
w
w
w
.t
he

-in
no

va
tio

n.
or
g

REPORT
Pan-omics-based characterization and prediction of highly multidrug-
adapted strains from an outbreak fungal species complex
Xin Fan,1,2,3,18 Lei Chen,3,18 Min Chen,4,18 Na Zhang,3,5 Hong Chang,5,6 Mingjie He,5,6 Zhenghao Shen,3,5 Lanyue Zhang,3,5 Hao Ding,3,5 Yuyan Xie,3,5

Yemei Huang,7 Weixin Ke,3 Meng Xiao,8,9 Xuelei Zang,7 Heping Xu,10 Wenxia Fang,11 Shaojie Li,3,5 Cunwei Cao,12,13 Yingchun Xu,8,9 Shiguang Shan,5,6

Wenjuan Wu,14 Changbin Chen,15,16,* Xinying Xue,7,17,* and Linqi Wang3,5,*
*Correspondence: cbchen@ips.ac.cn (C.C.); xuexinying2988@bjsjth.cn (X.X.); wanglq@im.ac.cn (L.W.)

Received: January 5, 2024; Accepted: July 28, 2024; Published Online: July 31, 2024; https://doi.org/10.1016/j.xinn.2024.100681

ª 2024 The Authors. Published by Elsevier Inc. on behalf of Youth Innovation Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Pan-phenomic assessment revealed 2,821 phenotype-strain associations in the Cryptococcus gattii species complex (CGSC).

- Phenotypic analysis revealed a specific set of CGSC strains with high adaptations to three first-line antifungals.

- Integrated pan-omic approaches identified novel multidrug resistance determinants in CGSC strains.

- We identified biomarkers that allow the prediction of highly multidrug-adapted CGSC strains.
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Strains from the Cryptococcus gattii species complex (CGSC) have caused
the Pacific Northwest cryptococcosis outbreak, the largest cluster of life-
threatening fungal infections in otherwise healthy human hosts known
to date. In this study, we utilized a pan-phenome-based method to assess
the fitness outcomes of CGSC strains under 31 stress conditions,
providing a comprehensive overview of 2,821 phenotype-strain associa-
tions within this pathogenic clade. Phenotypic clustering analysis revealed
a strong correlation between distinct types of stress phenotypes in a sub-
set of CGSC strains, suggesting that shared determinants coordinate their
adaptations to various stresses. Notably, a specific group of strains,
including the outbreak isolates, exhibited a remarkable ability to adapt
to all three of the most commonly used antifungal drugs for treating cryp-
tococcosis (amphotericin B, 5-fluorocytosine, and fluconazole). By inte-
grating pan-genomic and pan-transcriptomic analyses, we identified previ-
ously unrecognized genes that play crucial roles in conferring multidrug
resistance in an outbreak strain with high multidrug adaptation. From
these genes, we identified biomarkers that enable the accurate prediction
of highly multidrug-adapted CGSC strains, achieving maximum accuracy
and area under the curve (AUC) of 0.79 and 0.86, respectively, using ma-
chine learning algorithms. Overall, we developed a pan-omic approach to
identify cryptococcal multidrug resistance determinants and predict highly
multidrug-adapted CGSC strains that may pose significant clinical
concern.
INTRODUCTION
Cryptococcosis is a severe fungal disease that affects people worldwide. This

life-threatening illness is caused by pathogenic yeasts from the Cryptococcus
neoformans species complex (CNSC) and the Cryptococcus gattii species com-
plex (CGSC), which are among the most significant human fungal pathogens in
the Basidiomycota phylum—a major fungal group with over 40,000 described
species.1–3 Currently, there are only three classes of drugs available to treat
CNSC and CGSC infections: polyenes (mainly amphotericin B [AmB] and its lipid
formulations), azoles (primarily fluconazole), and the pyrimidine analog
5-fluorocytosine (5-FC).4–8 The limited number of antifungal options is further
ll
complicated by the ongoing emergence of drug-resistant variants, heightening
the threat posed by CNSC and CGSC infections.9–12

Previous studies have identified several virulence traits common to both
CNSC and CGSC pathogens.5,13 For instance, both can thrive at typical mamma-
lian body temperatures, a characteristic that sets them apart from non-patho-
genic Cryptococcus species. Despite these similarities, the CNSC and CGSC
exhibit different clinical features.14–16 CNSC pathogens (C. neoformans and
C. deneoformans) primarily infect immunocompromised individuals, such as pa-
tients with AIDS, often leading to central nervous system infections. In contrast,
CGSC strains are more commonly associated with infections in immunocompe-
tent individuals and can cause severe lung diseases without spreading to other
organs.13,17

CGSC pathogens are classified into five recognized genotypes: VGI, VGII, VGIII,
VGIV, and VGV. These genotypes are currently proposed as five distinct species:
C. gattii sensu stricto, C. deuterogattii, C. bacillisporus, C. tetragattii, and
C. decagattii, respectively.18 To date, C. gattii sensu stricto and C. deuterogattii ac-
count for the majority of CGSC infections worldwide.19–22 Infections caused by
the other three species are relatively rare and mainly reported in patients
from the Americas, Sub-Saharan Africa, and the Indian subcontinent.20–22

Among the CGSC pathogens, C. deuterogattii (VGII) has garnered significant
attention because it was responsible for a major cryptococcosis outbreak in
the Pacific Northwest of North America—the largest recorded outbreak of inva-
sive fungal disease in otherwise healthy hosts.23,24 Over the past two decades,
this pathogen, along with C. gattii (VGI), has been detected in various regions
across temperate, subtropical, and tropical zones.19–22 This suggests that they
can adapt to diverse environmental niches with varying stressors, which may
have contributed to their emergence as global pathogens capable of infecting
healthy individuals.
Several studies have examined the differences between CGSC strains in their

adaptation to specific stressors, such as antifungal drugs, which can lead to vary-
ing clinical treatment outcomes among strains.25–29 Despite these valuable
studies, the absence of a systematic pan-phenomic evaluation has limited our
understanding of the survival advantages between and within CGSC species in
response to antifungal agents or host-related and environmental stresses. These
factors are strongly associated with the ability of CGSC strains to tolerate treat-
ment, cause disease, and spread.
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Figure 1. Phylogenetic diversity and population structure of CGSC strains (A) Maximum likelihood trees of 128 CGSC isolates based on SNPs from whole-genome sequences (top).
The origins, temperature zones, ploidy levels, and mating types of the isolates are indicated by different bars (bottom). (B) Admixture population structure analysis of CGSC clades at
K = 9, 10, and 11 using ADMIXTURE. (C) Principal-component analysis (PCA) showing sequence similarity of CGSC strains. The positions of the clades and subclades of CGSC strains
are indicated, each distinguished by a unique color. (D) Decay of linkage disequilibrium (expressed in terms of correlation coefficient, r2) as a function of distance averaged over 250 kb
for VGI and VGII isolates. (E) Diversity metric (p) for VGI and VGII isolates. Boxplots display the 25th, 50th (median), and 75th quantiles as well as the minimum andmaximum values.
Statistical analyses were performed using the Mann-Whitney U test.

REPORT

w
w
w
.t
he

-in
no

va
tio

n.
or
g

In this study, we conducted a comprehensive phenotypic evaluation of 91
strains of C. deuterogattii (VGII, 48 strains) and the closely related species
C. gattii (VGI, 43 strains), the most common and widespread CGSC pathogens.
Phenotypic assessments of fungal growth fitness under a wide range of stress
conditions generated 2,821 phenotype-strain associations, providing unprece-
dented insights into inter- and intraspecific differences in stress adaptation.
This phenome-based assessment allowed us to identify a specific group of
CGSCstrainswith high adaptation to all three commonly usedfirst-line antifungal
drugs. By integrating pan-genomic and pan-transcriptomic approaches, we iden-
tified a set of genes involved in multidrug resistance in an outbreak CGSC strain.
Furthermore, we discovered biomarkers that enable the accurate prediction of
CGSC strains with high multidrug adaptation, which may be of potential clinical
concern.

RESULTS
Population genomic analysis of 115 CGSC strains

We collected 115 CGSC strains from ten countries across Asia, Africa, Europe,
North America, South America, andOceania. These included 107 clinical isolates,
3 environmental isolates, 4 animal isolates, and 1 strain of unknown origin (Fig-
ure 1A; Table S1). The hospitals from which the clinical strains were sourced
were located in temperate, subtropical, and tropical zones (Figure 1A). Consistent
with most Cryptococcus species, the majority (87.8%, 101/115) of the CGSC
strainswere of the amating type, while only 12.2% (14/115) were of the amating
type (Figure 1A; Table S1). Ploidy assessment using flow cytometry revealed that
93.0% (107/115) of the strains were haploid, with the remainder being diploid
(Figure 1A; Table S1).

We isolated single colonies of all 115 CGSC strains and sequenced their
genomes. To facilitate an unbiased analysis of the genomic diversity of the
CGSC, we generated de novo genome assemblies of these isolates. The mean
number of contigs in our assemblies was 187, the mean N50 was 283,565 bp,
and the mean genome size was 17.58 Mb (Figure S1; Table S1).
2 The Innovation 5(5): 100681, September 9, 2024
To provide context for our isolates, we included the publicly available genome
sequences of 11 CGSC strains reported by Farrer et al.30 These sequences were
of high quality and included the reference strains for VGI (WM276) and VGII
(R265), bringing the total number of genomes for subsequent phylogenetic ana-
lyses to 128 isolates (Figure S1).
Phylogenetic analysis of the CGSC genomes revealed a clear separation into

four distinct clades (Figures 1A and S2). This separation was further supported
by population ancestry analyses using STRUCTURE (k = 10) and sequence sim-
ilarity assessed via principal-component analysis (PCA) (Figures 1B and 1C).
Among the 128 isolates, 53 were VGI (41.4%), 69 were VGII (53.9%), and 4
were VGIII. Only two isolates were VGIV, and no VGV isolates were included in
this study (Figures 1A and S2). As VGIII, VGIV, and VGV are rare, particularly
outside of the Indian subcontinent,20–22 their low representation in our sam-
ple—comprising mainly East Asian strains (86/115, 74.8%)—was expected.
Our phylogenetic analysis, in line with previous studies, indicated that

C. deuterogattii/VGII is the basal lineage of the CGSC, further subdivided into
four subclades (Figures 1A, 1C, and S2). In contrast, VGI strains primarily clus-
tered into two subclades (Figures 1C and S2). These results suggest greater ge-
netic diversity within VGII strains compared to VGI strains.
Supporting this notion, the decay of linkage disequilibrium analysis for the

CGSC strains showed that VGII exhibited evidence of <0.1 r2 within a 250 kb re-
gion (Figure 1D). Conversely, approximately 0.26 r2 was observed in the VGI pop-
ulation (Figure 1D). Additionally, genome-wide calculations of the diversitymetric
p revealed a statistically significant difference between the values for VGI and
VGII strains, further corroborating the higher genetic diversity in VGII compared
to VGI strains (Figure 1E).

Systematic phenotypic profiling of CGSC strains
The remarkable genetic diversity of CGSC strains revealed by population

genomic analysis likely reflects variations in their ability to adapt to stress. To
comprehensively assess the stress adaptation of CGSC strains, we used a
www.cell.com/the-innovation
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Figure 2. Systematic phenotypic profiling reveals a set of CGSC isolates with strong adaptation to three antifungals (A) Phenotypic traits of each CGSC strain were evaluated under
different stress conditions. Phenotypic traits were scored using five grades based on growth fitness (0, no growth; 1, strong growth inhibition; 2, moderate growth inhibition; 3, weak
growth inhibition; 4, slight growth inhibition; and 5, no growth inhibition). (B) Hierarchical clustering of different phenotypic traits in CGSC strains. The heatmap was organized into
columns for phenotypes and rows for strains. Blue and red indicate high and low sensitivities to stress, respectively. The data are presented as individual values from two biological
replicates. Mel, melanin production; LIM, iron limitation; CR, Congo red; CFW, calcofluor white; DTT, dithiothreitol; MMS, methyl methanesulfonate; Rot, rotenone; Flu, fluconazole; Itr,
itraconazole; 5-FC, 5-flucytosine; HU, hydroxyurea; SDS, sodium dodecyl sulfate; UR, urease production; Rapa, rapamycin; Nys, nystatin; Sor, sorbitol; FX, fludioxonil; TH, tert-butyl
hydroperoxide; AmB, amphotericin B; MD, menadione; DM, diamide. (C) PCA showing phenotypic trait similarities between the CGSC strains. Each point represents the mean of two
biological replicates. (D) Violin plot of Shannon index differences based on phenotypic traits between the VGI and VGII strains. Coefficients of variation (CVs) are shown. Statistical
differences were determined using a two-tailed unpaired Student’s t test. (E) The differences in phenotypic traits between group 1 and group 2 in (A) are shown in a bubble chart.

(legend continued on next page)
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 semi-quantitative phenome assessment strategy as previously reported by Jung

et al.31 The phenotypic assessment included 31 different growth condition tests
for virulence factor production and adaptation to various stresses (Figure 2A).
Due to the extreme rarity of VGIII, VGIV, and VGV strains, only the VGI and VGII
strains (43 VGI isolates and 48 VGII isolates) were subjected to these stress
assessment tests (Figures 2A and S1).

For phenotypic traits, we evaluated the relative growth fitness of each CGSC
strain under different stress conditions, generating 2,821 strain-phenotype asso-
ciations (Figures 2A and 2B). Pearson’s correlation analyses of the phenotypic
data indicated high correlations between phenotypes related to similar stresses,
such as cell wall stress (calcofluor white and Congo red), osmotic stress (NaCl
and KCl), and azole stress (fluconazole and itraconazole) (Figure S3). These re-
sults supported the reliability of the phenome method employed.

PCA-based evaluation of the phenotypic profiles indicated that the VGI and
VGII strains were largely represented as two separate groups, suggesting a
strong interlineage distinction in their ability to tolerate different stresses (Fig-
ure 2C). However, the subclades of VGI and VGII did not cluster independently,
revealing the complexity of genetic-phenotypic connections between strains of
the same species (Figure S4). Using the Shannon index, we found a higher vari-
ation in stress adaptation among the VGII strains than among the VGI strains
(Figure 2D). This difference could be explained by the higher within-species ge-
netic diversity of the VGII strains than that of the VGI strains, as illustrated in
Figure 1.

We also used hierarchical clustering to assess the similarity of the phenotypic
profiles between the different strains (Figure 2B). These results are consistent
with the PCA data and show that the CGSC strains can be divided into two
groups: group 1 (VGI 92.7%) and group 2 (VGII 91.8%), dominated by VGI and
VGII, respectively (Figure 2C).

We further evaluated the contribution of each phenotype to the differences in
phenotypic profiles between groups 1 and 2. As shown in Figure 2E, the VGI
group exhibited an increased ability to produce urease and significantly greater
resistance to eight stresses, including those related to salt (NaCl, KCl, and
CaCl2), antifungal agents (nystatin and rapamycin), sorbitol, rotenone, and calco-
fluor white. Conversely, the VGII group demonstrated stronger adaptation to ten
stresses, growingmore robustly at 37�C in a 5%CO2 atmosphere, at 39�C, and in
the presence of four antifungal agents (5-FC, fluconazole, AmB, and fludioxonil),
three oxidative stressors (menadione, diamide, and H2O2), and a genotoxic
stressor (hydroxyurea).

Among the stress phenotypes that differed between the groups, we focused
on AmB, fluconazole, and 5-FC, the most commonly used antifungal drugs to
treat CGSC infections.7 Using a Gaussian mixture modeling (GMM) approach
based on the phenotypic traits reflecting overall tolerance to these three anti-
fungal drugs, we identified a set of strains—approximately 17.6% (16/91) of
the phenotypically tested isolates—that appeared to have better adaptation
to all three drugs (Figures 2F and S1). A 3D plot of the GMM-based clustering
results indicated that these strains could be grouped independently of the
others (Figure 2G). We referred to these strains as multidrug hyperresistant
(MHR) strains.

A functional pan-genomic strategy identifies VGII-specific genes
involved in drug resistance in an MHR strain

As all MHR strains were VGII strains, we hypothesized that VGII-specific genes
might contribute to multidrug resistance. To test this hypothesis, we utilized de
novogenomeassemblies to defineand characterize thepan-genome (FigureS1).
We identified 9,443 gene clusters in the CGSC strains, condensed into 7,983 non-
redundant orthogroups. The CGSC pan-genome comprised a core genome of
4,688 orthogroups present in all 91 isolates (58.7% of the pan-genome), 843
soft core orthogroups found in >95% of the isolates (10.6% of the pan-genome),
1,643 shell genes in 5%–95% of the isolates (20.6% of the pan-genome), and a
cloud genome of 809 genes present in less than 5% of the isolates (10.1% of
the pan-genome; Figure 3A). On average, each isolate contained 6,275 or-
thogroups and 1,587 orthologous accessory gene clusters, corresponding to
21.4%–27.0%of the total genomeof the strain. The pan-genomewas considered
Statistical significance was determined using a two-tailed unpaired Student’s t test. (F) B
antifungal drugs using the Gaussian mixture modeling (GMM)-based method. Group 1 (G1)
well as the minimum and maximum values. Two-tailed unpaired Student’s t test. (G) 3D plo
traits (phe-traits) of the three antifungal agents.
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closed, as the number of pan-genes did not increase after the addition of approx-
imately 80 genomes (Figure 3B).
Based on the pan-genomic data, we identified 12 genes present in over 90% of

the VGII genomes but absent in all VGI genomes (Figure 3C). Among these, eight
geneswere found in allMHRstrains. Through transcriptomic assays on theMHR
strain R265 cultured under host-mimicking conditions (DMEM medium at 37�C
in a 5% CO2 atmosphere), we observed that four out of these eight VGII-specific
genes showed either no detectable transcription or very low levels (transcripts
per million [TPM] < 5) and were excluded from further functional assays. The re-
maining four genes underwent gene knockout experiments, and the resulting
mutants were evaluated for their ability to adapt to various antifungal agents.
As depicted in Figure 3D, all of these VGII-specific genes were implicated

in cellular adaptation to at least one antifungal drug. Mutants lacking
CNBG_9317 or CNBG_0992 exhibited increased sensitivity to fluconazole and
5-FC, respectively, while CNBG_3001D and CNBG_9316D mutants showed
heightenedsusceptibility tofluconazole and 5-FC.However, noneof the VGII-spe-
cific genes appeared to affect the adaptation of R265 to AmB. Collectively, these
findings suggest that while VGII-specific genes contribute to cellular adaptation
to one or two antifungal drugs, they do not fully confer resistance to all three anti-
fungal drugs.

Pan-transcriptomic assessment enables identification of key multidrug
resistance genes in MHR strains
To further identify the determinants of multidrug resistance, we used a pan-

transcriptome method based on the fact that variations in gene expression in
different strains can be related to phenotypic traits, as demonstrated in different
fungal species.26,32,33

We performed high-coverage RNA sequencing (RNA-seq) analyses on 91
CGSC strains, and the RNA-seq reads from each strain were aligned to the cor-
responding genome to maximize the coverage of transcripts from the CGSC
strains (Figure S1). We detected a total of 6,082 transcripts (average
TPM > 10) with an expression coverage of 98.4% for core orthogroups, 95.5%
for softcore orthogroups, and 41% for shell and cloud orthogroups. Compared
with using only the genome of strain R265 as a reference genome, the pan-
genome-based approach yielded 970 additional transcripts, themajority ofwhich
(586 transcripts) could be aligned to the publicly available genomes of other
Cryptococcus isolates.
To identify the determinants underlying CGSC adaptation to different stresses,

we conductedweighted gene co-expression network analysis based on pan-tran-
scriptomic data to explore potential gene modules significantly correlated with
phenotypic traits related to each stress condition (Figures 4A and S1). This
approach identified 16 gene modules (Figure 4A), with 11 out of 16 modules
associated with at least two phenotypes, indicating the pleiotropic roles of genes
in orchestrating fungal adaptation to various stresses.
One specific gene module, highlighted in turquoise color (Figure 4B), was

significantly and positively correlated with MHR levels. Gene Ontology (GO) anal-
ysis of genes within this module revealed enrichment in metabolic processes
(such as fatty acid and lipidmetabolism) and oxidation and redox processes (Fig-
ure 4C). Previous studies have implicated these biological processes in fungal
cellular responses to antifungal drugs,34–37 underscoring the potential impor-
tance of genes within the turquoise-colored module in conferring antifungal
resistance.
To investigate the potential functional role of turquoise color block genes in

multidrug resistance, we selected the top 10 candidate genes with the highest
correlationwith theMHRphenotype (Table S2). Each of these geneswas deleted
in the R265 strain. Gene knockouts were achieved for nine genes; however, we
failed to obtain CNBG_5527 mutants after multiple attempts, suggesting that it
may be necessary for R265 growth. Indeed, the homolog of this gene has
been shown to be essential in Saccharomyces cerevisiae.38

All nine identified genes affected the adaptation of R265 cells to at least two
antifungal drugs (Table S2). Notably, four genes (CNBG_1863, CNBG_3326,
CNBG_6193, and CNBG_4483) were found to significantly reduce resistance to
all three antifungal agents upon their deletion (Figures 4D and 4E). The roles of
oxplot showing the clustering of the phenotypic traits reflecting tolerance to the three
represents MHR strains. Boxplots display the 25th, 50th (median), and 75th quantiles as
t of the GMM-based clustering results. Each point represents the sum of the phenotypic

www.cell.com/the-innovation
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Figure 3. Functional pan-genomics analysis reveals the impact of VGII-specific genes on drug resistance (A) Percentage of core, softcore, shell, and cloud orthogroups in pan-
genome analysis. (B) Pan and core gene size as the number of included genomes increases; boxplots display the 25th and 75th percentiles as well as the minimum and maximum
values. (C) Presence/absence matrix and functional annotation of VGI- and VGII-specific genes identified by pan-genome analysis. (D) Wild-type (R265) and four VGII-specific genes
mutant cells were spotted onto YPD plates with amphotericin B (0.4 mg/mL), fluconazole (15 mg/mL), or 5-flucytosine (300 mg/mL). Images are representative of more than 3 trials.

REPORT
these genes in multidrug resistance have not been previously characterized in
CGSC pathogens or other fungal species (Table S4).

To further evaluate the impact of these genes on multidrug resistance, their
respective mutants underwent transcriptomic analyses to identify differentially
expressed genes (DEGs) influenced by their absence (Table S3). We observed
significant enrichment of DEGs within the turquoise-colored gene module asso-
ciated withMHR, indicating their crucial role in this phenotype (Figure 5A). As de-
picted in Figure 5B, a total of 211 overlapping genes were identified across all
sets of DEGs. GO analysis revealed the significant enrichment of genes involved
in processes related to cellular adaptation to oxidative stress among these over-
lapping DEGs (Figure 5C).

Antifungals induce the generation of endogenous reactive oxygen species
(ROS).37,39–42 In this context, the ability to reduce the production of intracellular
ROS or enhance antioxidant defenses is closely related to fungal adaptation to
antifungals. We performed a flow-cytometry-based evaluation to compare the
levels of intracellular ROS in strains with mutations in MHR-related genes to
those of the parental strain R265 and found that the levels of ROS in these strains
did not appear to be remarkably different, regardless of drug treatment (Fig-
ure S5). These results suggested that MHR-related genes are not involved in
the generation of intracellular ROS upon antifungal challenge, implying that
MHR-related genes may play a role in the inhibition of oxidative damage.
ll
In support of this notion, mutants lacking the four identified multidrug
resistance genes exhibited increased sensitivity to H2O2 compared to the
wild-type R265 strain (Figure 5D). Additionally, phenotypic profiling revealed
a significant correlation between the MHR phenotype and enhanced cell
growth under oxidative stress conditions, including diamide, H2O2, mena-
dione, and tert-butyl hydroperoxide (Figure 5E). Detailed analyses further
demonstrated that MHR strains displayed greater resistance to H2O2

compared to other CGSC strains (Figure 5F). These findings suggest that
robust tolerance to oxidative stress is closely associated with adaptation
to various antifungal agents, consistent with previous studies on fungal
species highlighting the interplay between oxidative stress defense mech-
anisms and antifungal adaptation.

A machine-learning-integrated multiomic feature analysis to predict
MHR CGSC isolates
The remarkable adaptation of MHR strains to three first-line anticryptococcal

drugs suggests their potential clinical significance. Phylogenetic analyses
showed that the MHR strains did not belong to a specific subclade but were
discretely distributed across the various subclades of VGII, suggesting that
they could not be characterized by phylogeny because of the complexity of ge-
netic variation among their genomes (Figure S6).
The Innovation 5(5): 100681, September 9, 2024 5



Figure 4. Pan-transcriptome-based WGCNA enables the identification of MHR-related genes (A) Hierarchical cluster tree showing the gene co-expression modules identified using
weighted gene co-expression network analysis (WGCNA). Each gene is represented by a tree leaf, and each module is represented by a major tree branch. The heatmap shows the
gene co-expression module assignments. (B) Degree of positive correlation between phenotypes andmodule eigengenes; yellow line represents the presence of a positive correlation
(p< 0.05). (C) GO analysis of the genes included in the turquoisemodule. (D) Cells of wild-type (R265) and 4MHR-related genemutant strains were spotted onto the noted YPD plates
with amphotericin B (0.45 mg/mL), fluconazole (15 mg/mL), and 5-flucytosine (300 mg/mL). Images are representative of more than three trials. (E) Quantitative antifungal sus-
ceptibility phenotypic schematic diagram (left) and histograms of colony-forming units (CFUs) of wild-type (R265) and four MHR-related gene mutant strains cultured in RPMI
medium supplemented with amphotericin B (0.0625 mg/mL), fluconazole (1 mg/mL), or 5-flucytosine (1 mg/mL). Data are presented as mean ± SD.
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Recently, multiomic data integrating expression and genetic variation have
proven effective in identifying predictors that can accurately forecast com-
plex disease-associated traits in humans across diverse genetic back-
grounds using machine learning.43–45 However, this approach has yet to
be applied extensively to human fungal pathogens. In this study, we focused
on genes identified through our multiomic approach to discover biomarkers
(features) capable of predicting MHR strains (Figure S1). These genes en-
compassed four VGII-specific genes and ten genes from the turquoise mod-
ule that exhibited the strongest correlation with the MHR phenotype. We em-
ployed model training to develop independent predictive models for MHR
strains, utilizing input data that included biomarkers, the presence or
absence of VGII-specific genes, and variations in the expression levels of tur-
quoise module genes (Figure 6A).

These models are based on a multistep predictor pipeline. Inside the pipeline,
each ensemble consisted of three algorithmsacting in parallel: logistic regression
with elastic net regularization, random forest, and XGBoost. The scores of the
three algorithms are averaged to form a predictor. Model hyperparameters
were optimized using a 10-fold cross-validation scheme (Figures 6A and S1).

The fully trainedmodel was validated on independent outer layers including 22
CGSC strains. The percentages ofMHR strainswere similar between the training
and validation datasets (Figure 6A). The optimized model achieved area under
the curve (AUC) values of 0.91. In the outer validation group, the AUC predicted
for MHR reached 0.78 (Figure 6B).

We investigated the significance of features used in the integrated training
model and found notable variation in their contributions (coefficient of variation =
1.13) (Figure 6C). This variability suggests the potential for reducing the number
of features used inmodel training. To test this hypothesis, we ranked the features
by importance and observed that model accuracy in validation could be
enhanced by excluding less influential features (Figure 6D). Notably, focusing
on key features, such as the presence or absence of CNBG_9316 and variations
6 The Innovation 5(5): 100681, September 9, 2024
in expression levels of CNBG_1863, CNBG_3686, CNBG_5527, and CNBG_9373,
maximized the model’s AUC, achieving a peak value of 0.86 (Figure 6D). Specif-
ically, by using three features—the presence or absence of CNBG_9316 and var-
iations in expression of CNBG_1863 and CNBG_5527—we achieved robust pre-
dictive performance (AUC = 0.85 for the training set, 0.82 for the validation set)
(Figure 6D). These findings highlight the utility of pan-omic data in identifying a
concise set of three biomarkers capable of accurately predicting MHR CGSC
isolates.

DISCUSSION
Among CGSC pathogens, C. gattii/VGI and C. deuterogattii/VGII are widely

distributed and capable of infecting healthy individuals. Using a systematic
phenotypic evaluation of VGI and VGII strains, we provide a comprehensive un-
derstanding of lineage- and strain-specific survival advantages in response to
various stresses relevant to CGSC tolerance and pathogenicity.16,25–27 The
data revealed significant differences between VGI and VGII populations in their
ability to adapt to diverse stress conditions. PCA of their phenotypic profiles
grouped VGI and VGII strains into distinct clusters, supporting the proposition
that VGI and VGII, despite their evolutionary proximity, represent distinct fungal
species.18 Our findings also indicated greater heterogeneity in stress adaptation
among VGII strains compared to VGI strains, likely due to VGII’s greater genetic
diversity as the basal lineageof CGSC, resulting in varied phenotypic traits among
strains.
Phenotypic clustering highlighted significant correlations among traits associ-

ated with different stresses, indicating that certain strains exhibit robust resis-
tance tomultiple stresses. Particularly noteworthy was a subset of strains highly
adaptive to AmB, fluconazole, and 5-FC—commonly used anticryptococcal
drugs—which exclusively belonged to the VGII lineage. This finding aligns with
previous studies emphasizing VGII’s heightened clinical significance compared
to other CGSC pathogens.17,23,26,27,46
www.cell.com/the-innovation
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Figure 5. Functional role of the MHR-related genes in multidrug resistance (A) Percentage of turquoise module genes from Figure 4A regulated by each of the MHR-related genes;
significance was evaluated using Fisher’s exact test. (B) UpSet plot showing the combination of the four MHR-related genes. Yellow represents differentially expressed genes (DEGs)
co-regulated by all MHR-related genes. (C) GO analysis of DEGs co-regulated by all four MHR-related genes. (D) Wild-type (R265) and the four MHR-related gene mutant strains were
spotted onto YPD plates containing 0.0175% H2O2. Images are representative of more than 3 trials. (E) Pearson’s correlation between the MHR phenotype and various stresses. The
dashed red line indicates p = 0.01. DM, diamide; MD, menadione; CO2, 37�C 5% CO2; TH, tert-butyl hydroperoxide; Flu, fluconazole; 5-FC, 5-flucytosine; AmB, amphotericin B. (F)
Comparison of tolerance to H2O2 stress among the different isolates. Boxplots display the 25th, 50th (median), and 75th quantiles as well as theminimum andmaximum values. Two-
tailed unpaired Student’s t test.

REPORT
We employed a pan-omic approach to predict genes associated with theMHR
phenotype and identify novel multidrug resistance determinants in the CGSC.
Among the nine candidate genes predicted and amenable to deletion, knockout
ll
mutants of all were found to be resistant to at least two of three antifungal drugs,
with four genes (44.4%) showing reduced resistance to all three drugs, validating
our predictive approach for multidrug resistance genes.
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Figure 6. Prediction of MHR CGSC isolates using machine learning-integrated multiomic features (A) Schematic of the machine learning framework. CV, cross-validation. (B)
Receiver operating characteristic (ROC) curves for the prediction of MHR CGSC isolates in the training and validation sets. (C) Feature importance based on the three model al-
gorithms As indicated by the colored bars, higher importance values are shown in blue, whereas lower importance values are shown in orange. (D) Area under the curve (AUC) in
training and validation sets after eliminating features of low importance. The 95% confidence intervals were calculated using bootstrap sampling, with shaded colors representing the
lower and upper bounds of the training and validation sets, respectively.
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Our phenome data revealed significant correlations between phenotypic traits
linked toMHRand those related to oxidative stress. Prior studies have implicated
antioxidant defenses in resistance against AmB, fluconazole, and 5-FC across
various fungi.47–49 These findings, coupledwith our phenotypic correlations, sug-
gest that theMHR phenotype in these strains may stem from robust antioxidant
capacities. Supporting this notion, our data demonstrated enhanced tolerance to
oxidative agents in MHR strains compared to others. Nevertheless, elucidating
the mechanisms underlying the heightened oxidative stress tolerance in MHR
strains requires further investigation.

Using a machine learning approach, we identified features that enabled
accurate prediction of MHR strains (AUC > 0.85). Importantly, our method
is applicable with small sample sizes, making it versatile for predicting clin-
ically relevant phenotypic traits in other pathogens. Our study represents a
significant advance in utilizing pan-omics methods to explore novel multi-
drug resistance genes and predict clinically relevant MHR strains within
the CGSC. While our focus was on CGSC pathogens, we anticipate that
these findings and methodologies will inspire further research and provide
crucial experimental frameworks for identifying resistance determinants
and predicting resistant variants across different fungal pathogenic species
or species complexes.
MATERIALS AND METHODS
See the supplemental information for details.
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