () () () () () () () () () () ()	8 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 2 = 0.58) 31 31 31 31 31 31 31 31 31 31 31 31 31	14); ² = 1 rin <u>Total</u> 425 2281 2706 2561 2561 2561 203 203 203 203 1536 ² = 0%	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 1.3% 12.7% 5.2% 19.3%	Risk Ratio <u>M-H. Random, 95% C</u> 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provision:	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 1 2 16 18 Chi ² = 0.30, 15 (P = 0.88 eparin+GPI 39 39 8 8 (P = 0.38 al GPI vs. h 1 4 2 Chi ² = 1.55, 80 (P = 0.60 al GPI vs. h	(, df = 16 ()) () () () () () () () () () () () ()	6 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 2 = 0.58) 31 31 31 	14); ² = 1 16), ² = 1 Total 425 2281 2706 ² = 0% 2561 2561 2561 2561 1536 1536 17 ² = 0%	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3%	Risk Ratio M-H. Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: Z = 0. Test for overall effect: Z = 0. Test for subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provisione ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provisione EUROMAX, 2013	559 559 559 559 559 559 559 559	(, df = 16)) 5. df = 3 2289 2714 df = 1 (f)) 2609 2609 2609) eparin4 198 915 418 1531 df = 2 (f 10) valirudi 1089	6 (P = 0.3 8 (P = 0.3 Hepa Events 1 16 17 17 2 = 0.58) 31 31 31 2 = 0.58) 11 2 = 0.46) 1 1 2 = 0.46)	14); * = 1 16), * = 1 17 16), * = 1 17 16), * = 1 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17	10% 7.6% Weight 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 13.3% 12.7% 5.2% 19.3%	Risk Ratio M-H, Random. 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroup differences Study or Subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BivALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provision: EUROMAX, 2013	559 559 561 571 572 572 572 572 572 573 573 574 574 575 575 575 575 575 575	(, df = 16)) () () () () () () () () ()	6 (P = 0.3, 3) Hepa Hepa 1 16 17 16 17 31 31 31 31 31 31 31 31 31 31	14); * = 1 16), * = 1 rin Total 425 2281 22706 2281 2706 2561 203 203 203 203 203 203 1536 1536 I* = 0% vs. hepp 1109 1802	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 1.3% 5.2% 19.3% 10.3% 22.6%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.5 1.5.3 bivalirudin+provisiona ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.5 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provisional EUROMAX, 2013 HORIZONS-AMI, 2011 ISAR-REACT 4, 2014	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. <u>Events</u> 16 18 Chi ² = 0.30, 15 (P = 0.88 eparin+GPI 39 39 8 8 (P = 0.38 al GPI vs. h 1 36 Chi ² = 1.55, 30 (P = 0.00 al GPI or bi 17 70 8	(, df = 16 ()) () () () () () () () () () () () ()	6 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 9 = 0.58) 31 31 31 31 	 i4); i² = 1 i61, i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 i³ = 0% i⁴ = 0%<!--</td--><td>10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 10.3% 22.6%</td><td>Risk Ratio M-H. Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80]</td><td>Favours bivalirudin Favours hep Risk Ratio</td>	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 10.3% 22.6%	Risk Ratio M-H. Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: 2 Test for overall effect: 2 Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: 2 = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.1 1.5.3 bivalirudin+provisione ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 3.2 1.5.4 bivalirudin+provisiona EUROMAX, 2013 HORIZONS-AMI, 2011 ISAR-REACT 4, 2014 NAPLES, 2009	559 559 561 571 572 572 572 572 572 573 573 574 574 575 575 575 575 575 575	(, df = 16) 5. df = 1 425 2289 2714 df = 1 (f) 2609 2609) eparin4 198 915 418 1531 df = 2 (f 10) valirudi 1089 1680 860 860 860 860 860 860 860	6 (P = 0.3, 3) Hepa Hepa 1 16 17 16 17 31 31 31 31 31 31 31 31 31 31	14); * = 1 16), * = 1 17 16), * = 1 17 16), * = 1 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 19.0% 19.3% 10.3% 22.6% 10.3% 22.6% 1.8%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.66, 1.55]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subaroub differences Study or Subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(tm) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BivALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provision: LUROMAX, 2013 HORIZONS-AMI, 2011 ISAR-REACT 4, 2014 NAPLES, 2009 Subtotal (95% CI)	559 559 559 559 559 559 559 559	(, df = 16 ()) () () () () () () () () () () () ()	$\begin{array}{l} 6 \ (P=0.3, 3) \\ Hepa \\ B \ (P=0.3, 3) \\ Hepa \\ 1 \\ 16 \\ 17 \\ 16 \\ 17 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31$	 i4); i² = 1 i61, i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 i³ = 0% i⁴ = 0%<!--</td--><td>10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 10.3% 22.6%</td><td>Risk Ratio M-H. Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80]</td><td>Favours bivalirudin Favours hep Risk Ratio</td>	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 10.3% 22.6%	Risk Ratio M-H. Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) SAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 Heterogeneity: Not applicable Test for overall effect: Z = 0.8 Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 VAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provision: EUROMAX, 2013 HORIZONS-AMI, 2011 SAR-REACT 4, 2014 VAPLES, 2009 Subtotal (95% CI) Total events	559 Chi ² = 17.70 15 (P = 0.65 s: Chi ² = 3.2 Bivalin. Events 1 16 18 Chi ² = 0.30, 15 (P = 0.88 eparin+GPI 39 39 8 8 (P = 0.38 al GPI vs. h 1 36 Chi ² = 1.55, 30 (P = 0.00 al GPI or bi 17 70 8 1 96	(, df = 16 ()) () () () () () () () () () () () ()	6 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 2 = 0.58) 311 31 31 31 	 i4); i² = 1 i61, i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 i³ = 0% valid GPI 2561 1536 i⁴ = 0% valid GPI 1536 i⁴ = 0% valid GPI 1536 i⁴ = 0% valid GPI 2661 169 3941 	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 12.3% 10.6% 1.8% 45.2%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.66, 1.55]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: Z = 0. Test for overall effect: Z = 0. Test for subgroup 1.5.1 bivalirudin vs. heparir ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.2 1.5.3 bivalirudin+provisions ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 WAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Total events Heterogeneity: Tau ² = 0.00; 0 Est for overall effect: Z = 3. 1.5.4 bivalirudin+provisions EUROMAX, 2013 HORIZONS-AMI, 2011 ISAR-REACT 4, 2014 WAPLES, 2009 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.17; 0 Cotal events	559 559 569 17.70 15 (P = 0.65 17.70 15 (P = 0.65 17.70 15 (P = 0.62 18 Chi ² = 0.30, 15 (P = 0.88 18 Chi ² = 0.30, 15 (P = 0.68 18 29 39 58 60 (P = 0.68 18 18 18 18 18 18 18 18 18 1	(, df = 16) 5. df = 1 425 2289 2714 df = 1 (f) 2609 2609) eparin4 198 915 418 1531 df = 2 (f 10) valirudi 1089 1800 860 83917 df = 3 (f	6 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 2 = 0.58) 311 31 31 31 	 i4); i² = 1 i61, i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 i³ = 0% valid GPI 2561 1536 i⁴ = 0% valid GPI 1536 i⁴ = 0% valid GPI 1536 i⁴ = 0% valid GPI 2661 169 3941 	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 12.3% 10.6% 1.8% 45.2%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.66, 1.55]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) SAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMUDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 VAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 3.3 1.5.4 bivalirudin+provision: EUROMAX, 2013 HORIZONS-AMI, 2011 SAR-REACT 4, 2014 VAPLES, 2009 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.17; (Test for overall effect: Z = 0.4 NAPLES, 2009 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.17; (Test for overall effect: Z = 0.4 NAPLES, 2009 Subtotal (95% CI)	559 559 5647 = 17.70 15 (P = 0.65 5: Chi ² = 3.2 Bivalin. Events 16 18 Chi ² = 0.30, 15 (P = 0.88 chi ² = 0.30, 15 (P = 0.88 29 39 39 8 8 10 6 Chi ² = 1.55, 30 (P = 0.00 al GPI or bi 17 70 8 10 Chi ² = 5.85, 12 (P = 0.67	(, df = 16 ()) () () () () () () () () () () () ()	6 (P = 0.3 8 (P = 0.3 Hepa 1 16 17 2 = 0.58) 311 31 31 31 	 i4); i^p = 1 i6), i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 1536 i² = 0% vs. hepa 1109 1536 i² = 0% vs. hepa 1109 1802 3941 169 3941 i² = 49% 	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 12.3% 12.3% 10.6% 12.3% 45.2%	Risk Ratio M-H, Random. 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 594] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.62, 2.08]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; 4 Test for overall effect: Z Test for overall effect: Z 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) ISAR REACT 3, 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUTY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.4 1.5.3 bivalirudin+provisions ARMYDA-7 BIVALVE, 2012 HEAT-PPCI, 2014 WAPLES III, 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; 0 Test for overall effect: Z = 0.4 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+provisions 1.5.4 bivalirudin+grovisions 1.5.4 bivalirudin+grovisions 1.	559 559 561 571 572 572 572 572 572 572 572 572	(, df = 16) 5. df = 1 425 2289 2714 df = 1 (f) 2609 2609) eparin4 198 915 418 1531 df = 2 (f 10) valirudi 1089 1800 860 83917 df = 3 (f	$\begin{array}{c} 6 \ (P=0.3, \\ 8 \ (P=0.3, \\ Hepa \\ \hline \\ 8 \ (P=0.3, \\ Hepa \\ 1 \\ 16 \\ 17 \\ 2 \\ -2 \\ -0.8 \\ 11 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ -2 \\ -2 \\ -0.8 \\ 11 \\ 1 \\ 2 \\ -2 \\ -0.4 \\ 6 \\ 77 \\ 11 \\ 1 \\ 2 \\ -2 \\ -0.1 \\ 2 \\ 2 \\ -0.1 \\ 2 \\ 2 \\ -0.1 \\ 2 \\ 2 \\ -0.1 \\ 2 \\ 2 \\ -0.1 \\ 2$	 i4); i^p = 1 i6), i² = 1 rin Total 425 2281 2706 i² = 0% 2561 2561 2561 2561 2561 2561 1536 i² = 0% vs. hepa 1109 1536 i² = 0% vs. hepa 1109 1802 3941 169 3941 i² = 49% 	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 12.7% 5.2% 19.3% 12.3% 10.6% 1.8% 45.2%	Risk Ratio M-H, Random, 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.66, 1.55]	Favours bivalirudin Favours hep Risk Ratio
Total events Heterogeneity: Tau ² = 0.01; (Test for overall effect: Z = 0.4 Test for subgroup 1.5.1 bivalirudin vs. heparin ARNO, 2010(1m) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 0.1 1.5.2 bivalirudin+GPI vs. he ACUITY-PCI, 2007 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.8 1.5.3 bivalirudin+provision: ARMYDA-7 BiVALVE, 2012 HEAT-PPCI, 2014 NAPLES III, 2015	559 559 559 17.70 15 (P = 0.65 5; Ch ² = 3.2 Bivalint Events 1 2 18 Chi ² = 0.30, 15 (P = 0.88 cparin+GPI 39 39 38 (P = 0.38 al GPI vs. h 1 31 4 36 Chi ² = 1.55, 30 (P = 0.00 al GPI or bi 17 70 0 8 1 2 2 2 2 6 6 7 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 10 10 10 10 10 10 10 10 10	(, df = 16)) 4(1) 4(25) 2289 2714 4(25) 2289 2714 4(25) 2289 2714 4(25) 2289 2714 4(25) 22609 200 2609 200 200 200 200 200 200 200 2	$\begin{array}{c} 6 \ (P=0.3, \\ 8 \ (P=0.3, \\ Hepa \\ Hepa \\ 1 \\ 16 \\ 17 \\ 2 = 0.58 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 3$	14); * = 1 16), * = ; 1 Total Total 425 2281 2706 2 2281 2706 2281 2706 2561 2561 203 203 203 203 914 419 1536 1802 861 169 3941 169 3941 19744	10% 7.6% 2.3% 14.2% 16.5% 19.0% 19.0% 19.0% 19.0% 19.0% 19.3% 10.0%	Risk Ratio M-H, Random. 95% C 2.00 [0.18, 21.97] 1.00 [0.50, 1.99] 1.05 [0.54, 2.04] 1.23 [0.77, 1.97] 1.23 [0.77, 1.97] 3.08 [0.13, 75.04] 3.87 [1.79, 8.38] 1.34 [0.30, 5.94] 3.09 [1.58, 6.04] 2.89 [1.14, 7.29] 0.91 [0.66, 1.25] 0.73 [0.29, 1.80] 1.01 [0.62, 2.08]	Favours bivalirudin Favours hep Risk Ratio

FIGURE 2. Pooled risk ratio of bivalirudin versus heparin for all-cause mortality (A) and in-stent thrombosis (B). CI = confidence interval.

	Bivalin		Hepa			Risk Ratio	Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H. Random, 95% Cl
2.1.1 bivalirudin vs. heparin							
ARNO, 2010(6m)	6	425	19	425	3.8%	0.32 [0.13, 0.78]	
ISAR REACT 3, 2008	70	2289	104	2281	12.9%	0.67 [0.50, 0.90]	
Subtotal (95% CI)		2714		2706	16.7%	0.52 [0.26, 1.05]	-
Total events	76		123				
Heterogeneity: Tau ² = 0.17; C	hi² = 2.40,	df = 1 (P = 0.12)	; l ² = 58	%		
Test for overall effect: Z = 1.8	3 (P = 0.07)					
2.1.2 bivalirudin+GPI vs. he	parin+GPI						
ACUITY, 2006	243	4604	262	4603	15.9%	0.93 [0.78, 1.10]	+
CACHET, 2002	1	30	4	94	0.8%	0.78 [0.09, 6.74]	
TENACITY, 2011	1	185	5	198	0.8%	0.21 [0.03, 1.82]	
Subtotal (95% CI)		4819	0	4895	17.6%	0.92 [0.78, 1.09]	•
Total events	245		271				
Heterogeneity: Tau ² = 0.00; C	and so and the second second	df = 2(100	12 = 0%			
Test for overall effect: Z = 1.0			5.10)				
2.1.3 bivalirudin+provisiona	GPI vs. h	enarin	+provisio	anal GP	Ē.		
ARMYDA-7 BIVALVE, 2012	1	198	2	203	0.7%	0.51 [0.05, 5.61]	
HEAT-PPCI, 2014	32	915	28	914	8.5%	1.14 [0.69, 1.88]	
NAPLES III, 2015	14	418	11	419	4.8%	1.28 [0.59, 2.78]	
REPLACE-1. 2004	11	532	14	524	4.8%	0.77 [0.35, 1.69]	
Xiang, 2013	1	110	1	109	0.5%	0.99 [0.06, 15,64]	
Subtotal (95% CI)	1	2173		2169	19.4%	1.05 [0.73, 1.51]	+
Total events	59	2115	56	2105	13.470	1.05 [0.15, 1.51]	1
Heterogeneity: Tau ² = 0.00; C				12 - 000			
Test for overall effect: Z = 0.2			P = 0.00)	, 1- = 0 %	2		
2.1.4 bivalirudin+provisiona		valinud	in alone	vs hen	arin+GPI		
EUROMAX, 2013	28	1089	67	1109	9.8%	0.43 [0.28, 0.66]	
HORIZONS-AMI, 2011	121	1800	185	1802	14.8%	0.65 [0.53, 0.82]	-
ISAR-REACT 4, 2011	22	860	40	861	8.3%	0.55 [0.33, 0.92]	
NAPLES, 2009	1	167	40	168	0.8%	0.25 [0.03, 2.23]	
PROTECT-TIMI-30, 2007	0	284	4	573	0.5%	0.22 [0.01, 4.14]	
REPLACE-2, 2003	54	2994	105	3008	12.2%	0.52 [0.37, 0.71]	+
Subtotal (95% CI)	24	7194	103	7521	46.3%	0.57 [0.49, 0.67]	•
Total events	226		405		10.0 /0	area farrat areal	100
Heterogeneity: Tau ² = 0.00; C		df = 5/		12 - 0%			
Test for overall effect: Z = 6.9			0.47)	57			
Total (95% CI)		16900		17291	100.0%	0.66 [0.54, 0.81]	٠
Total events	606		855			0.00 [0.04, 0.01]	1.2
Heterogeneity: Tau ² = 0.06; C		df = 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	071-12-	520/	F	
Test for overall effect: Z = 4.0			5 (P = 0.0	(07); I* =	3376	0	.01 0.1 1 10
Test for overall effect: Z = 4.0. Test for subgroup differences:						Fa	vours bivalirudin Favours hepa

FIGURE 3. Pooled risk ratio of bivalirudin versus heparin for major bleeding. CI = confidence interval.

has identified the beneficial effect of bivalirudin on bleeding risk in patients undergoing transcatheter coronary procedures.^{21,25} However, under the conditions of the present wide use of GP IIb/IIIa inhibitors, it remains uncertain whether bivalirudin is able to exert an identical beneficial effect. The present study mainly investigated the impact of additional GP IIb/IIIa inhibitors on major bleeding associated with bivalirudin or heparin anticoagulant therapy. Unexpectedly and interestingly, we found that the use of GP IIb/IIIa inhibitors, especially eptifibatide or tirofiban, substantially reduced the superiority of bivalirudin over UFH. Specifically, with the increase in the frequency of GP IIb/IIIa inhibitor administration during coronary interventional procedures, the benefit of bivalirudin relative to heparin in lowering the bleeding risk was gradually weakened. That is, under conditions of triple antiplatelet therapy (aspirin, clopidogrel, and GP IIb/IIIa inhibitors), bivalirudin treatment might result in a bleeding risk almost identical to that of UFH therapy, and this result was also identified by our subgroup analyses based on anticoagulant regimens.

Presently, achieving a balance between ischemic outcomes and bleeding events is essential in the field of antithrombotic therapy. Emerging evidence indicates the independent relationship between major bleeding with or without blood transfusion and subsequent death.³⁹ Major bleeding may be a powerful predictor of death or poor prognosis in patients undergoing PCI.⁴⁰ The HORIZONS-AMI study,²³ a prospective randomized trial involving patients with ST-segment elevation myocardial infarction undergoing primary PCI, demonstrated that bivalirudin plus provisional GP IIb/IIIa inhibitors improved the event-free survival at 30 days, mainly due to a significant reduction in major bleeding as compared with that experienced with UFH plus planned GP IIb/IIIa inhibitors. However, the present study did not identify a relationship between bleeding events and ischemic outcomes of all-cause death, myocardial infarction or reinfarction, ischemia-driven revascularization, or in-stent thrombosis. Nevertheless, relative to heparin, bivalirudin did not significantly increase the incidence of composite and individual ischemic outcomes. Moreover, the neutral effect on ischemic outcomes remained highly consistent in our subgroup analyses and metaregression analyses. Additionally, the present study did not show a pronounced additional influence of GP IIb/IIIa inhibitors on clinical prognosis.

Several limitations of the meta-analysis should be considered. The majority of the included trials did not provide data regarding the precise dose of bivalirudin used. As a result, we did not consider the impact of the bivalirudin dose on its efficacy and safety endpoints, and this meta-analysis still could not confirm whether bivalirudin therapy had a dose-specific effect on ischemic and bleeding outcomes. Moreover, all of the included trials involved the use of clopidogrel, rather than prasugrel or ticagrelor, which are more effective antiplatelet agents for reducing the cardiovascular death/stroke/infarction rate, according to the recommendation for oral dual antiplatelet therapy.^{41,42} Therefore, it remains uncertain whether the use of prasugrel or ticagrelor could change the findings regarding the effect of bivalirudin versus UFH in patients undergoing PCI. In

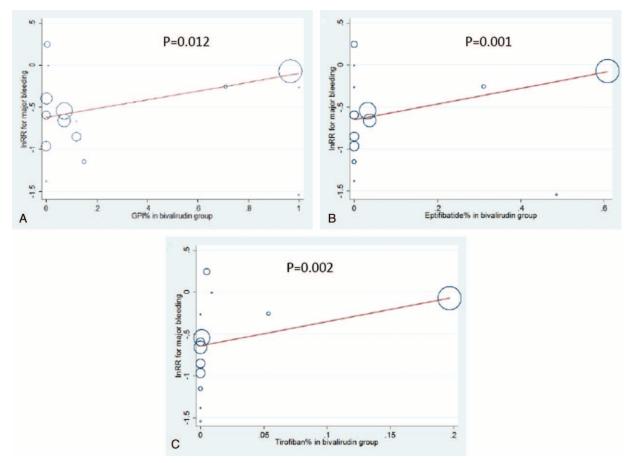


FIGURE 4. Meta-regression analyses of major bleeding based on the use frequency of all GP IIb/IIIa inhibitors (A), eptifibatide (B), or tirofiban (C) in the bivalirudin group, and that of provisional GP IIb/IIIa inhibitors in the 2 groups (D).

addition, as in other nonpatient-level meta-analyses, the present study utilized summarized published events for each trial as opposed to individual patient data. Nevertheless, the findings in the meta-analysis were generated based on a large-scale population from RCTs, and appropriate meta-analytic techniques with random-effect models were used to pool the effect variables. Moreover, our overall analyses were not influenced by publication bias, and sensitivity analysis further confirmed the credibility of the overall estimates.

In summary, bivalirudin was found to be superior to UFH for reducing the risk of major bleeding and need for blood transfusion, with no increase in the incidence of ischemic outcomes, in patients undergoing PCI. Notably, the adjunctive use of GP IIb/IIIa inhibitors during PCI may weaken the favorable effect of bivalirudin on lowering bleeding risk.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Natural Science Foundation of China (NSFC) (No. 81470300).

REFERENCES

 Ebrahimi R, Lincoff AM, Bittl JA, et al. Bivalirudin vs heparin in percutaneous coronary intervention: a pooled analysis. J Cardiovasc Pharmacol Ther. 2005;10:209–216.

- Bertrand OF, Jolly SS, Rao SV, et al. Meta-analysis comparing bivalirudin versus heparin monotherapy on ischemic and bleeding outcomes after percutaneous coronary intervention. *Am J Cardiol.* 2012;110:599–606.
- Mrdovic I, Savic L, Lasica R, et al. Efficacy and safety of tirofibansupported primary percutaneous coronary intervention in patients pretreated with 600 mg clopidogrel: results of propensity analysis using the Clinical Center of Serbia STEMI Register. *Eur Heart J Acute Cardiovasc Care*. 2014;3:56–66.
- Muniz-Lozano A, Rollini F, Franchi F, et al. Update on platelet glycoprotein IIb/IIIa inhibitors: recommendations for clinical practice. *Ther Adv Cardiovasc Dis.* 2013;7:197–213.
- Iqbal Z, Cohen M, Pollack C, et al. Safety and efficacy of adjuvant glycoprotein IIb/IIIa inhibitors during primary percutaneous coronary intervention performed from the radial approach for acute ST segment elevation myocardial infarction. *Am J Cardiol.* 2013;111:1727–1733.
- Tarantini G, Brener SJ, Barioli A, et al. Impact of baseline hemorrhagic risk on the benefit of bivalirudin versus unfractionated heparin in patients treated with coronary angioplasty: a metaregression analysis of randomized trials. *Am Heart J.* 2014;167:401.e6–412.e6.
- Cassese S, Byrne RA, Laugwitz KL, et al. Bivalirudin versus heparin in patients treated with percutaneous coronary intervention: a metaanalysis of randomised trials. *EuroIntervention*. 2015;11:196– 203.

- Cavender MA, Sabatine MS. Bivalirudin versus heparin in patients planned for percutaneous coronary intervention: a meta-analysis of randomised controlled trials. *Lancet.* 2014;384:599–606.
- Bangalore S, Pencina MJ, Kleiman NS, et al. Heparin monotherapy or bivalirudin during percutaneous coronary intervention in patients with non-ST-segment-elevation acute coronary syndromes or stable ischemic heart disease: results from the Evaluation of Drug-Eluting Stents and Ischemic Events registry. *Circ Cardiovasc Interv.* 2014;7:365–373.
- Shahzad A, Kemp I, Mars C, et al. Unfractionated heparin versus bivalirudin in primary percutaneous coronary intervention (HEAT-PPCI): an open-label, single centre, randomised controlled trial. *Lancet.* 2014;384:1849–1858.
- Xiang DC, Gu XL, Song YM, et al. Evaluation on the efficacy and safety of domestic bivalirudin during percutaneous coronary intervention. *Chin Med J (Engl).* 2013;126:3064–3068.
- Schulz S, Kastrati A, Ferenc M, et al. One-year outcomes with abciximab and unfractionated heparin versus bivalirudin during percutaneous coronary interventions in patients with non-ST-segment elevation myocardial infarction: updated results from the ISAR-REACT 4 trial. *EuroIntervention*. 2013;9:430–436.
- Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials*. 1996;17:1–12.
- Zhang S, Ge J, Yao K, et al. Meta-analysis of early versus deferred revascularization for non-ST-segment elevation acute coronary syndrome. *Am J Cardiol.* 2011;108:1207–1213.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics*. 1994;50:1088–1101.
- Moher D, Cook DJ, Eastwood S, et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. *Lancet*. 1999;354:1896–1900.
- Stone GW, McLaurin BT, Cox DA, et al. Bivalirudin for patients with acute coronary syndromes. N Engl J Med. 2006;355:2203–2216.
- Stone GW, Ware JH, Bertrand ME, et al. Antithrombotic strategies in patients with acute coronary syndromes undergoing early invasive management: one-year results from the ACUITY trial. JAMA. 2007;298:2497–2506.
- Patti G, Pasceri V, D'Antonio L, et al. Comparison of safety and efficacy of bivalirudin versus unfractionated heparin in high-risk patients undergoing percutaneous coronary intervention (from the Anti-Thrombotic Strategy for Reduction of Myocardial Damage During Angioplasty-Bivalirudin vs Heparin study). *Am J Cardiol.* 2012;110:478–484.
- 20. Parodi G, Migliorini A, Valenti R, et al. Comparison of bivalirudin and unfractionated heparin plus protamine in patients with coronary heart disease undergoing percutaneous coronary intervention (from the Antithrombotic Regimens aNd Outcome [ARNO] trial). Am J Cardiol. 2010;105:1053–1059.
- Bittl JA, Chaitman BR, Feit F, et al. Bivalirudin versus heparin during coronary angioplasty for unstable or postinfarction angina: final report reanalysis of the Bivalirudin Angioplasty Study. *Am Heart J.* 2001;142:952–959.
- 22. Lincoff AM, Kleiman NS, Kottke-Marchant K, et al. Bivalirudin with planned or provisional abciximab versus low-dose heparin and abciximab during percutaneous coronary revascularization: results of the Comparison of Abciximab Complications with Hirulog for Ischemic Events Trial (CACHET). Am Heart J. 2002;143:847–853.
- Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med. 2008;358:2218–2230.

- 24. Stone GW, Witzenbichler B, Guagliumi G, et al. Heparin plus a glycoprotein IIb/IIIa inhibitor versus bivalirudin monotherapy and paclitaxel-eluting stents versus bare-metal stents in acute myocardial infarction (HORIZONS-AMI): final 3-year results from a multicentre, randomised controlled trial. *Lancet.* 2011;377:2193–2204.
- Kastrati A, Neumann FJ, Mehilli J, et al. Bivalirudin versus unfractionated heparin during percutaneous coronary intervention. N Engl J Med. 2008;359:688–696.
- Schulz S, Mehilli J, Ndrepepa G, et al. Bivalirudin vs. unfractionated heparin during percutaneous coronary interventions in patients with stable and unstable angina pectoris: 1-year results of the ISAR-REACT 3 trial. *Eur Heart J.* 2010;31:582–587.
- Kastrati A, Neumann FJ, Schulz S, et al. Abciximab and heparin versus bivalirudin for non-ST-elevation myocardial infarction. N Engl J Med. 2011;365:1980–1989.
- Tavano D, Visconti G, D'Andrea D, et al. Comparison of bivalirudin monotherapy versus unfractionated heparin plus tirofiban in patients with diabetes mellitus undergoing elective percutaneous coronary intervention. Am J Cardiol. 2009;104:1222–1228.
- 29. Gibson CM, Morrow DA, Murphy SA, et al. A randomized trial to evaluate the relative protection against post-percutaneous coronary intervention microvascular dysfunction, ischemia, and inflammation among antiplatelet and antithrombotic agents: the PROTECT-TIMI-30 trial. J Am Coll Cardiol. 2006;47:2364–2373.
- Lincoff AM, Bittl JA, Kleiman NS, et al. Comparison of bivalirudin versus heparin during percutaneous coronary intervention (the Randomized Evaluation of PCI Linking Angiomax to Reduced Clinical Events [REPLACE]-1 trial). *Am J Cardiol.* 2004;93:1092– 1096.
- Lincoff AM, Bittl JA, Harrington RA, et al. Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. *JAMA*. 2003;289:853–863.
- 32. Lincoff AM, Kleiman NS, Kereiakes DJ, et al. Long-term efficacy of bivalirudin and provisional glycoprotein IIb/IIIa blockade vs heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary revascularization: REPLACE-2 randomized trial. *JAMA*. 2004;292:696–703.
- 33. Moliterno DJ, Committee TS. Investigators. A randomized two-bytwo comparison of high-dose bolus tirofiban versus abciximab and unfractionated heparin versus bivalirudin during percutaneous coronary revascularization and stent placement: the tirofiban evaluation of novel dosing versus abciximab with clopidogrel and inhibition of thrombin (TENACITY) study trial. *Catheter Cardiovasc Interv.* 2011;77:1001–1009.
- 34. White HD, Ohman EM, Lincoff AM, et al. Safety and efficacy of bivalirudin with and without glycoprotein IIb/IIIa inhibitors in patients with acute coronary syndromes undergoing percutaneous coronary intervention 1-year results from the ACUITY (Acute Catheterization and Urgent Intervention Triage strategY) trial. J Am Coll Cardiol. 2008;52:807–814.
- 35. Briguori C, Visconti G, Focaccio A, et al. Novel Approaches for Preventing or Limiting Events (Naples) III Trial: randomized comparison of bivalirudin versus unfractionated heparin in patients at increased risk of bleeding undergoing transfermoral elective coronary stenting. JACC Cardiovasc Interv. 2015;8:414–423.
- Steg PG, van 't Hof A, Hamm CW, et al. Bivalirudin started during emergency transport for primary PCI. N Engl J Med. 2013;369:2207–2217.
- Garner WL, Linden JA, Chrysant GS. The clinical utility of bivalirudin in patients with coronary artery disease. *Cardiovasc Hematol Agents Med Chem.* 2013;11:44–48.

- Abdel-Wahab M, Richardt G. Safety of bivalirudin in patients with coronary artery disease. *Expert Opin Drug Saf.* 2012;11:141– 150.
- Mehran R, Pocock SJ, Nikolsky E, et al. A risk score to predict bleeding in patients with acute coronary syndromes. J Am Coll Cardiol. 2010;55:2556–2566.
- 40. Mehran R, Pocock S, Nikolsky E, et al. Impact of bleeding on mortality after percutaneous coronary intervention results from a patient-level pooled analysis of the REPLACE-2 (randomized evaluation of PCI linking angiomax to reduced clinical events),

ACUITY (acute catheterization and urgent intervention triage strategy), and HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trials. *JACC Cardiovasc Interv.* 2011;4:654–664.

- Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–2015.
- Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med.* 2009;361:1045–1057.