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Abstract

Objective: The objective of this study was to evaluate the robustness and repro-

ducibility of computed tomography‐based texture analysis (CTTA) metrics extracted

from CT images of a customized texture phantom built for assessing the association

of texture metrics to three‐dimensional (3D) printed progressively increasing textural

heterogeneity.

Materials and Methods: A custom‐built 3D‐printed texture phantom comprising of

six texture patterns was used to evaluate the robustness and reproducibility of a

radiomics panel under a variety of routine abdominal imaging protocols. The phan-

tom was scanned on four CT scanners (Philips, Canon, GE, and Siemens) to assess

reproducibility. The robustness assessment was conducted by imaging the texture

phantom across different CT imaging parameters such as slice thickness, field of

view (FOV), tube voltage, and tube current for each scanner. The texture panel com-

prised of 387 features belonging to 15 subgroups of texture extraction methods

(e.g., Gray‐level Co‐occurrence Matrix: GLCM). Twelve unique image settings were

tested on all the four scanners (e.g., FOV125). Interclass correlation two‐way mixed

with absolute agreement (ICC3) was used to assess the robustness and reproducibil-

ity of radiomic features. Linear regression was used to test the association between

change in radiomic features and increased texture heterogeneity. Results were sum-

marized in heat maps.

Results: A total of 5612 (23.2%) of 24 090 features showed excellent robustness

and reproducibility (ICC ≥ 0.9). Intensity, GLCM 3D, and gray‐level run length matrix

(GLRLM) 3D features showed best performance. Among imaging variables, changes

in slice thickness affected all metrics more intensely compared to other imaging vari-

ables in reducing the ICC3. From the analysis of linear trend effect of the CTTA

metrics, the top three metrics with high linear correlations across all scanners and

scanning settings were from the GLRLM 2D/3D and discrete cosine transform (DCT)

texture family.

Conclusion: The choice of scanner and imaging protocols affect texture metrics.

Furthermore, not all CTTA metrics have a linear association with linearly varying

texture patterns.
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1 | INTRODUCTION

Texture analysis (TA) can provide quantitative metrics extracted from

routine clinical images that can be correlated to and/or predict

multiple clinical endpoints.1–3 Despite having the potential for wide

applicability within clinical workflow for tasks such as objective

whole lesion assessment and longitudinal disease monitoring, poor

standardization of TA, limits its reliability, particularly in multicenter

studies.4–8

Prior studies have investigated the reliability of computed

tomography (CT)‐based TA (CTTA) metrics, by conducting a series of

CT imaging experiments using a variety of texture phantoms to eval-

uate the performance of a CTTA panel on routine imaging proto-

cols.4,5,9–15 The robustness, repeatability, and reproducibility of

CTTA metrics are variably sensitive to various scanner and scanning

parameters. Studies have reported reliable CTTA metrics, that is,

CTTA metrics that are robust, reproducible, and repeatable across

different scanners and scanning protocols. The identification of reli-

able CTTA metrics aid in dimensionality reduction by selecting only

reliable metrics and therefore, aid in the development of reliable

imaging markers and prediction models.16,17 In some studies, the

effects of post‐processing techniques that reduce statistical noise

while preserving the underlying edges associated with true anatomy

or pathology have been explored and shown to bring about signifi-

cant differences in radiomic reliability compared to when they were

not used.5,18

Physical phantoms have been used in quantitative imaging to

explore and quantify sources of bias and variance, for example, ini-

tiatives by the Radiological Society of North America (RSNA), Quan-

titative Imaging Biomarker Alliance (QIBA),19 and the Credence

Cartridge Radiomics phantom.9 In some cases, virtual phantoms or

digital reference objects (DROs) have also been useful for evaluation

of software packages that are used to derive quantitative imaging

biomarkers. By providing a dataset and a set of metric evaluation

that can be accessed by all, radiomics can be rigorously tested in

large multi‐institution studies to aid its clinical translation. One such

major effort is the Image Biomarker Standardization Initiative (IBSI)

that aims to standardize radiomics imaging biomarkers.20

While in some cases these calibration objects have been used

for standardization of imaging data acquired using diverse scanners,

scanning and post processing protocols,10,11,21 others use the same

approach to identify radiomic metrics that are reliable5 (robust,

repeatable, and reproducible) so as facilitate big data radiomics using

data pooled from these radiomic metrics acquired from multiple

institutions.

Although these studies provide some insight into the reliability

of CTTA metrics, to the best of our knowledge, a systematic investi-

gation on the association of reliable texture metrics to 3D printed

progressively increasing textural heterogeneity across multiple clini-

cal scanners/vendors and imaging protocols has not yet been per-

formed.

In this study, a texture phantom (The Phantom Laboratory,

Salem, NY) was designed and constructed explicitly for CTTA metric

extraction. Reliability of the extracted CTTA metrics were assessed

on four different CT scanners (Philips Brilliance 64, Canon Aquilion

Prime 160, GE 16 Lightspeed, and Siemens Sensation 10) and five

different imaging variables (slice thickness, field of view, post‐recon-
struction filtering, tube voltage, and tube current per scanner). We

investigated the association of various CTTA metrics to controlled

increases in heterogeneity created by 3D‐printed texture patterns.

2 | MATERIALS AND METHODS

2.A | CTTA phantom

In this study, we designed and constructed a texture phantom to

evaluate the reliability of the CTTA metrics. The phantom comprises

of six texture patterns within a homogenous background (Fig. 1).

The patterns were 5 cm diameter in a 15‐cm short cylinder. The

phantom patterns were made using acrylonitrile butadiene styrene

(ABS) first‐order, CT tissue‐equivalent plastic using 3D printing tech-

nologies and casting them into tissue density urethane. The patterns

1, 2, 3, and 4 represent texture varying from the smoothest, that is,

with a 13% fill, 24% fill, 37% fill, and 46% fill. The basic structural

unit of the texture pattern was a letter “J”. The letter “J” was cho-

sen, as it is a simple shape that contains both a straight section and

a curve segment and yet, easy to calculate the area and replicate.

The spacing between letters J’s in pattern 1 was about 3.5 times lar-

ger compared to pattern 4. Rather than increasing heterogeneity by

reducing the spacing between features, the heterogeneity can be

increased by increasing the size of the structural unit within a fixed

area. Patterns 5 and 6 capture this latter variation, wherein at 37%

fill, pattern 6 had a smaller size J compared to patterns 1–4, and pat-

tern 6 that had a larger size J compared to patterns 1–4.
The intention was to create a generic phantom that could be

imaged using diverse imaging protocols and scanners to identify reli-

able CTTA metrics and study their association with progressively

varying heterogeneity created by 3D‐printed texture patterns

(Fig. 1). While a variety of approaches have been used, the current

focus has been on creating reproducible geometric patterns, which
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could be varied in different ways to better understand how changes

in patterns drive texture and its analysis. The materials selected for

the tests were within the CT tissue density and texture range and

provided targeted contrast within our texture patterns. These target

Hounsfield number ranges were based on an evaluation of patient

images, that is, −500 HU with a width of 1600 HU. It was not our

intention to create a lesion‐specific phantom as this would add to

the structural complexities involved in creating such a phantom, and

introduce variables related to phantom geometry that may affect the

performance.

2.B | CT Imaging

The phantom was scanned on four CT scanners namely, Philips

Brilliance 64 (Andover, USA), Canon Aquilion Prime 160 (Tustin,

USA), GE 16 Lightspeed (Chicago, USA), and Siemens Sensation 10

(Erlangen, Germany) and four different imaging variables (slice

thickness, field of view, tube voltage, and tube current per scan-

ner). Prior to each scan, the phantom was fixed on the CT patient

table using a custom‐made jig for the duration of the scan. The

image acquisition scanning positioning for each volume was rigidly

set to produce identically positioned slices, therefore obviating any

need for volume registration. For comparison purposes, in scenarios

where the exact match in variable was not available, the closest

match was adopted.

2.C | Volume of interest segmentation

The manual volumes of interest (VOIs) were drawn using image‐
rendering software (Synapse 3D, Fujifilm, Stamford CT) across the

entire volume of each of the six texture patterns. A few regions

of the phantom had air bubbles due to the manufacturing process,

and care was taken to exclude these regions when the analysis

was performed. Custom MATLAB (Mathworks, Natick, MA, USA)

code was used to extract voxel data corresponding to the VOI.

Two‐dimensional CTTA was conducted on the orientation that

provided the largest diameter in the axial, coronal, or sagittal

dimension. Three‐dimensional CTTA was conducted on the whole

VOI.

2.D | Image data

From the six segmented VOIs within the texture phantom, high-

lighted in Fig. 1, CTTA features were extracted.

2.E | CTTA extraction

A previously reported CTTA panel, part of the USC radiomics frame-

work, was used to extract the 2D/3D CTTA metrics.22,23 The texture

panel comprised of 387 features belonging to 15 subgroups of tex-

ture extraction methods including intensity, gray‐level co‐occurrence
matrix (GLCM) 2D/3D, gray‐level difference matrix (GLDM) 2D/3D,

gray‐level run length matrix (GLRLM) 2D/3D, gray‐level size zone

matrix (GLSZM) 2D/3D, Law’s Texture Energy (LTE) 2D/3D, neigh-

borhood gray‐tone difference matrix (NGTDM) 2D/3D, fast Fourier

transform (FFT) 2D, and discrete cosine transform (DCT) 2D. This

radiomics software was chosen, as majority of its CTTA metrics have

been benchmarked to IBSI standard values and show <1% varia-

tion.20 We used a 20‐bin gray‐level quantization. A combination of

first‐order statistical measures of texture such as intensity, which

accounts for the gray‐level values but not their spatial orientation in

an image, second‐order statistical measures of texture such as

GLCM, GLDM, GLSZM, GLRLM, and NGTDM that account for both

gray intensity and spatial orientation, and higher order statistical

metrics of texture such as FFT, DCT, and LTE that provide additional

information regarding frequency, assessment at multiple levels (local

vs global assessment) was included in the CTTA panel. Mathematical

descriptions and definitions of all CTTA metrics have been provided

in the supplementary section.

2.F | Statistical analysis

For the reproducibility test, the performance of each radiomic fea-

ture under each of the 12 unique image settings was tested across

four scanners (x‐axis of Fig. 2). From the images acquired for each

setting, six ROIs (ROI 1–6 from Fig. 1) were segmented and analyzed

using the texture panel of the USC radiomics framework. The tex-

ture panel comprised of 387 features belonging to 15 subgroups of

texture extraction methods (y‐axis of Fig. 2). One heat map was used

F I G . 1 . (Left) Texture phantom comprising of six texture patterns. (Middle) Phantom placed within a jig that is designed to securely fasten
the phantom to the scanner for image acquisition. (Right) Cross section of texture phantom patterns. (1) through (6) are three‐dimensional‐
printed ABS plastic with variable fill levels. The background is a homogenous ABS material. (The window level is −500 HU with a width of
1600 HU).
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to present the comparison of interclass correlation two‐way mixed

with absolute agreement (ICC3) values across the four scanners

(Fig. 2). The ICC value ranged from 0(red) to 1 (blue) in the color

scale (Fig. 2). In line with literature, features with ICC ≥ 0.90 were

considered excellent reproducibility.24

Robustness analysis was conducted by pairwise comparisons of

12 settings for each of the four scanners. Therefore, there are 66 × 4

pairs of comparisons in total. Robustness was measured using the

interclass correlation two‐way mixed with absolute agreement for

single measurement (ICC3.1) of each of the radiomic metrics across

the four CT scanners.25 The variation in ICC across the different

scanners by scanning conditions has been presented as heat maps

ranging from 0% (red) to 100% (blue) variation (Figs. S1–S4). In line

with literature, features with ICC ≥ 0.90 were considered robust.24

For each feature, the 95% confidence interval (CI) of ICC was also

produced. If the lower limit of 95% CI for a given ICC was higher

than a critical value, for example, 0.8, we can claim the ICC for this

feature is statistically significantly higher than the critical value.34,35

In this study, we defined the critical value as the following: ≥0.9:

identical measurements, ≥0.8: excellent agreement, ≥0.7: good agree-

ment, ≥0.5: fair agreement, <0.5 poor agreement (Figs. S9–S12).
To test the association of the CTTA metrics to the progressively

varying texture patterns, a linear regression model was fit from the

CTTAmetrics acquired from VOIs 1 to 4 and their slopes (β coefficients)

were presented as heat maps ranging from −1 (red) to +1 (blue) varia-

tion. Red means strong negative linear correlation (decreasing trend),

blue means strong positive linear correlation (increasing trend). Linear

regression analysis was run on radiomics data pooled from the four

scanners. Model integrity was examined using residual plots and dis-

tance plots. SAS 9.4 was used for all data analyses.

3 | RESULTS

Our results indicate the robustness and reproducibility of radiomics

metrics are dependent on the scanner and scanning settings. Not all

F I G . 2 . Heat map of radiomic metrics reproducibility, showing the interclass correlation two‐way mixed with absolute agreement (ICC3.1) of
each of the radiomic metrics, across the four computed tomography scanners were obtained. Results of the study are presented as a heat map
with values ranging from 0 (red) to 1 (blue), that is, poor ICC to high ICC. The texture panel comprised of 365 features belonging to 15
subgroups of texture extraction methods (e.g., GLCM), shown on the y‐axis. Twelve unique image settings (e.g., FOV125) were tested across
four scanners, shown on the x‐axis. 22/387 radiomic metrics had same values for all image settings, due to which ICC could not be calculated.
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radiomic metrics have a linear association with increased textural

heterogeneity.

3.A | Robustness assessment

Our results indicate that changes in tube voltage (kVp) and exposure

(mAs) affect all texture features, but the effect is more on higher

order texture metrics such as image transformations: discrete cosine

transform (DCT) and Laws transform (LTE) compared to others. With

an increase in tube voltage and exposure, the ICC values improved

(Fig. 2).

Of all the imaging variables, changes in slice thickness affect all

metrics more intensely compared to other imaging variables. As the

changes in slice thickness increased, ICC across the metrics

increased (Fig. 2).

These observations are consistent across all the four scanners

(results in next section)

3.B | Reproducibility assessment

Our results indicate that >40% of intensity, GLCM 3D, and GLRLM

3D features showed ICC ≥ 0.9. This indicates excellent agreement

(reproducibility) of these metrics across the four scanners viz Philips

Brilliance 64, Canon Aquilion Prime 160, GE 16 Lightspeed, and Sie-

mens Sensation 10 (Fig. 3).

In general, a higher number of metrics with ICC ≥ 0.9 was

observed on the Siemens scanner followed by the Philips scanner.

The least agreement was observed on the Canon scanner (Fig. 3).

In general, 20% more 3D texture features showed ICC ≥ 0.9

compared to 2D texture metrics (Fig. 3).

3.C | Assessing the statistical significance of the
difference in reliability and robustness based on the
analysis of the lower limit of ICC

In general, the results that we obtain for robustness and repro-

ducibility assessment hold true, however, considering the highly

stringent acceptance criteria of an alpha of 0.05, fewer metrics per

family compared to Figures 2 and 3 showed a high ICC (Figs. S9–
S12). Even based on this criteria, intensity, GLCM 3D, and GLRLM

3D showed ICC > 0.8 across maximum number of image settings

across the four scanners making them the most reliable texture

families.

3.D | Association with linearly varying textural
heterogeneity

Our results indicate that across all scanner and scanning settings,

some texture families were more sensitive to the linear changes in

textural patterns than others (Fig. 4), for example, multiple discrete

cosine transform (DCT) metrics showed a strong negative association

compared to fewer gray‐level difference matrix (GLDM) 3D metrics

that showed a strong positive association with the linearly varying

textural patterns (Fig. 4). The following observations were made:

1. CTTA metrics: dct2d_skew_2dB_1, glrlm3d_LRHGE,

glrlm2d_LRHGE, glcm3d_ASM, glrlm3d_HGRE & intensity_kurto-

sis showed the five highest beta values. This indicates that these

metrics are sensitive to the linear changes in the textural patterns

(i.e., ROI 1, 2, 4, and 6) (Fig 5).

2. In general, the only positive association was seen in gld-

m3d_IMC1, that is, as textural heterogeneity increased from ROI

1 to ROI 6, the value of gldm3d_IMC1 increased linearly. The

association was seen in both the 2D and 3D analyses (Fig 5).

3. In general, the radiomic metrics that showed the highest beta val-

ues per texture family were the same for 2D and 3D analyses

(Fig 5).

4. The beta values were higher in 3D compared to 2D metrics

(Fig 5).

Linear trend analysis of radiomic metrics with each of the four

scanners has been provided in the Figs. S5–S8.

F I G . 3 . Bar plot showing the percentage of radiomic metrics per
texture family (N = 15) that show an ICC ≥ 0.9.
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4 | DISCUSSION

There is an evolving body of literature addressing the robustness, repro-

ducibility, and repeatability of radiomics‐based texture metrics assess-

ments on a variety of imaging modalities. However, one of the key

limitations in the current radiomics reliability studies is that the phan-

toms used in these studies had not been designed with the specific aim

of simulating standard radiomic features.26 Therefore, little is known

about the association of these reliable radiomic metrics within the con-

text of a controlled variation in radiological texture. Thus, the interpre-

tation of texture metrics, while reliable remains a challenge.

This study systematically investigated the reliability of CTTA

metrics derived from routine CT images of a well‐controlled texture

phantom setup acquired on four different CT scanners and a combi-

nation of four different imaging variables. We report that (a) major

differences exist in the number of robust and reproducible features

between different scanner/scanning combinations, quantified by the

variation in ICC across the different metrics; (b) On an average, a

total of 5612 (23.2%) of 24 090 features (i.e., 365 × 66 pair) showed

excellent robustness among all imaging variables across all scanners

and demonstrated excellent reproducibility (intraclass correlation

coefficient ≥ 0.9); (c) Of all the imaging variables, changes in slice

thickness affect all metrics more intensely compared to other imag-

ing variables; (d) Changes in kVp and mAs affect mainly higher order

texture metrics such as image transformations: discrete cosine trans-

form (DCT) and Laws transform (LTE) compared to others; (e) Select

F I G . 4 . Heat map showing the beta (slope) value of each of the radiomic metrics across the four computed tomography scanners was
obtained. Results of the study are presented as a heat map with values ranging from 1 (red) to 1 (blue), that is, negative linear correlation to
positive linear correlation. The texture panel comprised of 387 features belonging to 15 subgroups of texture extraction methods (e.g., GLCM),
shown on the y‐axis. Twelve unique image settings were tested on all the four scanners (e.g., FOV125), shown on the x axis.
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metrics of the DCT, GLCM 3D, GLRLM 2D/3D, and intensity

showed high beta values, indicating strong linear associations with

linearly varying textural patterns.

Based on the thorough analysis of CTTA robustness and repro-

ducibility, on an average, a total of 5612 (23.2%) of 24 090 features

showed excellent robustness across all scanners and demonstrated

excellent reproducibility (intraclass correlation coefficient ≥ 0.9). Of

these metrics, >40% of intensity, GLCM 3D, and GLRLM 3D fea-

tures showed an ICC ≥ 0.9 (Fig. 3). In line with these results, other

phantom studies on CT also support report these findings. Recent

studies by Lu et al., using the Gammex CT ACR 464 phantom and

scanning its four water equivalent inserts using routine abdomen

protocols on a GE Discovery scanner reported that based on a rank-

ing of the robustness of commonly used CTTA metrics, first‐order
texture metrics such as mean, standard deviation, skewness, and kur-

tosis were more robust than second‐order texture metrics such as

GLCM‐energy, correlation, contrast, and homogeneity. While encour-

aging, the study was performed on only one scanner and using two

materials for each pattern. In this study, a similar test using four

scanners and six texture patterns reaches the same conclusion.

Berenguer et al. using the Credence Cartridge Radiomics phantom

for radiomics and restricting the reproducibility analysis of radiomic

features using just the polymethyl methacrylate (PMMA) cartridges

identified four radiomic features from the intensity group: “60 Per-

centile,” “Global Median,” “Global Minimum,” and “Kurtosis,” four

from the shape group (not assessed here) and two from the GLCM

group: “Inverse Difference Normalized” and “Auto Correlation.” In

Berenguer et al.’s study, four PMMA cartridges were analyzed P20,

P30, P40, and P50. P20 through P50 refer to polylactic acid car-

tridges with whole percentage from 20% to 50% with respect to

solid part. This is very similar to the approach of using ABS with a

13% fill, 24% fill, 37% fill, and 46% fill. The CT window level in the

study is −500 HU with a width of 1600 HU. The comparable find-

ings to this study are encouraging. In addition to being reproducible,

studies have also shown that first‐order textural features such as

intensity metrics are generally more repeatable than high‐order tex-

tural features.5,12

In this study, image transformation‐based texture methods such

as DCT and LTE and texture extraction techniques using gray‐level
zoning and gray‐tone differencing showed comparatively poor per-

formance; <12% metrics showed ICC ≥ 0.9. In a study analyzing the

stability of 4DCT radiomics metrics in thoracic cancers, Larue et al.

also reported higher concordance correlation coefficient values for

unfiltered CT images than did the wavelet‐filtered ones.14

In general, 20% more 3D texture features showed ICC ≥ 0.9

compared to 2D texture metrics. In agreement to these findings,

Zhao et al also found that the 3D features were more reproducible

than 2D features across all imaging settings. Fewer lesion pixels in a

2D image likely make the radiomic features more sensitive to

changes in imaging variables. In addition, increased spatial resolution

along the z‐axis compared to the x/y‐axes provides greater robust-

ness of the 3D features. However, as voxel resolution reduces con-

tributions due to larger partial volume artifacts along the z‐direction
may alter this finding.

In this study, the intra‐ and inter‐CT scanner variability of tube

voltage and exposure on the reproducibility of the CTTAs was

assessed by closely matching the acquisition protocol across for the

four scanners analyzed. Automatic scanner/scanning protocols that

optimize acquisition were turned off, to gain control over the tube

current, tube voltage, and exposure time. Three levels (low, medium,

and high) of tube voltage and exposure were predetermined as

reported in Table 1. As a higher, tube voltage was used, the percent-

age of reproducible CTTAs improved from 6.0% (22 of 365) to 8.2%

(30 of 365) using ICC > 0.9 as the reference index.13 Similarly, the

percentage of reproducible CTTAs improved from 6.6% (24 of 365)

to 8.2% (30 of 365) when the range of exposure used was increased.

Additionally, changes in tube voltage and exposure mainly affected

higher order texture metrics such as image transformations: discrete

cosine transform (DCT) and Laws transform (LTE) compared to

others texture families. The results are supported by similar studies

in the literature particularly recent work by Bereguer et al. and Lu

et al.11,13

F I G . 5 . Bar plot showing the beta (slope) values of the radiomic
metrics showing a beta value of >0.5 in the positive or negative
direction, across the four computed tomography scanners and
scanning settings. In case of multiple metrics per family, the top two
(highest beta) were included in the plot.
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It is observed that across all scanners, of all the imaging vari-

ables, changes in slice thickness affect all metrics more intensely

compared to other imaging variables. Many other studies have

reported variation in slice thickness to strongly degraded radiomics

reproducibility.10,15,27 In general, it is reported that first‐order textu-
ral features (intensity) and shape metrics (not considered in this

study) are less sensitive to changes in slice thickness compared to

higher order textural features. In this study also the magnitude of

degradation is observed to be greater for higher order textural fea-

tures than for intensity. A rationale for this observation may be that

a reduction in slice thickness reduces the photon statistics within a

slice (unless mAs or kVp is increased; accordingly, which is not the

case here), thereby increasing image noise. Therefore, given the vari-

ability of pixel spacing and slice thickness in standard of care imag-

ing, it is important to study the impact of these parameters on

radiomics features among multiple scanners and multiple vendors in

combination with post‐processing and reconstruction kernels. The

number of robust and reproducible CTTA metrics increases with

increase in slice thickness. This observation is in line with Lu et al.’s

radiomics reliability study using the Gammex CT ACR 464 phantom

and scanning its four water equivalent inserts using routine abdomen

protocols on a GE Discovery scanner.

In this study, across all scanners, for each slice thickness (1–
5 mm), the field of view (FOV) was varied from 125 to 500 mm. The

axial field of view is one key element that determines the pixel size

and hence the spatial sampling in the axial plane, which has an

impact on the description of heterogeneity (texture). Consequently,

the reduction of pixel size increases spatial resolution (when the

other parameters are kept unchanged) but increases image noise as

well. In line with this rationale, we observe that across all scanners,

a greater number of CTTA metrics show an ICC > 0.9 when the

FOV is 500 vs 125 mm.

In this study, “dct2d_skew_2dB_1” which measures the DCT in

2D along the diagonal and reports the skewness, glrlm3d_LRHGE,

and glrlm2d_LRHGE which measure the LRGHE in 3D and 2D,

respectively, from the GLRLM map of the segmented ROIs,

glrlm3d_HGRE which measures the HGRE in 3D from the GLRLM

map of the segmented ROIs, glcm3d_ASM which measures the ASM

within the GLCM map of the ROI, and the kurtosis measured from

the histogram of the ROI were identified to have high beta values.

However, the reason for this observation is still being evaluated. For

example, it is not clear why transformation techniques such as DCT

showed high beta values, compared to other transformation tech-

niques such as fast Fourier transform (FFT) and law’s texture energy

(LTE). Also, why texture families such as neighborhood gray tone dif-

ference matrix (NGTDM) and GLDM that quantify the difference

between a gray value and the average gray value and quantify the

absolute value of two pixels with a certain distance is calculated in

various directions, respectively, show poor beta values (close to

zero). These issues are subject to future research and analysis.

In line with the results from the literature, it is evident from this

study that radiomic metrics, particularly those assessing texture are

sensitive to changes in scanner and scanning protocols. Therefore,

while many studies show diagnostic and prognostic value of CTTA

metrics in a variety of different cancers, it must be carefully ensured

that these conclusions are based on CTTA metrics that are repro-

ducible and robust to aid generalization across different studies, so

as to avoid false positives or negatives.5,13 Using this approach, we

can identify CTTA features with poor reproducibility (ICC < 0.9) in

highly controlled conditions of ROI segmentation, tissue composition,

etc. CTTA metrics with poor reproducibility in phantoms are unlikely

to be reproducible in multi‐institutional human studies and hence

can be removed to alleviate feature dimensionality issues.

The study has several limitations that are common to most inves-

tigations of this topic. First, the developed texture phantom is not

specific to any particular clinical lesion. Simplified geometries and rel-

atively uniformly dense material compared to actual lesions were

adopted to learn about the association of the CTTA metrics with lin-

early varying texture patterns. In addition, complex texture patterns

may not be well captured on phantoms owing to structural instabili-

ties, or limitations of the 3D printing technologies. Therefore, our

results may not transfer directly to routine clinical practice, unless

the reported phantom‐based feature robustness is reproducible on

clinical imaging data from patients.28 For example, automated seg-

mentation of phantom ROIs is straightforward considering the clear

demarcation of the ROI from the background based on design; how-

ever, segmentation can be a serious hurdle in the case on segment-

ing lesions from patient images.29,30 Also, one of the major

limitations to understanding radiomic results from a static phantom

vs a patient is the influence of motion (involuntary or voluntary) in

patients that can profoundly impact scan speed and CT acquisition

pattern of sampling.31 Yet another issue, to conduct such a study

using patient data, is the need for test–retest due to the variation in

lesion morphometrics over time. However, it is not feasible to con-

duct a test–retest experiment using human subjects. Therefore, in

this study, a texture phantom is used to assess the reproducibility

and robustness of CTTA and understand role of CTTA in multicenter

radiomics analysis. Second, only four commonly used CT scanners at

our institution and the four most commonly imaging variables were

investigated. Post‐processing variables such post reconstruction

TAB L E 1 Imaging parameters that were varied across the four
scanners.

Imaging vari-
ables

Philips bril-
liance 64
CT

Toshiba aquil-
ion prime 160
CT

GE 16
lightspeed

Siemens
sensation
10

Slice

thickness

(mm)

1, 2, 4, 5 1, 2, 4, 5 1.25, 2.5,

3.75, 5

1, 2, 4, 5

FOV (mm) 125, 500 125, 500 125, 500 125, 500

Tube voltage

(kVp)

80, 100,

140

80, 100, 135 80, 100,

140

80, 100,

140

Tube current

(effective

mAs)

60, 80,

120

60, 80, 120 60, 80,

120

60, 80,

120

VARGHESE ET AL. | 105



filters or preprocessing variables such as reconstruction kernels or

noise characteristics were not assessed. Published studies have

shown these variables to affect radiomic metrics.11,27,32 Studies in

the literature that assess radiomics reproducibility report concor-

dance correlation coefficient (CCC), interclass correlation coefficient

(ICC), or percent change. When reproducibility alone is assessed

without repeated measures for a given scanner or modality, the

ICC2 (two‐way random ICC) and ICC3 (two‐way mixed ICC) are

identical to the concordance correlation coefficient.2 However, if

reproducibility is assessed with repeated measures, which is equiva-

lent to assessing reproducibility and repeatability at once, only the

ICC3 is identical to the concordance correlation coefficient.33 In this

study, the ICC3 assessment method was chosen and a heat map was

used to visualize the results. While there are numerous approaches

to extract textural features that can reliably quantify the heterogene-

ity of the texture patterns, for example, filter (wavelets) and model‐
based (fractals) methods, these have not been investigated in our

study, as they are not commonly used in open source radiomics

pipelines. The difficulty in reaching a consensus on the variables

used to implement the technique in a multi‐center setting reduces it

widespread applicability. This study is a first step toward trying to

understand how these variables affect the radiomic metrics and how

they change with linear changes in texture. Future studies exploring

more complex texture methods such as fractals and wavelets are

warranted. Also, while effects such as noise and motion can affect

the radiomics reliability, we did not include it our current study to

reduce the complexity of the confounding effects. Using the reliable

metrics identified in the current study, future studies can explore the

effect of noise and motion on these metrics.

In conclusion, this study shows that CT imaging has the potential

to deliver reproducible and robust texture features that may be reli-

ably applied in future clinical studies, particularly those involving

multiple centers. Based on these results, it is recommended to use

only robust and reproducible features to conduct multicenter radio-

mics analysis in future studies. More than 40% of intensity, GLCM

3D and GLRLM 3D features showed ICC ≥ 0.9, which makes excel-

lent candidates for creating radiomic signatures with excellent

robustness and reproducibility across various CT scanners and scan-

ning protocols. Even based on a stringent significance criteria of

alpha of 0.95, intensity, GLCM 3D, and GLRLM 3D showed ICC >

0.8 across maximum number of image settings across the four scan-

ners making them the most reliable texture families. In addition to

increasing generalization of results, the identification of these reliable

metrics/family of textures helps to narrow down (filter) the rather

large number of radiomic features to a reliable few; this alleviates

the feature‐dimensionality issue seen in most radiomic studies lead-

ing to overfitting of the results and thereby erroneous conclusions.

Using the reliable radiomic metrics, data from different studies(pub-

lished and new) can be pooled to create a relatively large cohort of

data for the large‐scale validation of radiomics results, particularly in

scenarios where big data principles such as machine‐ or deep‐learn-
ing are used to augment classification results.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Data S1. A: Mathematical descriptions and definitions of the CT

texture metrics. B: Figures of detailed heatmaps showing robustness,

reproducibility and linearity of CT texture metrics.
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