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ABSTRACT

It is of vital importance to understand the popula-
tion structure, dissect the genetic bases of perfor-
mance traits, and make proper strategies for selec-
tion in breeding programs. However, there is no sin-
gle webserver covering the specific needs in aqua-
culture. We present Aquaculture Molecular Breed-
ing Platform (AMBP), the first web server for genetic
data analysis in aquatic species of farming interest.
AMBP integrates the haplotype reference panels of
18 aquaculture species, which greatly improves the
accuracy of genotype imputation. It also supports
multiple tools to infer genetic structures, dissect the
genetic architecture of performance traits, estimate
breeding values, and predict optimum contribution.
All the tools are coherently linked in a web-interface
for users to generate interpretable results and eval-
uate statistical appropriateness. The webserver sup-
ports standard VCF and PLINK (PED, MAP) files, and
implements automated pipelines for format transfor-
mation and visualization to simplify the process of
analysis. As a demonstration, we applied the web-
server to Pacific white shrimp and Atlantic salmon
datasets. In summary, AMBP constitutes comprehen-
sive resources and analytical tools for exploring ge-
netic data and guiding practical breeding programs.
AMBP is available at http://mgb.qnlm.ac.

GRAPHICAL ABSTRACT

INTRODUCTION

Aquaculture supplies over 16% of the seafood for human
diets, contributing significantly to the Sustainable Devel-
opment Goals of the United Nations (1). To match the
ever-increasing food demands of the growing population,
aquatic food production should increase about five-fold in
the next three decades, with an annual growth rate larger
than most sectors of the food industry (2). As in recent
years, overexploitation of wild stocks is placing high pres-
sure on aquatic ecosystems and causing irreversible im-
pacts on environments (3). The capture fisheries are urged
to be restricted within tolerable limits (4). Mariculture is
evidently developing toward large-scale, intensive, and sus-
tainable to afford dietary animal protein. Therefore, there is
an urgent need for domestication and genetic improvement
programs to increase efficiency and reduce the environmen-
tal impacts of aquaculture.

*To whom correspondence should be addressed. Tel: +86 0532 82031960; Email: yfwang@ouc.edu.cn
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-8303-0330
https://orcid.org/0000-0002-7000-4213
http://mgb.qnlm.ac


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W67

Genomic tools could benefit the domestication and ge-
netic improvement continuum in many aspects. It could be
applied to characterize the population histories of wild re-
sources and inform the construction of base populations
for specialized breeding nuclei. Furthermore, genomic re-
sources and analyses are essential to dissecting the genetic
architecture of performance traits. Genomics holds great
promise to increase the efficiency of selective breeding and
management of farmed stocks. As a well-known example,
the identification of a quantitative trait locus (QTL) for
infectious pancreatic necrosis (IPN) resistance in Atlantic
salmon greatly facilitated selective breeding, which elimi-
nated the incidence of IPN in a few generations (5). Ge-
nomic selection (GS) makes use of genome-wide markers
to capture quantitative trait loci (QTL) and can accurately
predict breeding values (6). GS has revolutionized modern
animal breeding leading to a more rapid genetic gain and
a further reduction of generation interval than classic selec-
tion methods (7). Nevertheless, GS may increase inbreeding
and produce a more rapid depletion of genetic variability
of the selected traits in future generations. The loss of ge-
netic diversity limits long-term gain for the trait under GS
selection, and it also jeopardizes future breeding for other
traits. In contrast, genomic mating (GM) provides a strat-
egy that balances genetic gain and diversity (8). GM allows
obtaining desirable genetic gain while constraining the rate
of inbreeding in the progeny by restricting the relationships
among selected parents. Therefore, GM appears to be a sus-
tainable strategy for the genetic improvement in aquacul-
ture breeding.

Despite the rapid advancement and reduced cost of geno-
typing and sequencing techniques, incorporation of ge-
nomic tools such as GS and GM typically requires geno-
typing of thousands of animals per generation, which is
still prohibitively expensive and not practical to be routinely
used. An alternative strategy is to genotype the target pop-
ulation with low-coverage sequencing or low-density SNP
arrays and obtain genome-wide genotypes through impu-
tation (9,10). This strategy is pronounced for aquaculture
species, mostly without commercially available SNP array
(11). Imputation is also very useful for meta-analysis of
datasets from different genotyping platforms (12). It has
been successfully applied in several aquaculture species,
such as Atlantic salmon (13) and large yellow croaker (14).
However, a high-quality reference panel is crucial for ac-
curate genotype imputation. In contrast to crop and live-
stock, most aquaculture species have no high-quality refer-
ence panel, limiting the broad application of genotype im-
putation in aquaculture genetic studies. In addition, most
current software for imputation, GWAS, GS, and other ge-
netic analyses require a specific background knowledge of
bioinformatics and quantitative genetics, making it chal-
lenging for general geneticists and biologists to perform the
analysis. Therefore, it is essential to develop a user-friendly
webserver to fill the gap.

To address this need, we developed the Aquaculture
Molecular Breeding Platform (AMBP). By implementation
of high-quality reference panels of 18 aquatic species of
great economic value, and automated pipelines of genotype
imputation, kinship deduction, population structure infer-
ence, GWAS, GS, and genomic mating (GM), we intend to

develop the webserver into a portal for genetic data explo-
ration and breeding strategy development of aquaculture
species.

MATERIALS AND METHODS

AMBP was hosted on a dedicated rack server at the Plat-
form for High-Performance Computing and Systematic
Simulation at Qingdao National Laboratory for Marine
Science and Technology. It allows users to explore geno-
type data in three major sections (Figure 1). The impute
section was designed for the phasing and imputation of low-
density SNP array or low-coverage sequencing datasets.
High-density haplotype reference panels of 18 aquacul-
ture species were pre-constructed and implemented in the
pipeline. Users can browse the SNP information by chro-
mosome coordinate and retrieve the reference panels of
each species. In the population characterizing section, users
could get indications of the genetic structure by ancestry es-
timation and principal component analysis (PCA). Pairwise
relationships could be inferred by kinship coefficients and
identical-by-descent (IBD) segments. The genetic breeding
section includes models for GWAS, genomic prediction,
and mating allocation. Users could overview the genetic ar-
chitecture of performance traits and make optimum selec-
tions with constrained inbreeding. Furthermore, simulation
analysis could help develop breeding strategies depending
on short-term genetic gain and long-term potential.

Cookie statement

The AMBP service stores session information in cookies
to provide information described in the Privacy Statement.
Personal information is not directly stored in cookies. The
username and password will be encrypted for transmission.
Users cannot access the session information and need to
restart a new session after 30 minutes of inactivity.

Imputation

The WGS data of 18 aquaculture species were collected
from the NCBI SRA database to construct reference panels
(Supplementary Table S1). Low-quality reads were trimmed
using the trimmomatic v0.39. The clean reads were aligned
to the current standard reference genome using Burrows-
Wheeler Aligner (BWA) (15). The duplicated reads were
marked and removed using MarkDuplicates of Picard
Tools. Variant calling was carried out using Haplotype-
Caller and GenotypeGVCFs algorithms in GATK (16).
The raw SNPs were filtered using vcffilter with the param-
eters GQ < 20, QD < 10, FS > 10, MQ < 40, ReadPos-
RankSum < -8, SOR > 4, and MQRankSum < -12.5. The
SNPs with MAF < 0.01 or located within 5bp flanking re-
gions of other variants were excluded with bcftools (17). Fi-
nally, the biallelic SNPs were used to construct the reference
panels of 18 species with the read-aware phasing method
implemented in SHAPEIT2 (18). The polymorphic spec-
trum and potential effect of each SNP in the reference pan-
els can be browsed by the ‘SNP Search’ function. Reference
panels can also be retrieved on the ‘Download’ page for lo-
cal analysis.
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Figure 1. Functions of AMBP can be classified into three major categories. (A) High-density haplotype reference panels of 18 aquaculture species were
implemented in the pipeline for users to impute genotype data with low density markers. The quality of imputation and LD patterns could be visualized
online for a better interpretation. (B) Users could characterize the population structure and pairwise kinship using genotype data. Genetic structure inferred
by ancestral components and PCA can be used to validate sample information. (C) Users could dissect the genetic landscape of performance traits from
genotype and phenotype data by GWA analysis. GEBVs and mating allocations could be predicted by GS and GM. The effects of GS and GM could be
further compared by simulating multiple generations.

Users can upload one or more VCF files and carry out
online imputation with corresponding reference panels by
Beagle (version 5.1) and Glimpse (version 1.1.1) (19,20).
The parameters for imputation and quality control can be
adjusted accordingly to accommodate the datasets. Once
the analysis is done, the global imputation rate and link-
age disequilibrium (LD) patterns will be visually illustrated
for each chromosome (Figure 1A). Users will get imputed
genotypes in vcf.gz format. A PED and MAP file will also
be generated to fit subsequent analysis.

Population characterizing

Understanding the genetic structure and population history
of the breeds of interest plays an essential role in correcting
of population stratification (21) and predicting of heterosis
(22). It is also of vital importance in the practical manage-
ment of farmed stocks (22). One commonly used method is
through low-dimensional projections by PCA. An alterna-

tive method is to estimate genomic breed compositions via
a likelihood-based admixture model (23). We implemented
both algorithms in the ‘Genetic Structure’ function (24,25).
Users can select the appropriate one for samples clustering.
As samples of close relatives may reduce the explanatory
power of ancestry inference in population characterizing.
We incorporated a robust inference model via estimating
kinship coefficients and IBD segments (26).

The input files of ‘Genetic Structure’ and ‘Kingship’
functions should be in the PLINK standard text format for
pedigree and genotypes. For admixture and PCA analysis,
the presumed cluster of samples is expected to be provided
in a sample information file. In case of absence, the esti-
mations of ancestry fractions are used for sample cluster-
ing. Users can set a K value slightly larger than the pre-
sumed number of ancestries. The optimal K is determined
by cross-validation, which typically has the lowest level of
error rate. After analysis, individual genomic compositions,
population structures, and kinship distributions are graph-
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ically exhibited (Figure 1B). Detailed results, including CV
error and pairwise relationships, can be retrieved from the
‘Download’ page.

Genetic breeding

We implemented the genome-wide efficient mixed-effects
model in the ‘GWAS’ function, which is characterized by ef-
ficient computation of exact values of standard test statistics
in linear mixed models (27). The algorithm fits a standard
linear mixed model for association tests with the statistical
significance examined by the Wald test. It calculates the cen-
tered relatedness matrix based on the genotypes and does
not require prior knowledge about the genetic structure.
Users can check the significance of genome-wide markers
and deviation of the observed P-values from the null hy-
pothesis by Manhattan and quantile-quantile plot, respec-
tively (Figure 1C). The estimated effects and P-values for
each SNP could be retrieved from the results.

The ‘Genomic Selection’ function integrates RR-
GBLUP (6), Bayes Lasso (28), and sparse neural networks
(SNN) (29). As the accuracy of each model largely de-
pended on multiple factors, such as the trait heritability,
the reference population size, and marker density, we
implemented a ten-fold CV in the pipeline to help compare
and select the appropriate model for each study. Details re-
garding the models for prediction and accuracy evaluation
were provided in the supplementary files (Supplementary
Method). The allele substitution effects of genome-wide
markers and genomic estimated breeding values (GEBVs)
for each candidate can be graphically illustrated after the
analysis (Figure 1C). Inbreeding coefficients and sample
phylogeny are also provided to users on the ‘Download’
page as additional files.

Although GS provides a revolutionary tool for genetic
improvement, it may result in rapid depletion of genetic
variability of the selected traits in future generations. In con-
trast, GM represents an alternative approach to maximiz-
ing genetic gain with a constrained inbreeding rate (8). The
pre-calculated GEBVs could be stored in a sample informa-
tion file and imported into the ‘Genomic Mating’ pipeline.
Mating allocations and desired numbers of offspring would
be indicated graphically to users. By leveraging the marker
effects estimated from the reference population, one could
compare the genetic improvements made by GS and GM
across multiple simulated generations. This is particularly
useful for making decisions on short-term genetic gain or
long-term potential.

RESULTS AND DISCUSSION

Haplotype reference panel

We collected and analyzed the WGS data of 2,294 samples
from 18 aquaculture species, including two crustaceans, two
mollusks, and fourteen finfish (Table 1). A total of 144 mil-
lion SNPs have been identified and included in the hap-
lotype reference panels. The detailed information regard-
ing each species, including the background introduction,
genome size, number of chromosomes, and size of sam-
ples for SNP mining is provided on the page of ‘Refer-
ence Panel’. To capture the polymorphism comprehensively,

we exhaustively searched and collected the publicly avail-
able WGS data for each species. The accession numbers of
datasets and their corresponding studies/projects are sum-
marized at the bottom of the webpage. For species with
datasets from multiple sources, the genome-wide distribu-
tion of SNPs, sample phylogeny, and genetic structure are
analyzed and illustrated, respectively (Supplementary Fig-
ures S1-S15).

To evaluate the performance of imputation with the ref-
erence panels, the accuracy of imputed genotypes was as-
sessed by a five-fold CV for the haplotype panels that were
constructed with over 100 samples (Table 2). In each test
round, samples of each species were divided into five groups.
Four of the five groups were used for reference panel con-
struction and the remaining one was down-sampled to ∼1x
coverage and imputed by Beagle and Glimpse, respectively.
The accuracy was evaluated by concordance rate (CR) and
squared correlation (R2) of dosages between the imputed
and true genotypes. Despite that Beagle is faster and re-
quires relatively fewer resources, imputation with Glimpse
is overall more accurate (Table 2). The average CRs of
Glimpse exceed 0.924 for all the test species, indicating a
good and stable performance for practical analysis.

A case study of characterizing the Pacific white shrimp pop-
ulation

Pacific white shrimp (Litopenaeus vannamei) is native to the
eastern Pacific Ocean and has been introduced to a wide
range of areas since the late 1970s. It has now become one
of the top aquatic species of commercial importance around
the world. The annual global yield of L. vannamei exceeded
4.4 million tonnes with a value of over 26.7 billion USD,
accounting for 80% of the total cultured shrimp production
(1). To explore the genetic signatures of domestication and
artificial selection, we recently collected and sequenced L.
vannamei broodstock from two artificially selective breeds:
Renhai No. 1 (RH), Kehai No. 1 (KH); and four market-
leading companies: Benchmark Genetics (BMK), Charoen
Pokphand (CP), Shrimp Improvement Systems (SIS), and
Top Aquaculture Technology (TA). The genotype data of
3.8 million loci from 150 samples were prepared in PED for-
mat; the chromosomal positions of markers were stored in
MAP format; other meta-information, such as the source of
samples, were deposited in TSV format. We imported these
files into the AMBP for population characterizing by the
‘Genetic Structure’ and ‘Kinship’ functions.

As these samples were collected from six groups, we set
the maximum number of K as 10 for the analysis. The cross-
validation revealed the lowest error rate at K = 7, indicating
that these samples may be derived from seven ancestral pop-
ulations (Figure 2A, Supplementary Figure S16). The esti-
mated structure was consistent with their recorded sources,
exhibiting a near 1 to 1 correspondence. The RH breed was
developed by crossbreeding two selective breeds from Mi-
ami and Oahu, which may explain the inferred within-breed
stratification. We further checked the clustering in case of
no records of sampling sources. In this scenario, the inferred
ancestry fractions of each sample were used for clustering,
which generated identical results with the optimal K value
of seven (Figure 2B, Supplementary Figure S17). As a com-
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Table 1. Data summary of the haplotype reference panels in AMBP

Species Genomic Assembly No. of Samples No. of SNPs

Litopenaeus vannamei ASM378908v1 180 3,926,527
Fenneropenaeus chinensis ASM1920278v1 43 11,595,609
Argopecten irradians QAU Airr 1.1 40 11,325,844
Crassostrea gigas cgigas uk roslin v1 220 3,873,608
Cynoglossus semilaevis Cse v1.0 53 1,207,365
Paralichthys olivaceus Flounder ref guided V1.0 120 6,367,725
Larimichthys crocea L crocea 2.0 253 9,998,395
Lateolabrax maculatus ASM402354v1 99 7,036,107
Dicentrarchus labrax dlabrax2021 76 6,531,380
Oreochromis niloticus O niloticus UMD NMBU 166 5,164,107
Gadus morhua gadMor3.0 220 5,936,877
Salmo salar ICSASG v2 281 5,873,967
Oncorhynchus kisutch Okis V2 60 7,332,974
Oncorhynchus mykiss USDA OmykA 1.1 179 17,012,766
Oncorhynchus gorbuscha Ogor 1.0 62 6,544,976
Takifugu rubripes TakRub1.2 61 1,888,317
Anguilla japonica Ajp 01 84 20,550,847
Anguilla anguilla fAngAng1 97 11,934,548

Table 2. The imputation accuracy using reference panels in AMBP

Species Glimpse Beagle

CR (mean ± SD) R2 (mean ± SD) CR (mean ± SD) R2 (mean ± SD)

Litopenaeus vannamei 0.984 ± 0.008 0.938 ± 0.033 0.927 ± 0.014 0.937 ± 0.033
Crassostrea gigas 0.925 ± 0.016 0.789 ± 0.045 0.881 ± 0.005 0.732 ± 0.014
Paralichthys olivaceus 0.958 ± 0.028 0.905 ± 0.063 0.856 ± 0.029 0.741 ± 0.067
Larimichthys crocea 0.956 ± 0.030 0.854 ± 0.103 0.894 ± 0.013 0.714 ± 0.038
Oreochromis niloticus 0.924 ± 0.050 0.712 ± 0.124 0.875 ± 0.058 0.607 ± 0.099
Gadus morhua 0.959 ± 0.018 0.855 ± 0.064 0.907 ± 0.006 0.738 ± 0.022
Salmo salar 0.949 ± 0.022 0.882 ± 0.068 0.856 ± 0.015 0.738 ± 0.092
Oncorhynchus mykiss 0.966 ± 0.019 0.919 ± 0.053 0.889 ± 0.044 0.795 ± 0.084

parison, the PCA analysis revealed six clusters for all the
samples and failed to detect the segregation in RH (Figure
2C, D, and E). Therefore, combining the results of PCA and
admixture could provide us with a deeper understanding of
the genetic structures. As a step further, we would like to
know if the inferred population structure is biased by sam-
pling. The ‘Kinship’ function was used to check the pres-
ence of close relatives and separate them from the unrelated
pairs. As shown in the result, only nine pairs of samples
shared a kinship higher than the 4th-degree and exhibited
distinguished distributions of IBS0 and kingship coefficient
compared with the vast majority (Figure 2E and G, Supple-
mentary Figure S18). Thus, the revealed population differ-
entiation can help users understand the process of shrimp
domestication and selection.

A case study of genomic breeding using low-density marker
panels in Atlantic Salmon

Atlantic salmon (Salmo salar) is naturally distributed in
the temperate and subarctic regions of the North Atlantic
Ocean. It is widely known for its importance in aquacul-
ture and has been widely studied as a model organism for
salmonid species. Atlantic salmon breeding programs are
the most advanced of all aquaculture species. Since the first
salmon high-density SNP arrays demonstrated their utility
in accurately predicting breeding values, genomic informa-
tion has been routinely incorporated in practical breeding
(30). As there are typically many thousands of fish to test,

controlling the price for genotyping is usually a key point in
a breeding program. A strategy is to genotype a few selected
founders at high density, while the rest are genotyped at
low density, followed by imputation to acquire high-density
genotypes (31). The strategy is promising but can only be
applied to fish with close relationships. To overcome this
limit, we constructed a high-density haplotype reference
panel of S. salar and implemented it in the AMBP. As a
demonstration imputation and genetic breeding analysis in
AMBP, we retrieved a S. salar dataset of 524 individuals
that were genotyped by a high-density panel with 78K SNPs
(31).

About 10K SNPs were randomly sampled from the to-
tal 78K to represent a low-density panel. Genotypes for
the 10K SNPs of all the samples were uploaded for ‘On-
line Imputation’. The imputation was performed by Beagle
with the default parameters. We set GP = 0.5 and Missing
Rate = 0.2, to filter less accurate or non-informative SNPs.
Finally, we kept a total of 118,039 SNPs for the subsequent
analysis. Figures for the global LD pattern and missing
rate were also generated to facilitate quality control (Fig-
ure 3A, Supplementary Figure S19). The ‘GWAS’ function
was used to determine which individual SNP was associ-
ated with the trait of ‘weight’. The GWA analysis revealed
no significant SNPs according to the genome-wide thresh-
old of suggestive, indicating a polygenic genetic architecture
(Figure 3B, Supplementary Figure S20). One SNP on chro-
mosome 17 has the smallest P-value and an estimated effect
size of 0.049 (Figure 3C).
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Figure 2. AMBP deciphered the genetic structure of shrimp populations. (A) Sample clustering with known sampling sources. AP: ancestral population.
(B) Sample clustering based on genomic ancestral compositions in the absence of sampling information. PCA analysis with (C) and without (D) sampling
information. (E) Ancestral components for each cluster, Ancestry 1: the first largest ancestral population in the cluster, Avg. Q of Ancestry 1: the average
fraction of Ancestry 1 in the cluster, Ancestry 2: the second largest ancestral population in the cluster, Avg. Q of Ancestry 2: the average fraction of
Ancestry 2 in the cluster. (F) Distribution of the pairwise kinship coefficient and IBS0. IBS0: proportion of genotypes with zero IBS. (G) Close relatives in
the population. Avg. HetHet: the average Proportion of SNPs with double heterozygotes, Avg.IBS0: the average proportion of genotypes with zero IBS,
Avg. PropIBD: the average Proportion of genomes shared identical-by-descent, Avg.Kinship: the average kinship coefficient.

The imputed genotypes were then used for genomic pre-
diction via the function of ‘Genomic Selection’. The accura-
cies of RR-GBLUP, Bayes Lasso, and Sparse Neural Net-
work (SNN) revealed by ten-fold CV were about 50.83%,
37.85%, and 50.97%, respectively (Table 3). As a compar-
ison, the prediction accuracies based on genotypes prior
to imputation were only 44.68%, 35.46% and 38.46% for
the three models. Our SNN model exhibited the largest
improvement with the increase of marker density, suggest-
ing its superior in dealing with complex traits that require
large datasets. As the heritability of weight was estimated
to be 0.61. The results also agreed with the finding of Bel-
lot et al. that the predictive accuracy of linear models de-
pended highly on heritability (32). RR-GBLUP always out-
performs Bayes models in scenarios when the heritability of
a complex trait is relatively high (>0.5). The ‘Genomic Se-
lection’ also allows users to upload a candidate population
for GEBV prediction. The predicted GEBV, sample phy-
logeny, and estimations of marker effects (for linear mod-
els) will also be graphically exhibited (Supplementary Fig-
ure S21).

Although GS is a revolutionary tool for genetic improve-
ment, it can increase inbreeding and may produce an in-
creased depletion of genetic variability in future genera-
tions. On the other hand, GM represents an approach to

maximizing genetic gain with controlled inbreeding. In con-
trast to the GS, the selective intensity depended on the size
of retained offspring rather than the parents. It could pre-
dict the mate allocation for selected candidates as well as
their optimum sizes of offspring (Figure 3D, Supplemen-
tary Figure S22).

To compare the long-term effects of GS and GM, we
conducted a simulation analysis based on the salmon data.
Briefly, SNP effects were first estimated using RR-GBLUP.
The GEBV was taken to be the sum of estimated SNP ef-
fects. Progeny genotypes were generated by stochastic simu-
lation. Recombination events were modeled as the number
of crossovers per Morgan, following a Poisson distribution
with the mean equaling one. A mutation rate of 1e-6 per nu-
cleotide was assumed for all chromosomes. The top 1,000
SNPs with the largest effects were selected as QTLs and the
inbreeding coefficients were computed as runs of homozy-
gosity (ROH) (24). A total of 400 offspring were retained in
each generation for both the GS and GM. For GS, the off-
spring were randomly generated from the top 90 males and
90 females with the highest GEBV. The simulation was per-
formed for 30 consecutive generations. As shown in Figure
3E, despite that the genetic gain of GS was higher for the
first 15 generations, it kept decreasing since the 12th gener-
ation and eventually became lower than GM after the 15th
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Figure 3. AMBP dissect the genetic mechanism of performance trait and guide salmon breeding. (A) Global LD pattern generated by ‘Online imputation’,
numbers indicated the SNP coordinate on the chromosomes. (B) Manhattan plot of the marker statistical significance across the whole genome. (C) Top
significant SNPs revealed by GWA analysis. (D) Matting allocation and optimum numbers of offspring for each pair. (E) Simulated effects of GS and GM
in 30 consecutive generations.

Table 3. Prediction accuracy for dataset prior to and after imputation

Fold Prediction accuracy (%) of original genotypes Prediction accuracy (%) after imputation Improvement (%)

RR-GBLUP
Bayes
Lasso SNN RR-GBLUP

Bayes
Lasso SNN RR-GBLUP

Bayes
Lasso SNN

1 56.80 48.18 28.69 54.81 52.03 57.17 -1.98 3.85 28.48
2 17.19 23.28 10.21 15.47 21.78 15.81 -1.72 -1.49 5.59
3 61.21 44.77 34.39 68.23 30.72 70.11 7.02 -3.72 35.72
4 54.13 44.77 61.30 62.67 37.32 61.78 8.53 -7.45 0.47
5 22.77 9.97 30.38 39.52 19.36 43.05 16.74 9.38 12.67
6 56.01 52.07 52.35 68.68 58.43 68.48 12.67 6.36 16.12
7 40.19 30.19 45.59 48.83 42.16 48.26 8.64 11.97 2.66
8 63.76 53.62 51.03 65.05 63.61 65.08 1.28 9.97 14.05
9 52.01 46.92 43.66 58.95 31.95 54.05 6.95 -14.96 10.38
10 22.70 11.18 26.98 26.09 21.10 25.86 3.39 9.92 -1.11
Avg ACC 44.68 35.46 38.46 50.83 37.85 50.97 6.15 2.38 12.51
Sd ACC 17.62 16.33 15.12 18.37 15.89 18.17 6.03 8.96 11.96

generation. In the scenario of GM, the rate of genetic gain
kept increasing and maintained at a relatively stable level
after the first 5 generations. Furthermore, GM had a con-
strained increasing rate of inbreeding coefficient that sur-
passed 0.1 after the 20th generation. As a comparison, the
inbreeding coefficient of GS exceeded 0.1 at the 5th gener-
ation, which explained the drastically reduced genetic gain.
Therefore, GM exhibited superior potential in genetic im-
provement, especially for long-term breeding programs.

Comparisons with existing webservers of similar functions

We compared AMBP with the existing webservers of simi-
lar functions according to the practicability for imputation,
population characterizing, and genetic breeding (Table 4).
The functional innovations of AMBP are summarized in
the following three aspects: (1) AMBP uniquely provides
high-density haplotype reference panels for 18 aquaculture
species and supports multiple tools to infer genetic struc-
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Table 4. Functional innovations of AMBP compared with other webservers

Functions AMBP

Michigan
Imputation
Server (33)

Animal-
ImputeDB

(34)

Plant-
ImputeDB

(35)
StructuRly

(36)
SNiPlay

(37)
CASSAVABASE

(38)
easyGWAS

(39)

Imputation
Reference panels for aquaculture
species

√

Imputation
√ √ √ √

Illustration of LD pattern
√

Quality control
√

Population characterizing
Ancestry estimation

√ √ √ √
PCA analysis

√ √ √
Kinship inference

√ √ √
Genetic breeding
GWAS analysis

√ √ √ √ √
Genomic prediction

√ √
Neural network model

√
Cross validation

√
Genomic mating

√
Simulation analysis

√
Total numbers 13 2 1 1 2 4 4 1

tures, dissect the genetic architecture of performance traits,
estimate breeding values, and predict optimum contribu-
tion. (2) In the breeding programs, it is crucial to balance
two conflicting objectives: the selection for genetic gain and
the maintenance of genetic diversity. Finding the optimal
strategy has always been a challenge for breeders. AMBP
provides GS to acquire maximum genetic improvement in
short generations, and also incorporates GM as an alter-
native strategy for retaining long-term potential. Users can
evaluate their performance through cross-validation and
simulation modules, which enables the comparison of sta-
tistical appropriateness under different circumstances. (3)
Furthermore, AMBP joints each tool coherently and gener-
ates paper-ready figures for a better interpretation and ex-
ploration of data. As an outlook to the future, we will keep
improving the service by including more resources and new
functionalities on aquaculture genetics.

DATA AVAILABILITY

AMBP pipeline is freely available as both the webserver
and standalone versions. The webserver can be accessed via
the following link: http://mgb.qnlm.ac. The standalone ver-
sion can be downloaded from Docker hub with the follow-
ing address: https://hub.docker.com/r/ouc2021mgb/ambp.
The datasets used for constructing the haplotype refer-
ence panels were listed in Supplementary Table S1. The
shrimp and salmon data for demonstrations were saved
as example datasets at AMBP and deposited at FigShare
with the fowling link: https://figshare.com/articles/dataset/
AMBP case study/19390652.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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