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Abstract 

Artificial intelligence decision support systems have been proposed to assist a strug-

gling National Health Service (NHS) workforce in the United Kingdom. Its implemen-

tation in UK healthcare systems has been identified as a priority for deployment. 

Few studies have investigated the impact of the feedback from such systems on the 

end user. This study investigated the impact of two forms of AI feedback (saliency/

heatmaps and AI diagnosis with percentage confidence) on student and qualified 

diagnostic radiographers’ accuracy when determining binary diagnosis on skeletal 

radiographs. The AI feedback proved beneficial to accuracy in all cases except when 

the AI was incorrect and for pathological cases in the student group. The self- 

reported trust of all participants decreased from the beginning to the end of the study. 

The findings of this study should guide developers in the provision of the most advan-

tageous forms of AI feedback and direct educators in tailoring education to highlight 

weaknesses in human interaction with AI-based clinical decision support systems.

Introduction

The current backlog and delay in the reporting of radiographs has driven investiga-
tions into the adoption of new technologies that could increase efficiency and “free up 
clinicians” to spend more time with patients [1,2]. Artificial intelligence (AI) has been 
proposed as a solution in automating the diagnosis of pathology on radiographic 
images, e.g., breast and chest imaging [3–5]. The dramatic developments in com-
puter technology and processing ability have permitted ever more sophisticated and 
useful applications of AI. The latest technologies mimic the way the human brain 
functions, so that the AI can ‘learn’ from experience. AI systems have been shown 
to have a high degree of accuracy in the detection of abnormality on radiographic 
images, however clinical utilisation is incomplete due to the lack of transparency in 
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how the system makes decisions resulting in trust issues between users and the 
system.

Background

The first paper detailing the use of computers to assist in the diagnosis of pathology 
from radiographic images was published in the 1960s [6]. The rapidly increasing com-
putational power available has permitted the development of ever more sophisticated 
pathology detection systems, such as the development and use of computer aided 
detection systems in mammography in the 1980s to proposals of autonomous triage 
systems in the present day [7]. Differing methods of analysis of radiographic, and 
other, images have been proposed. Deep Learning systems (DL) using Convolutional 
Neural Networks (CNNs) are one of the most recent and seemingly most promising 
forms of AI for detecting disease on radiographic images.

The use of AI has been targeted as an area of focus for modernising and 
future-proofing the NHS in the UK with proposed tasks such as image interpretation, 
autonomous triage and natural language processing [8]. This is particularly important 
in worldwide healthcare systems coping with the current and ongoing pressures of 
the COVID-19 global pandemic, where resources are limited [9].

Promising accuracies of DL using CNNs for detection of pathology from plain 
radiographs have been reported for chest imaging [3,4] and mammography [10], 
however, possibilities for determining diagnosis from skeletal radiographs have been 
less extensively investigated [11]. This is despite plain radiography being the initial 
modality of choice when imaging this area, with recent figures quoting that plain 
radiography has made up in excess of 23 million of a total of 44.7 million radiographic 
imaging examinations a year in the UK (in the period May 2018 to May 2019 alone) 
[12]. In the USA, the numbers of imaging examinations involving radiation continues 
to rise [13], although more detailed national data is not available.

The first publication of promising experimental results for detecting fractures on 
skeletal extremity radiographs was in 2017 [14]. Since then, other findings have been 
published evidencing the impressive performance of CNNs for pathology detection in 
comparison to, and in conjunction with, human experts [11,15–17].

Despite reported accuracies and benefits, clinicians’ trust in AI remains a barrier 
to AI implementation in the health care setting [7,18]. This is particularly the case 
with the use of DL systems. DL algorithms make use of multiple neural layers to 
analyse and process image data but there are a number of these layers which are 
hidden to the user. It is not entirely apparent, therefore, how the algorithm reaches its 
ultimate decision. This raises ethical and legal issues as well as having implications 
for the users’ trust in the system – if the user doesn’t fully understand how the AI has 
reached its decision, can the clinician be expected to assume ultimate responsibly for 
the outcome [19]? Additional information provided by the AI system, such as per-
centage confidence in diagnosis, triage recommendation and suggestion for further 
imaging have been proposed as other useful AI outputs [20].

Attempts are currently being made to make the DL decision-making process more 
transparent using visual representations to highlight the areas on the image that the 
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AI is attending to, for example, attention/saliency heatmaps and regions of interest superimposed onto the radiograph 
[21,22]. It is proposed that a user may be able to calibrate their trust in the AI if the user can see the area/s on the image 
that the AI focussed on when making its decision.

Decision switching occurs when a decision-maker changes their initial image interpretation or diagnosis based on new 
information, or by assessing the same information from a different perspective. In the field of medical imaging, an overreli-
ance on computer input has been found to cause errors of commission and omission [23,24]. This is known as automation 
bias and is defined as a human naively over-relying on computer information. This happens when the human has more 
faith in the machine rather than their own cognitive conclusions [23,24]. This would not be a problem in a perfect system, 
but this is not reflective of real life, where errors can occur in both humans and computer systems. Using AI may also 
cause the user to choose to change their mind in a positive direction, resulting in the desirable outcome of an increase in 
diagnostic accuracy as a result of interaction with the AI.

This study investigates the effect of feedback from an AI algorithm on diagnostic accuracy, decision switching and trust 
in student and qualified radiographers. The latest census from both the Royal College of Radiologists [25] and the Society 
and College of Radiographers [26] identify shortages of imaging professionals of up to 17% across the UK. With increased 
numbers of newly qualified and student imaging professionals in the NHS to fill this gap, it is important to understand how 
they, as well as currently practicing radiographers, will interact with new technologies being integrated into the imaging 
department. This study focuses on diagnostic radiographers, but these findings may be useful in benchmarking the impact 
of different forms of AI feedback on accuracy, decision switching and trust in all clinicians who use radiographic images for 
diagnosis.

To the authors’ knowledge, no study has investigated the impact of the type of AI feedback on the diagnostic accuracy 
of radiographers and the impact that level of experience has on the acceptability of the AI decision.

Summary

AI is present and will be increasingly more present and utilised in healthcare moving into the future. This study aims to 
clarify how radiographers and student radiographers are affected by feedback from a poorly functioning AI system. This 
is particularly important as the literature is brimming with potentially promising results of AI performance. This study uses 
an AI which performed well in the laboratory (test set) but poorly with more clinically relevant images (clinical dataset). 
In addition, any difference in the perceived trust and acceptance of AI aided diagnoses between students and qualified 
radiographers was also investigated. Findings are intended to provide direction for educating undergraduate and practic-
ing clinicians to maximise the promise and recognise the pitfalls of integrating AI into the clinical setting. It is envisaged 
these findings will provide an indication of the areas where caution should be exercised to aid developers to incorporate 
the most useful forms of AI feedback in their systems.

Aim and objectives

This experimental study aimed to discover how a binary diagnosis and visual feedback from an AI algorithm affects the 
diagnostic accuracy of radiographers with differing levels of expertise when interpreting radiographic images of the upper 
extremities.

The principal aim was to quantify the impact of performance, decision switching and trust in an AI algorithm following 
exposure to two different forms of AI feedback. Two forms of AI feedback were assessed for their respective impacts:

•	 AI feedback type 1) an attention map that shows where on the image the AI is attending to when making its decision 
(Fig 1) and

•	 AI feedback type 2): a simple binary diagnosis, i.e., the model suggests that there is either a pathology or no pathology 
(with a percentage confidence in its decision).
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This study has the following objectives:

(i)	 to determine the baseline diagnostic accuracy of radiographers of differing levels of expertise when interpreting a 
selection of radiographic images of the upper appendicular skeleton.

(ii)	 to expose the participants to both binary and visual feedback from an AI algorithm.

(iii)	 to investigate the impact of the AI feedback on diagnostic accuracy.

(iv)	 to investigate the effect of this AI feedback on decision switching.

(v)	 to investigate the perceptions of trust of participants on the AI system.

Methods

Ethical approvals

Ethical permission for this study has been granted by Ulster University Nursing and Health Research Ethics Filter Commit-
tee FCNUR-20–035. Online, informed consent was gathered form all participants prior to commencement of the study, by 
an initial slide presentation, detailing the background, aims and objectives of the study. There were no minors participating 
in this study. Participants were permitted to exit the study at any point, but they were informed that their submissions up 

Fig 1.   Graphical representation of study pathway.

https://doi.org/10.1371/journal.pone.0322051.g001

https://doi.org/10.1371/journal.pone.0322051.g001
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to this point would be included in analysis. Ethical permission for the use of the clinical dataset images has been granted 
previously to use the images for research purposes (Monash University, Clayton, Australia, 2011).

Model training

MURA, a large dataset for abnormality detection in musculoskeletal radiographs, was used for training and testing of our 
AI model. MURA consists of 40,561 images taken by conducting 14,863 studies of the upper extremity. Each study is then 
labelled by a radiologist as either abnormal or normal. For this binary classification task, musculoskeletal radiographs from 
seven upper extremities including shoulder, humerus, elbow, forearm, wrist, hand and finger were used. The dataset is 
divided into training and validation sets with 9045 normal and 5818 abnormal radiographic studies divided between the 
two sets. In the training set, there are 11,184 patients with 13,457 studies and 36808 images. The images in all the sets 
vary in resolution and aspect ratio with no overlap of patients between training and validation set.

Test set

As there was no explicit test set, we use half of the validation set (783 patients, 1,199 studies and 3197 images) as our 
test set and the rest as validation set. We made sure again that there was no overlap between any of the sets. The test 
set was chosen to contain approximately half of each of the upper extremities for adequate and balanced representation 
of each class.

AI model

In this study we used a convolution neural network (CNN) specifically ResNet-152 pretrained on image net. During train-
ing time, one or more views of study is presented to the CNN and arithmetic mean of the output is taken to determine 
whether it’s abnormal or normal, similar to the original MURA study [40]. Any probability greater than 0.5 is deemed as 
abnormal. Using this criteria, the model is trained using the training set till the network stopped improving and training was 
shut off using early stopping criteria. For optimization, Adam optimizer was used with initial learning rate to 10^-4.

Salience map

To understand the model output prediction and for use in this study, we create a binary saliency map for each image out-
put alongside its abnormality score. Each salience map is created using the binary map creation technique as described 
by Kumar et al., 2018 [21]. In the binary saliency map, we use a heat map overlay in which the white indicates the stron-
gest regions and black indicates null values. Spatial location of the binary saliency map (and the associated heat map) 
indicates the spatial area in the input radiography image which is used by the model to produce the given output. The 
strength of heat map indicates the strength of spatial regions that contribute the most towards the given output abnormal-
ity score. This form of explainable AI will allow the participant to determine if the binary output of the AI is related to the 
appropriate area of the image, or based on another area of the image that the users deem incorrect or inconsequential.

Test dataset

The test dataset consists of radiographic images of the upper appendicular skeleton. They were obtained on real patients 
presenting to a hospital in Australia and were used as part of another PhD study [41]. The radiographic examinations in 
the dataset have all been anonymised. All patients’ identifiable information such as the patient’s name, date of birth and 
health and care number have been removed from each image. Images do not contain any rare abnormalities or patholo-
gies which could readily identify an individual.

There are a total of 268 examinations in the full dataset and have approximately a 3:7 split of pathology: no pathology. 
21 examinations were chosen at random for inclusion in this study.
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The participants will be blinded to the ground truth at all stages of the study, to avoid bias [42].
The radiographic examinations have been used to determine diagnosis. There are three to five radiological reports from 

radiologists and reporting radiographers available for each. Consensus binary diagnosis has been determined by inspec-
tion of radiology reports (fracture/no fracture), and this consensus is used as ‘ground truth’ in this study. Agreement of the 
participants in this study with ‘ground truth’ has been termed ‘accuracy’.

The AI model described above was used to obtain diagnosis for each examination. Predictions were produced as a 
binary diagnosis (i.e., pathology/no pathology) and percentage confidence of the AI in its decision. A heatmap overlay 
(GradCAM) was also provided on each image (Fig 6).

Of the 21 examinations included in this study, the AI made the correct prediction on 12 examinations (57.1% accuracy). 
There was pathology present on nine out of the 21 examinations (42.9%) (Available in ‘Supporting Information’, S1)

Patient-public involvement

A PPI group was set up to help drive the direction of this study and to ensure the study is relevant and useful to the public 
and radiographers in clinical practice. The group consisted of two student radiographers, two practicing radiographers of 
differing levels of experience (approximately 40 years’ and 15 years’ experience) and one patient with a clinical history of 
repeated attendance for plain radiographic examinations of the appendicular skeleton due to repeated sports injuries.

Pilot study

Six images were selected randomly from each anatomical region in the test dataset (fingers, hand, wrist, forearm, elbow 
and humerus) and embedded into Qualtrics® for interpretation by seven participants. Purposive sampling was used to 
select participants to the pilot study who represent the target respondents, to ensure all potential participants would 
understand expectation of their input. Representation from each year of a UK diagnostic radiography programme (Ulster 
University) was obtained, along with qualified radiographers with differing lengths of clinical experience. Participants were 
asked to comment on the acceptability of the study design, the quality of the images in the survey and the time taken to 
complete the survey, ensuring face and content validity and the acceptance of the time sacrifice required to complete the 
study. This information was used to build the survey for the full study.

Qualtrics survey

The number of images in the survey was chosen based on an acceptable estimated time for completion (approximately 15 
minutes). From the test dataset (n=21 examinations) the randomiser function in Qualtrics was used to allocate three radio-
graphic examinations to each participant. Three examinations were chosen to encourage participation as the time taken 
to complete is deemed to be acceptable to participants and encourage thoughtful responses, therefore avoiding random 
responses and premature cessation of the survey [43].

Each examination contained two or more radiographic images. Each image in the examination was presented, and 
the participant was asked to determine if there was a pathology present on the image. The participant was then pre-
sented with the heatmap overlay and asked again if they felt there was a pathology present, and whether the AI heatmap 
has caused them to change their mind from their initial decision. This was repeated for each image in the examination. 
When all images had been presented, the participant was presented with the images again and asked if they felt there 
was a pathology present. The responses to this question were not included in the analysis of the data but was provided 
to ensure the participant had access to all images again to best determine the impact of the binary feedback, which was 
determined for the entire examination and not per image.

Following the above, participants were given the AI binary diagnosis and asked if they would like to change their mind 
from the first evaluation of the images. When all images, heatmaps and binary diagnoses were presented, the participants 
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were asked to determine if they felt there was a pathology present. This question was included to represent the clini-
cal scenario, where clinicians would have the opportunity to view all images to determine a final diagnosis. They were 
then provided with the AI binary decision and asked if they now believed there to be a pathology present on the image. 
They were asked if the binary feedback caused them to change their mind from their initial decision and to give indica-
tion in their trust in the AI following exposure to all images and AI feedback for this examination (Available in ‘Supporting 
Information’).

Participant selection

The study was open to all diagnostic radiographers, who are currently in clinical practice, including students. The landing 
page of the Qualtrics® survey provided participants with information on the study rationale and aim. A brief precis of the 
relevant literature on the subject was also provided. Informed consent was requested by indication of the participants 
desire to proceed via a yes/no response. If the participant indicated that they did not give their consent the ‘skip logic’ 
function exited them from the study. A final page notified respondents of submission of responses, although a full review 
of responses was not given. The study was promoted via the European Congress of Radiology (ECR) Research Hub 
(open from 2nd March to the 12th April 2021) and by promotion on social media (Twitter® and LinkedIn®). The last response 
included in analysis was collected on the 2nd November 2021. Data was, therefore, collected between 2nd March to 2nd 
November 2021. Due to the lack of research in the area, this method of convenience, snowball sampling was felt to be 
appropriate to gain insight upon which to base future studies. A power calculation was not carried out due to the lack of 
previous studies in this area, however, ‘rule-of-thumb’ estimates indicate that there should be 10–15 participants in each 
group for quantitative studies [44,45].

Participants were grouped according to broader experience groups in order to ensure adequate sample size in each 
group (student radiographers/qualified radiographers) to allow for more meaningful outcomes from statistical analyses.

Statistics and reproducibility

Tests of normality (Kolmogorov-Smirnov and Shapiro-Wilk) were conducted. Skewness and kurtosis were visually deter-
mined by inspection of histograms and distribution curves. Comparison was made of the mean and median for each con-
dition in both the student and radiographer groups. Data was found to be normally distributed and parametric tests were 
used for inferential statistics (Table 2).

Descriptive statistics are used to describe the impact of the AI feedback on participants’ accuracy. This is further sub- 
divided into experience categories (i.e., student and radiographer) and condition (i.e., instance where the AI was correct, 
incorrect, pathological cases and non-pathological cases). Data is presented per examination as each examination had 
differing numbers of images contained within. Participants were allocated three examinations at random, therefore data is 
analysed as % accuracy, rather than total number of decision points, however this data pertaining to the total number of 
decision points is given in Table 3.

Participant accuracy was not considered as related to the individual, but rather as a group: student or radiographer (Fig 
2). Diagnostic accuracy was determined at three points; before any AI feedback, following exposure to the AI generated 
heatmap and following the AI binary diagnosis. The findings are tabulated, in full, in Table 3.

The feedback was provided in a sequential manner, i.e., pre-heatmap (no AI feedback), post-heatmap and post-AI 
binary diagnosis, therefore repeated measured ANOVA was used to investigate the impact of the type of AI feedback pro-
vided (Fig 3). Post-hoc pairwise comparisons were conducted to determine the specific factors responsible for the differ-
ences. Combined effects of experience level (students, radiographers) were used investigate any differences in accuracy 
in response to the AI feedback. Effect size of any statistically significant finding was estimated using partial eta squared (= 
SSeffect/ (SSeffect + SSerror)). Effect sizes are reported using an established ‘rule of thumb’:
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ηp2 = 0.01 indicates a small effect
ηp2 = 0.06 indicates a medium effect
ηp2 = 0.14 indicates a large effect [46]
T-tests (two-tailed) investigated the significance of any differences between the accuracy of the student and radiogra-

pher groups under each of the four investigated conditions: (i) AI correct, (ii) AI incorrect, (iii) pathological cases and (iv) 
non-pathological cases. Cohen’s d was used to estimate effect size of any statistically significant result: small 0.2, moder-
ate 0.5, large 0.8 effect [47].

Repeated measures ANOVA was used to investigate any statistically significant difference between the impact of the 
type of AI feedback and diagnostic accuracy. The rate of decision switching has been presented using descriptive statis-
tics for the collective group for each of these scenarios: where the (i) AI was correct, (ii) AI was incorrect, and where the 
image was (iii) pathological or (iv) non-pathological. This was repeated for each group (students and radiographers). The 
direction of the switch of each of the groups in each of the conditions (as before: (i)-(iv)) through the impact of the AI on 
accuracy, where if the accuracy of the group increased, the AI feedback had a positive effect on the diagnostic accuracy of 
the participants.

Fig 2.  Graphical representation of data analysis – t-test.

https://doi.org/10.1371/journal.pone.0322051.g002

Fig 3.  Graphical representation of data analysis – ANOVA.

https://doi.org/10.1371/journal.pone.0322051.g003

https://doi.org/10.1371/journal.pone.0322051.g002
https://doi.org/10.1371/journal.pone.0322051.g003
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Data was tabulated and graphically represented, where appropriate.
The impact of the different forms of AI feedback on the propensity of the participants to change their mind from their initial diagnosis 

were investigated. All participants were asked if the AI feedback caused them to change their mind from their initial diagnosis. This 
question was posed following the AI feedback in the form of the heatmap and again following provision of the AI binary diagnosis.

Results

All data analysis was conducted on SPSS® v 27 [27] and Microsoft® Excel® [28].

Demographics

Full demographic details of the participants are given in Table 1. Following cleaning of the data there were 94 participants 
included in the analyses. Responses were included if at least part of the study was completed. Responses were removed 
if the participant did not give consent via the Qualtrics platform or did not complete any part of any of the questions. Of 
the 94 participants, 57.5% (n=54) were students and 42.6% (n=40) were radiographers with representation of a range 
of experience levels from year one of an undergraduate degree programme to greater than 20 years clinical experience. 
Most respondents were from the UK (England, Scotland, Northern Ireland) or Ireland (85%, n=80).

Accuracy

‘Ground Truth’ has been determined as consensus diagnosis from at least three out of five reporting radiographers and 
radiologists (see Methodology section). ‘Accuracy’ is defined in this study as the agreement of the participants with the 
ground truth diagnosis. Percentage accuracy in each of the two experience levels – student radiographer (‘students’) and 
qualified radiographers (‘radiographers’) is reported. Descriptive statistics are reported for each experience level. Data 
was found to be normally distributed (see Methodology section, and Table 2), and further analysis of the significance of 
any relationships in the data are reported using t-tests (α=0.05), comparing accuracy of student and radiographer groups 
and repeated measures ANOVA, investigating the impact of each form of AI feedback (Fig 2 and 3). Full results are pre-
sented in Figs 4–12 and Tables 3– 5. Dotted lines in all figures represent lines of best fit/ trendline.

The qualified radiographers had a greater accuracy across all examinations, under all conditions, however, this differ-
ence was not statistically significant. Initial accuracy was used as a baseline to clarify the impact of the AI feedback (Figs 
4–12). The standard deviation is presented as error bars on all graphs and listed numerically in Table 3. These are large 
as there are differing accuracies across all examinations, i.e., some examinations may be more ‘difficult’ to interpret than 
others, although ‘difficulty’ of the task was not included in the analysis for this study. Figs 4–12 illustrate the impact of the 
AI feedback on participants collectively, followed by more granular analysis of students and radiographers under each 
of the four conditions – when the AI agrees with ground truth (‘AI correct’), disagrees with ground truth (‘AI incorrect’), in 
pathological cases and non-pathological cases. The initial point on the graph represents the initial accuracy of the users 
collectively and further points illustrate the impact of the heatmap form of feedback and binary, sequentially.

Further interrogation of the data revealed that although there was no statistically significant difference in the two groups’ 
diagnostic accuracy, there was a small to moderate effect size under all conditions – when the AI feedback was correct, 
when the AI was incorrect, in pathological cases and in non-pathological cases. This disparity between statistical significance 
and effect size may be due to small sample size in some cases (n=16–26). The findings are presented in full in Table 4.

Impact of AI feedback

Two forms of AI feedback were provided in sequence in this study – 1) a ‘heatmap’ overlay and 2) binary diagnosis with 
% confidence from the model in its diagnosis. The heatmap (or ‘saliency’ map) provides a visual indication of the area/s of 
the image that the system found most important in determining its diagnosis (Figs 13–16).
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Table 1.  Demographic details of participants.

Demographic information

Currently practicing plain 
radiography in your role 
(student or radiographer)?

Yes 100% (n=94)

No 0% (n=0)

Gender Male 30.9% (n=29)

Female 69.1% (n=65)

Age range 18-25 years old 53.2% (n=50)

26-35 years old 23.4% (n=22)

36-45 years old 16% (n=15)

46-55 years old 5.3% (n=5)

55-65 years old 2.1% (n=2)

In which country do you 
currently work/study?

England 8.5% (n=8)

Ireland 3.2% (n=3)

Italy 1.1% (n=1)

Jordan (JO) 1.1% (n=1)

Malta 5.3% (n=5)

Northern Ireland (NI) 52.1% (n=49)

Philippines 1.1% (n=1)

Portugal 3.2% (n=3)

Scotland 2.1% (n=2)

Sri Lanka 1.1% (n=1)

United Arab Emirates (UAE) 1.1% (n=1)

United Kingdom (UK) 19.1% (n=18)

United States of America (USA) 1.1% (n=1)

Please select from the 
options below to indicate 
your level of experience in 
Diagnostic Radiography

Undergraduate student - year 1 24.5%(n=23)

Undergraduate student - year 2 13.8%(n=13)

Undergraduate student - year 3 18.1%(n=17)

Undergraduate student - year 4 (Scotland only) 1.1%(n=1)

TOTAL students 57.5% (n=54)

****************************************************** ******************

* *

Less than or equal to 1 year experience 3.2%(n=3)

Greater than or equal to 1 to less than 6 years’ experience 4.3%(n=4)

Greater than or equal to 6 to less than 11 years’ experience 13.8%(n=13)

Greater than or equal to 11 to less than 20 years’ experience 11.7%(n=11)

Greater than or equal to 20 years’ experience 9.6% (n=9)

TOTAL radiographers 42.6% (n=40)

How proficient would you 
consider yourself to be 
in the use of information 
technology (I.T.) in general

Very proficient: I choose to use IT and computer systems in all aspects of my personal 
and work life and feel comfortable with the introduction of newer systems.

37.2% (n=35)

Proficient: I choose to use IT and computer systems in many aspects of my personal and 
work life, and I am somewhat comfortable with the introduction of newer systems.

53.2% (n=50)

Somewhat proficient: I use IT and computer systems when I need to in my personal and 
work life, but I feel overwhelmed and confused by newer systems.

9.6% (n=9)

How are you accessing 
this survey?

Home personal computer (PC) 42.6% (n=40)

Diagnostic display workstation 3.2% (n=3)

Mobile phone 42.6% (n=40)

Tablet 5.3% (n=5)

Other 6.4% (n=6)

https://doi.org/10.1371/journal.pone.0322051.t003

https://doi.org/10.1371/journal.pone.0322051.t003
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Table 2.  Test of normality.

ALL (i.e., stud and rad) Students Radiographers

Kolmogorov-Smirnov 0.200 (significant, therefore indicating 
normal)

0.200 0.200

Shapiro-Wilk 0.489 (significant, therefore indicating 
normal)

0.158 0.564

Skewness 0.517 (std error 0.501) 0.917 (std error 
0.501)

-0.920 (std error 0.501)

Kurtosis 0.342 (std error 0.972) 0.550 (std error 
0.972)

-0.181 (std error 0.972)

https://doi.org/10.1371/journal.pone.0322051.t001

Fig 4.  Impact of AI feedback on all participants’ diagnostic accuracy.

https://doi.org/10.1371/journal.pone.0322051.g004

Fig 5.  Impact of AI feedback on all participants’ diagnostic accuracy, when the AI feedback is correct and INcorrect.

https://doi.org/10.1371/journal.pone.0322051.g005

https://doi.org/10.1371/journal.pone.0322051.t001
https://doi.org/10.1371/journal.pone.0322051.g004
https://doi.org/10.1371/journal.pone.0322051.g005
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There is a statistically significant difference in participant accuracy following AI feedback (i.e., pre-AI feedback, 
post-heatmap and post-binary feedback from the AI) when the AI is correct (p=.002) and when the examination has been 
determined as demonstrating pathology (p=.013) (Available in ‘Supporting Information’).

Pairwise comparisons indicate that when the AI is correct there is a significant improvement in the participants’ per-
formance before presentation with any AI feedback and following presentation of the binary AI feedback (p=.007) (i.e., 
between the ‘plain’ image and following textual AI feedback: ‘The AI system determined that this examination/imaging 
series DID/DID NOT contain evidence of pathology with x % certainty’). In the case of pathological examinations, there 
was a statistically significant difference between both the pre-AI feedback and post-heatmap stages (p=.015) and post 
heatmap and post binary feedback (p=.013). Further inspection of the descriptive statistics would indicate that there was a 
statistically significant decrease in performance following presentation of the heatmap, followed by an increase, exceeding 

Fig 6.  Impact of AI feedback on all participants’ diagnostic accuracy in pathological and non-pathological cases.

https://doi.org/10.1371/journal.pone.0322051.g006

Fig 7.  Impact of AI feedback on student participants’ diagnostic accuracy.

https://doi.org/10.1371/journal.pone.0322051.g007

https://doi.org/10.1371/journal.pone.0322051.g006
https://doi.org/10.1371/journal.pone.0322051.g007
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Fig 8.  Impact of AI feedback on student participants’ diagnostic accuracy, when the AI feedback is correct and INcorrect.

https://doi.org/10.1371/journal.pone.0322051.g008

Fig 9.  Impact of AI feedback on student participants’ diagnostic accuracy in pathological and non-pathological cases.

https://doi.org/10.1371/journal.pone.0322051.g009

https://doi.org/10.1371/journal.pone.0322051.g008
https://doi.org/10.1371/journal.pone.0322051.g009
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the performance with the un-aided interpretation (No AI feedback 65.85%, post-heatmap 57.62%, post-binary feedback 
72.35%), indicating that the heatmap was detrimental to performance in pathological cases.

Decision switching

Students were more likely than radiographers to change their mind following heatmap feedback (23.5% students, 14.3% 
radiographers – difference 9.2%) (Fig 17 and 18). The student group were also more likely to change their mind follow-
ing binary feedback, with a greater difference between the two experience groups than heatmap provision only (32.7% 
students, 19.3% radiographers – difference 13.4%). There was also a difference found in the instances where partici-
pants felt they would reconsider their initial opinion following both heatmap and binary diagnosis (19.8% students, 11.0% 

Fig 10.  Impact of AI feedback on radiographer participants’ diagnostic accuracy.

https://doi.org/10.1371/journal.pone.0322051.g010

Fig 11.  Impact of AI feedback on radiographer participants’ diagnostic accuracy, when the AI feedback is correct and INcorrect.

https://doi.org/10.1371/journal.pone.0322051.g011

https://doi.org/10.1371/journal.pone.0322051.g010
https://doi.org/10.1371/journal.pone.0322051.g011
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radiographer – difference 8.8%; 27.0% students, 12.9% radiographers – difference 14.1%, for heatmap and binary AI 
feedback respectively) (Figs 17 and 18). This indicates that the AI feedback is more likely to cause students to change 
their mind from, and feel uncertainty in, their initial decision.

The Mann-Whitney U test was conducted to investigate any statistical significance of these findings. The decision 
switching rate of student radiographers differed significantly from radiographers following presentation of the heatmap, for 
yes (p=.023), no (p=.002) and reconsider responses (p=.008), with the student group responding that they changed their 
mind or reconsidered their initial diagnosis more often that the radiographer group. The radiographer group responded 
that they did not change their mind following their initial decision more often than students following both heatmap and 
binary AI feedback. A medium effect size (r = 

z
√n ) was found in all cases. Full results are presented in Table 5a.

As this data was self-reported by the participants, further analysis was conducted on the respondents’ diagnosis to 
determine the rate and direction of the decision switch, i.e., whether their change of mind was positive (switching from an 
incorrect decision to a correct one) or negative (Table 5, Figs 17 and 18). The direction of the switch was noted as posi-
tive, i.e., more correct, and negative, i.e., less correct, and no change, where the group of participants did not change their 
minds. Data was, again, analysed collectively for the two groups (students and radiographers) as the number of decision 
points varied across the participants. The direction of the switch was determined for three comparisons: (i) pre and post 
heatmap (i.e., impact of heatmap only), (ii) pre heatmap and post binary feedback (the effect of all AI feedback) and (iii) 
post heat map and post binary (effect of binary feedback only).

Automation bias

Automation bias was investigated by determining the negative impact of each type of feedback. The student group was 
more likely to change their mind to a more incorrect response, following AI feedback. Figs 4 to 12 represent the impact of 
each type of AI feedback on the accuracy of participant interpretation. Additional analysis of the direction switch is given 
in Table 5b, by subtracting the initial and final diagnostic accuracy of the participants. The AI feedback (i.e., heatmap 
and binary AI decision) proved beneficial to participants except for situations where the AI was incorrect and pathological 

Fig 12.  Impact of AI feedback on radiographer participants’ diagnostic accuracy in pathological and non-pathological cases.

https://doi.org/10.1371/journal.pone.0322051.g012

https://doi.org/10.1371/journal.pone.0322051.g012
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Table 3.  Impact of A.I feedback on student and qualified diagnostic radiographers’ diagnostic accuracy.

Condition AI feedback Total participant 
decisions*

Total correct partici-
pant decisions*

% 
Accuracy

Standard 
deviation

ALL Overall impact of AI feedback No AI feedback 746 393 52.2 19.24

AI heatmap 742 383 52.8 19.33

AI binary feedback 245 149 60.6 25.06

AI correct No AI feedback 491 245 49.2 17.38

AI heatmap 489 245 49.2 18.57

AI binary feedback 153 97 62.6 21.69

AI incorrect No AI feedback 225 148 62.3 20.45

AI heatmap 253 138 58.8 20.28

AI binary feedback 92 52 57.5 31.13

Pathological cases No AI feedback 342 198 62.7 21.66

AI heatmap 339 186 58.5 21.97

AI binary feedback 104 73 70.3 27.73

Non-pathological cases No AI feedback 404 195 47.8 15.1

AI heatmap 403 197 48.6 16.8

AI binary feedback 141 76 53.4 21.61

Student 
radiographers

Overall impact of AI feedback No AI feedback 417 207 49.9 23.08

AI heatmap 432 193 45.6 22.92

AI binary feedback 143 78 54.3 31.29

AI correct No AI feedback 271 126 44.3 22.79

AI heatmap 287 119 40.8 21.51

AI binary feedback 90 52 57.3 28.24

AI incorrect No AI feedback 146 81 59.0 21.9

AI heatmap 145 74 53.3 24.44

AI binary feedback 53 26 49.4 37.24

Pathological cases No AI feedback 192 116 63.3 22.77

AI heatmap 208 98 50.7 30.66

AI binary feedback 64 38 59.9 37.97

Non-pathological cases No AI feedback 225 91 39.9 18.31

AI heatmap 224 95 41.7 15.32

AI binary feedback 79 40 50.0 26.2

Qualified 
radiographers

Overall impact of AI feedback No AI feedback 312 170 57.4 23.07

AI heatmap 310 169 57.5 25.85

AI binary feedback 102 66 64.9 34.33

AI correct No AI feedback 203 104 50.5 16.21

AI heatmap 202 109 52.6 25.23

AI binary feedback 63 44 65.2 28.32

AI incorrect No AI feedback 109 66 68.6 28.98

AI heatmap 108 60 65.5 26.46

AI binary feedback 39 22 64.3 44.63

Pathological cases No AI feedback 133 82 68.4 28.05

AI heatmap 131 74 64.5 30.07

AI binary feedback 40 34 84.8 22.8

Non-pathological cases No AI feedback 179 88 49.2 14.89

AI heatmap 169 95 52.2 22.05

AI binary feedback 62 32 49.9 34.58

*N.B. % agreement is calculated based on the % accuracy of each decision and therefore there is a slight discrepancy between this and the calculation 
based on columns two and three above.

https://doi.org/10.1371/journal.pone.0322051.t002

https://doi.org/10.1371/journal.pone.0322051.t002
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examinations in the student group (decrease in accuracy of 3.4%). This effect was greater in the student group (9.6% 
decrease).

Trust analysis

Trust perception (0 representing no trust and 5 representing absolute trust) has been gathered at several points during the 
study:

Table 4.  t-tests comparing students and radiographers’ accuracy in determining diagnosis from radiographic images, following AI decision 
support, across four conditions: AI correct/incorrect and pathological/non-pathological cases.

Comparison 
(student (stud) 
v radiographer 
(rad) for…)

Mean 
(M=…)

Std Dev 
(SD=…)

Levene’s test (greater 
than 0.05 – equal 
variance between 
groups assumed)

t Sig 
(p=…
(two-
tailed))

Magnitude of 
difference in 
means (mean 
diff=…)

95% 
CI:…

Cohen’s d=… (small 
0.2, moderate 0.5, 
large 0.8 effect 
(Pallant, 2009)

…ALL exam-
inations (n=42)

Stud 47.2886 22.45583 0.974 -1.554 p=0.128 -10.95571 -25.20019 
to 
3.28876

-0.480 CI: -1.091 to 
0.137Rad 58.2443 23.21394

…instances 
where the AI 
was correct 
(n=26)

Stud 43.7354 21.77342 0.765 -1.184 p=0.248 -9.55692 -26.21770 
to 
7.10386

-0.464 CI: -1.239 to 
0.320Rad 53.2923 19.31483

…instances 
where the AI 
was INcorrect 
(n=16)

Stud 53.0625 23.80118 0.424 -1.019 p=0.325 -13.22875 -41.06032 
to 
14.60282

-0.510 CI: -1.499 to 
0.497Rad 66.2912 27.939115

…pathological 
cases (n=18)

Stud 54.0689 28.5624 0.659 -1.097 p=0.289 -14.69444 -43.09079 
to 
13.70190

-0.517 CI: -1.450 to 
0.431Rad 68.7633 27.86386

…NON patho-
logical cases 
(n=24)

Stud 42.2033 15.53152 0.568 -1.265 p=0.219 -8.15167 -21.51086 
to 
5.20753

-0.517 CI: -1.325 to 
0.303Rad 50.3550 16.02225

https://doi.org/10.1371/journal.pone.0322051.t004

Fig 13.  Patient 11 – Pathological examination: AI correct (83.6% confidence).

https://doi.org/10.1371/journal.pone.0322051.g013

https://doi.org/10.1371/journal.pone.0322051.t004
https://doi.org/10.1371/journal.pone.0322051.g013
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Fig 14.  Patient 2 – Pathological examination: AI incorrect (99.3% confidence in incorrect diagnosis).

https://doi.org/10.1371/journal.pone.0322051.g014

Fig 15.  Patient 16 – Non-pathological examination: AI correct (97.0% confidence).

https://doi.org/10.1371/journal.pone.0322051.g015

https://doi.org/10.1371/journal.pone.0322051.g014
https://doi.org/10.1371/journal.pone.0322051.g015
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•	 At the beginning of the study, when participants had no access to any of the images nor AI feedback provided as part of this study.

•	 Following exposure to all images, heatmap and binary feedback in each complete examination, i.e., three per participant

•	 Finally, at the end of the study, when the participant will have engaged with the full study, consisting of three complete 
examinations including all images and AI feedback contained therein

(Table 6, Fig 19).

Fig 16.  Patient 12 – Non-pathological examination: Ai incorrect (65.24% confidence in incorrect diagnosis).

https://doi.org/10.1371/journal.pone.0322051.g016

Fig 17.  Impact of heatmap feedback on students and radiographers’ propensity to change their mind from their original decision.

https://doi.org/10.1371/journal.pone.0322051.g017

https://doi.org/10.1371/journal.pone.0322051.g016
https://doi.org/10.1371/journal.pone.0322051.g017
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Fig 18.  Impact of binary feedback on students and radiographers’ propensity to change their mind from their original decision.

https://doi.org/10.1371/journal.pone.0322051.g018

Table 5a.  Mann Whitney U test applied to differences in rates of decision switching (instances of yes, no and reconsider expressed as a 
proportion of the total reponses) of students and radiographers. Mean ranks are reported and effect size has been repoting using Pearson’s r 
with effect sizes: small 0.1-0.3, medium 0.3-0.5 and large 0.5 and over (Cohen, 1988).

Has being given the AI feedback (heatmap 
or binary AI decision) caused you to change 
your mind from your initial diagnosis?

Student n=21/ 
Radiographer 
n=20 Total n = 41

Mean 
rank

Mann- 
Whitney U

z=… Exact sig-
nificance 
(p=…)

Effect 
size:
r = 

z
√ n

Following 
heatmap

Yes Student 25.10 124.00 -2.257 .023 0.35 
(medium)Radiographer 16.70

No Student 15.43 93.00 -3.055 .002 0.48 
(medium)Radiog-

rapher
26.85

No, but it did make me reconsider my initial 
decision

Student 25.74 110.50 -2.604 .008 0.41 
(medium)Radiog-

rapher
16.02

Following binary 
AI diagnosis

Yes Student 24.62 134.00 -2.017 .044 0.32 
(medium)Radiographer 17.20

No Student 15.67 98.00 -2.934 .003 0.46 
(medium)Radiog-

rapher
26.60

No, but it did make me reconsider my initial 
decision

Student 25.55 114.50 -2.571 .009 0.40 
(medium)Radiog-

rapher
16.23

https://doi.org/10.1371/journal.pone.0322051.t005

https://doi.org/10.1371/journal.pone.0322051.g018
https://doi.org/10.1371/journal.pone.0322051.t005
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This data is analysed using descriptive statistics, firstly to determine the differences in mean trust of all participants at 
the beginning, following each examination and again at the end of the study and secondly, sub analysis of the two groups: 
students and radiographers.

Initial mean trust is lower for the radiographer group than the student group (mean=4.1, n=54, SD 0.9; mean=3.9, n=40, 
SD 1.1, for students and radiographers respectively). Trust at the end of the study, compared to the beginning, decreased 
in both groups (mean=3.4, n=44, SD 1.3; mean=3.2, n=34, SD 1.1, a decrease of 0.7 for both students and radiographers 
respectively). Overall, mean trust is higher in the student group than the radiographer group during the image assess-
ments, i.e., when asked after each heatmap and each AI binary feedback (3.5, n=142, SD=0.6; 3.0, n=101, SD=0.7 for 
students and radiographers respectively).

Accuracy

The level of diagnostic accuracy was lower than expected overall and does not compare with performance reported 
in recent literature [29,30]. Participants were accessing the study on personal devices which would not permit the 
optimal viewing conditions available in the clinical setting. The images were presented ‘one at a time’, which although 
reflects how images are acquired in the clinical setting, does not permit the participant to revisit a previous image until 
the end of the examination. This is unlike the clinical scenario, where the radiographer would refer to all images when 
making a decision. This was intentional to attempt to glean insight into the impact of the different forms of feedback 
offered.

There was no statistically significant difference in the diagnostic accuracy between students and radiographers in this 
study, although radiographers were more accurate in their diagnosis across all conditions (AI correct/incorrect, pathology/
no pathology). Each examination was different, and the difficulty of diagnosis may have had an impact of the relatively low 
level of accuracy in places. In this study radiographers and students were grouped together irrespective of the amount of 
clinical experience they had. This may in part explain these findings as newly qualified radiographers may have diagnostic 
accuracy like final year students. Supporting this, amongst the participants in this study there is greatest representation 
in the ‘greater than or equal to six, but less than 11 years’ experience group’ (Table 1). Other studies have investigated 

Table 5b.  Decision switching before any AI feedback and after all AI feedback, reported as % difference in diagnostic accuracy of participants 
(i.e., difference in diagnostic accuracy before AI feedback and diagnostic accuracy after all AI feedback). Grey highlighted cells represent 
instances where the AI feedback had net negitive impact on diagnostic accuracy for the examination.

Condition Difference (Before AI – after all AI feedback)

ALL AI correct +13.4

AI incorrect -4.8

Pathological examinations +7.6

Non-pathological examinations +5.6

Students All AI feedback +4.4

AI correct +13.0

AI incorrect -9.6

Pathological examinations -3.4

Non-pathological examinations +10.1

Radiographers All AI feedback +7.5

AI correct +14.7

AI incorrect -4.3

Pathological examinations +16.4

Non-pathological images +0.7

https://doi.org/10.1371/journal.pone.0322051.t006

https://doi.org/10.1371/journal.pone.0322051.t006
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the impact of computer feedback on user performance but have further categorised experience level of the participants. 
Goddard et al. (2014) [23] investigated computer-assisted decision support in medicines prescribing and found that auto-
mated decision support improved the accuracy of all participants, independent of experience. The accuracy of the AI also 
did not seem to have an impact on either students or radiographers. However, on all occasions (inaccurate and accurate 
AI feedback), the heatmap caused a decrease in accuracy before presentation of the AI binary decision rectified the loss 
in performance, which often surpassing the initial accuracy. The accuracy of the AI (correct or incorrect) did not affect this 
increase in performance.

The necessity for the use of visual forms of AI explainability have been mooted by clinical professionals [31,32]. Opin-
ion is changing from explainability being central to the successful adoption of AI, to some questioning its value [33]. A 
recent study [31] investigated the agreement of area of pathology and the area identified by a number of different types 
of AI heatmap. The study found some forms of heatmap (GradCAM) were broadly similar to the area identified by human 
experts but noted that all heatmaps tested used were ‘coarse’ and lacking in detail. They concluded that the heatmaps 
tested were not yet precise enough to be relied upon for diagnostic assistance or explainability. This may explain why 
the heatmap caused some degree of confusion in this study, even in instances where the binary diagnosis from the 
AI was correct. This study supports the recognition that any form of explainability should be treated carefully and the 
impact of using differing forms of AI explainability should be carefully researched before clinical adoption. This study only 
investigated the heatmap form of visual explainability and therefore further study should investigate if different visual 

Table 6.  Trust perception of student radiographers and radiographers at the beginning of the study, before accessing any of the AI feedback, 
following exposure to the AI and at the end of the study, following exposure to all examinations and all AI feedback associated with the allo-
cated examinations.

Student Radiographer

n= Mean SD n= Mean SD

Trust perception - START 54 4.1 0.9 40 3.9 1.1

Trust perception - DURING 142
(total perception ratings – three 
examinations per participant)

3.5 0.6 101
(total perception ratings – three 
examinations per participant)

3.0 0.7

Trust perception – END 44 3.4 1.3 34 3.2 1.1

https://doi.org/10.1371/journal.pone.0322051.t007

Fig 19.  Students’ and radiographers’ trust perception before, during and after AI feedback.

https://doi.org/10.1371/journal.pone.0322051.g019

https://doi.org/10.1371/journal.pone.0322051.t007
https://doi.org/10.1371/journal.pone.0322051.g019
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representations of the focus of the AI might be of better use in this technologically proficient profession. Previous work by 
Rainey et al., 2021b, 2022a and 2022 [20,34,35] have reported that the preference of this population (radiographers) may 
be for the AI to provide data relating to the accuracy of the system being used and a degree of confidence of the system 
in making its diagnosis. This is supported here experimentally by the increase in accuracy across all conditions when pro-
vided with the binary diagnosis, including % confidence of the system in its decision. The exception of this benefit is noted 
when the AI is incorrect and in pathological cases within the student group only, however this decrease in accuracy was 
small (-3.4%).

The reason for the increased in accuracy following binary diagnosis is not immediately clear, although may be related 
to the timing of the AI feedback, with the provision of the binary diagnosis, by necessity, at the end of the examination 
when the participant will have viewed all images. This may be the case in the clinical situation. A study by Gaube et al. 
(2021) [36] found that there was no difference in participants’ (radiologists and non-expert physicians) tendency to follow 
advice whether from a human or AI source, despite indicating preference for the human-derived decision support. This 
was found to encourage confirmation and anchoring biases and indicate this may be due to the discursive nature of true 
human to human interactions which exist organically in the clinical setting. The user should, therefore, be encouraged to 
seek the advice of a decision support tool rather than its automatic presentation, therefore potentially reducing cognitive 
and automation biases.

Decision switching

As noted above, in general, exposure to the heatmap caused the diagnostic accuracy of the participants to fall and 
increase again when presented with the AI binary diagnosis and % confidence of the system. This indicated that the 
participants made a negative decision switch when presented with the heatmap. Automation bias has been defined by 
Goddard et al. (2014) and Bond et al. (2018) [23,24] as the ‘changing of mind’ to a less correct response because of com-
puter intervention. This will not be a problem in a perfect system, where the AI is always correct. A change of decision will 
always be positive, however, even the best systems in use today are less than 100% accurate or may have some inherent 
biases which the user should be mindful of.

As expected, there is a greater propensity of the study participants to change their mind in a positive direction following 
AI feedback when the model is correct. This is not a finding which is fully supported in other studies, where the degree of 
accuracy of the AI feedback provided was not related to the propensity of the user to follow the advice given [36]. Goddard 
et al. (2014) [23] found that experienced users were less likely to change their mind from their initial decision. This may 
mean that they are less likely to gain advantage from the use of the system, however it was not possible to elicit this detail 
in this study due to the broader experience ranges classifying the experience groups in this study. However, the radiog-
raphers were less likely to change their mind following the presentation of either type of AI feedback across all conditions 
and the students were more likely to reconsider their initial decision (Table 5a, Figs 17 and 18). Interestingly, the radiog-
raphers in this study benefitted more than the students from the AI feedback, with the greatest net change in accuracy in 
the ‘AI correct’ and ‘pathological’ conditions (Table 5b). This may be useful in radiography where radiographer reporting 
results in high diagnostic accuracies [30,37], although there may be a greater propensity to underdiagnose pathology 
(‘false negatives’)[29].

Automation bias

In most conditions there was a positive impact from the AI feedback despite the poor performance of the model. The 
heatmaps were more likely to cause the user to be unsure of their diagnosis but, overall, the net effect of the AI feedback 
on diagnostic accuracy was positive in both student and radiographer groups. The exception was in the case where the AI 
was incorrect, where the AI had a negative impact on the participants’ accuracy. A greater impact was seen in the stu-
dent group where accuracy fell by 9.6% compared with 4.3% amongst radiographers, suggesting in this sample that the 
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student group is more susceptible to automation bias (Table 5b). This has been found in other studies where the preva-
lence and likelihood of automation bias and decision switching is greater in less experienced clinicians [23,24].

Trust.  As reported in other studies, the qualified radiographers had a lower level of trust in AI than students. This 
may cause them to become anchored to their initial decision [24,36]. It could be assumed that those who were in the 
radiographer group were, on average, older than those in the student group. Generation Z (born mid 1990s – mid 
2010s) are more likely to trust technology but also are more likely to be able to recognise the potentials and pitfalls of the 
technology that they are using [20]. This age group are also more likely to expect computer assistance in many avenues 
of their life with work being no exception [38]. Both groups’ trust perception in AI systems fell following participation in the 
study, perhaps indicating that they were able to detect that the AI, or some aspects of the AI were inaccurate, however, 
this is at odds with the increased accuracy reported above and with other studies indicating that even experienced 
clinicians are unable to detect inaccuracies in decision support systems [36].

For staff to develop appropriate trust in AI systems as used in clinical practice, it may be beneficial to have some 
degree of exposure to situations where the AI is incorrect. Example cases, where the AI is not always correct, such as 
those reported here, may be useful. Users should be exposed to cases which highlight the potential weaknesses in the 
system in order to calibrate trust. Cases presented by equipment manufacturers/software developers may not be those 
where the AI is not performing well and therefore appropriate trust cannot be calibrated by the user. The common bench-
mark of 30/70 split of correct/incorrect cases has been shown to allow users of technology to determine appropriate trust, 
and to neither over nor under-rely on the system [23,39]. This split should be considered when training new users of AI 
systems for clinical decision support.

Limitations

There were a relatively small number of participants interpreting each examination, however this was intentional to 
encourage participation in an acceptable time frame, reducing the within-study attrition rate. There were 21 examinations 
included in this study. This number was chosen to provide exposure across a range of examinations, without having to 
specifically select examinations, therefore potentially introducing bias.

Convenience sampling was used to recruit the maximum number of participants. However, this sampling method can 
mean that the results are not generalisable to the wider profession. Additionally, this means of sampling resulted in more 
students than radiographers participating in this study. The reason for this is not clear, although it should be noted that this 
may skew the findings. The ‘student’ and ‘radiographer’ groups were analysed separately in an attempt to partially mitigate 
against this; however, future study should adopt purposive sampling of a wide experience range.

There was a lack of granular analysis of the levels of experience of the participants. This was to allow for a greater 
number of decision points for each interpretation. Furthermore, there is a lack of information gathered on the participants’ 
work experience/history and duration of such experience, which may impact the findings. This should be further investi-
gated in future studies.

Examinations were not presented on high quality ‘reporting monitors’ as would have been the case in the clinical 
environment. Participants were able to access the study on any device of their choosing. This was due to constraints of 
conducting an experimental study during restrictions arising from the COVID pandemic. This may explain why the par-
ticipants’ diagnostic accuracies are lower than reported in the literature. Further study should consider determining the 
impact of the difficulty of the examination on the impact of AI feedback from participants from different experience levels 
and clinical backgrounds.

Conclusions

Radiographers’ and student radiographers’ accuracy in diagnosis can be improved with the use of AI, even a poorly func-
tioning system. Participants in this study tended to follow the diagnosis from the system, resulting in decreased accuracy 



PLOS One | https://doi.org/10.1371/journal.pone.0322051  May 9, 2025 25 / 27

in the diagnostic task in some cases. This indicated that more education should be provided to undergraduate radiogra-
phers and other clinicians undertaking radiographic image interpretation.

Appropriate trust should be reached through exposure to imperfect AI. Trust in this imperfect AI decreased following 
exposure to feedback from the system, indicating that the user was aware of its fallibility. Biases inherent in both the 
model and the user will exist and maximum benefit can be derived from acknowledgement of both.

AI will be beneficial in, for example, diagnostic accuracy and workflow efficiencies when used appropriately in synchro-
nicity with the clinician. This will be possible when the user can appreciate cases where the AI is incorrect or not useful. 
Knowledge of the strengths and weaknesses of the system will allow the clinician to determine its appropriateness for use 
in each task.

Supporting information

S1 File.  Characteristics of the AI performance, study transcript, and findings from ANOVA tests with post-hoc 
pairwise comparisons. 
(DOCX)

Author contributions

Conceptualization: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Data curation: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Formal analysis: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Funding acquisition: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Investigation: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Methodology: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Devinder Kumar, Sonyia McFadden.

Project administration: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Resources: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Software: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Devinder Kumar, Sonyia McFadden.

Supervision: Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Validation: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Visualization: Clare Rainey, Raymond Bond, Jonathan McConnell, Ciara Hughes, Sonyia McFadden.

Writing – original draft: Clare Rainey.

Writing – review & editing: Clare Rainey, Raymond Bond, Jonathan McConnell, Avneet Gill, Ciara Hughes, Sonyia 
McFadden.

References
	1.	 NHS Digital. Health secretary: ambitious tech overhaul will make NHS most advanced health and care system in the world. 2019. Available at: 

https://digital.nhs.uk/news/2019/health-secretary-ambitious-tech-overhaul-will-make-nhs-most-advanced-health-and-care-system-in-the-world. 
Accessed 17th June 2022.

	2.	 NHS Long Term Plan. 2019. Available at https://www.longtermplan.nhs.uk/ Accessed 24th November 2020.

	3.	 Tang Y-X, Tang Y-B, Peng Y, Yan K, Bagheri M, Redd BA, et al. Automated abnormality classification of chest radiographs using deep convolutional 
neural networks. NPJ Digit Med. 2020;3:70. https://doi.org/10.1038/s41746-020-0273-z PMID: 32435698

	4.	 Qin C, Yao D, Shi Y, Song Z. Computer-aided detection in chest radiography based on artificial intelligence: a survey. BioMed. 2018;17(1):113. 
https://doi.org/10.1186/s12938-018-0544-y PMID: 30134902

	5.	 Guan Y, Wang X, Li H, Zhang Z, Chen X, Siddiqui O, et al. Detecting asymmetric patterns and localizing cancers on mammograms. Patterns (N Y). 
2020;1(7):100106. https://doi.org/10.1016/j.patter.2020.100106 PMID: 33073255

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0322051.s001
https://digital.nhs.uk/news/2019/health-secretary-ambitious-tech-overhaul-will-make-nhs-most-advanced-health-and-care-system-in-the-world
https://www.longtermplan.nhs.uk/
https://doi.org/10.1038/s41746-020-0273-z
http://www.ncbi.nlm.nih.gov/pubmed/32435698
https://doi.org/10.1186/s12938-018-0544-y
http://www.ncbi.nlm.nih.gov/pubmed/30134902
https://doi.org/10.1016/j.patter.2020.100106
http://www.ncbi.nlm.nih.gov/pubmed/33073255


PLOS One | https://doi.org/10.1371/journal.pone.0322051  May 9, 2025 26 / 27

	 6.	 Lodwick G., Keats T. E., Dorst J. P. The coding of roentgen images for computer analysis as applied to lung cancer. Radiology. 1963; 81 (2):185–
200. https://pubs.rsna.org/doi/10.1148/81.2.185 [Accessed 15th June 2019] PMID: 14053755

	 7.	 Fazal M.I., Patel M.E., Tye J., Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol. 2018;105:246–250. 
https://doi.org/10.1016/j.ejrad.2018.06.020 PMID: 30017288

	 8.	 NHS The Topol Review. Health education England. 2019. Available at: https://topol.hee.nhs.uk/ Accessed 5th May 2021.

	 9.	 Greenspan H, San José Estépar R, Niessen WJ, Siegel E, Nielsen M. Position paper on COVID-19 imaging and AI: From the clinical needs 
and technological challenges to initial AI solutions at the lab and national level towards a new era for AI in healthcare. Medical Image Analysis. 
2020;66:101800. https://doi.org/10.1016/j.media.2020.101800 PMID: 32890777

	10.	 Lamb LR, Lehman CD, Gastounioti A, Conant EF, Bahl M. Artificial Intelligence (AI) for Screening Mammography. AJR. 2022;219(3):369–80. 
https://doi.org/10.2214/AJR.21.27071 PMID: 35018795

	11.	 Rainey C, McConnell J, Hughes C, Bond R, McFadden S. Artificial intelligence for diagnosis of fractures on plain radiographs: a scoping review of 
current literature. Intelligence-Based Medicine. 2021;5:100033. https://doi.org/10.1016/j.ibmed.2021.100033

	12.	 NHS. Diagnostic imaging dataset statistical release. 2020. Available at: https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/07/
Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-07-23.pdf Accessed 2nd July 2022.

	13.	 Smith-Bindman R, Kwan ML, Marlow EC, Theis MK, Bolch W, Cheng SY, et al. Trends in use of medical imaging in US health care systems and in 
Ontario, Canada, 2000-2016. JAMA. 2019;322(9):843–856. https://doi.org/10.1001/jama.2019.11456 PMID: 31479136

	14.	 Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning 
algorithms—are they on par with humans for diagnosing fractures?. Acta Orthopaedica. 2017;581(6):581–6. https://doi.org/10.1080/17453674.201
7.1344459 PMID: 28681679

	15.	 Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S et al. Deep convolutional neural network–based software improves radiologist detection of malig-
nant lung nodules on chest radiographs. Radiol. 2020; 294(1), 199-209 https://doi.org/10.1148/radiol.201918246

	16.	 Mawatari T, Hayashida Y, Katsuragawa S, Yoshimatsu Y, Hamamura T, Anai K, et al. The effect of deep convolutional neural networks on radiol-
ogists’ performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol. 2020;130:109188. https://doi.org/10.1016/j.
ejrad.2020.109188 PMID: 32721827

	17.	 Liu P, et al. Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era. Front Bioeng Biotechnol. 
2022;6:927926. https://doi.org/10.3389/fbioe.2022.927926 PMID: 36147533

	18.	 Sutton R.T., Pincock D., Baumgart D.C., Sadowski D.C., Fedorak R.N., Kroeker K.I. An overview of clinical decision support systems: benefits, 
risks, and strategies for success. NPJ Digit Med. 2020;3:17. https://doi.org/10.1038/s41746-020-0221-y PMID: 32047862

	19.	 Geis JR, Brady AP, Wu CC, Spencer J, Ranschaert E, Jaremko JL, et al. Ethics of artificial intelligence in radiology: a summary of the joint 
European and North American multi-society statement. J Am College Radiol. 2019;293(2):1–6. https://doi.org/10.1148/radiol.2019191586 PMID: 
31573399

	20.	 Rainey C, O’Regan T, Matthew J, Skelton E, Woznitza N, Chu K-Y, et al. Beauty Is in the AI of the beholder: are we ready for the clinical integration 
of artificial intelligence in radiography? An exploratory analysis of perceived AI knowledge, skills, confidence, and education perspectives of UK 
radiographers. Front Digit Health. 2021;3:739327. https://doi.org/10.3389/fdgth.2021.739327 PMID: 34859245

	21.	 Kumar D., Wong A., Taylor G.W. 2018 Explaining the unexplained: a Class-Enhanced Attentive Response (CLEAR) approach to understanding 
deep neural networks Available at: https://ieeexplore.ieee.org/Xplore/home.jsp Accessed 10th August 2019.

	22.	 Blüthgen C. Detection and localization of distal radius fractures: Deep learning system versus radiologists. Eur J Radiol. 2020;126:108925. https://
doi.org/10.1016/j.ejrad.2020.108925

	23.	 Goddard K, Roudsari A, Wyatt JC. Automation bias: empirical results assessing influencing factors. Int J Med Inform. 2014;83(5):368–375. https://
doi.org/10.1016/j.ijmedinf.2014.01.001 PMID: 24581700

	24.	 Bond R.R. et al. Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electro-
cardiograms. J Electrocardiol. 2018; 51(6), S6-S11. https://doi.org/10.1016/j.jelectrocard.2018.08.007

	25.	 The Royal College of Radiologists. Clinical radiology UK workforce census 2020. 2020. Available at: https://www.rcr.ac.uk/system/files/publication/
field_publication_files/clinical-radiology-uk-workforce-census-2020-report.pdf Accessed 15h June 2021.

	26.	 The Society of Radiographers. Radiography census highlights staff bravery amid workforce shortages. 2021. Available at: https://www.sor.org/
news/college-of-radiographers/radiography-census-highlights-staff-bravery-amid-w Accessed 20th February 2022.

	27.	 IBM SPSS statistical package for Windows, version 23, IBM Corporation, Armonk, New York, USA; 2019.

	28.	 Microsoft Corporation. Microsoft excel. 2018. Available at: https://office.microsoft.com/excel

	29.	 Verrier W, Pittock LJ, Bodoceanu M, Piper K. Accuracy of radiographer preliminary clinical evaluation of skeletal trauma radiographs, in clinical 
practice at a district general hospital. Radiography. 2022;28(2):312–318. https://doi.org/10.1016/j.radi.2021.12.010 PMID: 35012880

	30.	 Woznitza N, Ghimire B, Devaraj A, Janes SM, Piper K, Rowe S, et al. Impact of radiographer immediate reporting of X-rays of the chest from gen-
eral practice on the lung cancer pathway (radioX): a randomised controlled trial. Thorax. 2022. https://doi.org/10.1136/thorax-2022-219210 PMID: 
36351688

https://pubs.rsna.org/doi/10.1148/81.2.185
http://www.ncbi.nlm.nih.gov/pubmed/14053755
https://doi.org/10.1016/j.ejrad.2018.06.020
http://www.ncbi.nlm.nih.gov/pubmed/30017288
https://topol.hee.nhs.uk/
https://doi.org/10.1016/j.media.2020.101800
http://www.ncbi.nlm.nih.gov/pubmed/32890777
https://doi.org/10.2214/AJR.21.27071
http://www.ncbi.nlm.nih.gov/pubmed/35018795
https://doi.org/10.1016/j.ibmed.2021.100033
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/07/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-07-23.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/07/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-07-23.pdf
https://doi.org/10.1001/jama.2019.11456
http://www.ncbi.nlm.nih.gov/pubmed/31479136
https://doi.org/10.1080/17453674.2017.1344459
https://doi.org/10.1080/17453674.2017.1344459
http://www.ncbi.nlm.nih.gov/pubmed/28681679
https://doi.org/10.1148/radiol.201918246
https://doi.org/10.1016/j.ejrad.2020.109188
https://doi.org/10.1016/j.ejrad.2020.109188
http://www.ncbi.nlm.nih.gov/pubmed/32721827
https://doi.org/10.3389/fbioe.2022.927926
http://www.ncbi.nlm.nih.gov/pubmed/36147533
https://doi.org/10.1038/s41746-020-0221-y
http://www.ncbi.nlm.nih.gov/pubmed/32047862
https://doi.org/10.1148/radiol.2019191586
http://www.ncbi.nlm.nih.gov/pubmed/31573399
https://doi.org/10.3389/fdgth.2021.739327
http://www.ncbi.nlm.nih.gov/pubmed/34859245
Available at: https://ieeexplore.ieee.org/Xplore/home.jsp
https://doi.org/10.1016/j.ejrad.2020.108925
https://doi.org/10.1016/j.ejrad.2020.108925
https://doi.org/10.1016/j.ijmedinf.2014.01.001
https://doi.org/10.1016/j.ijmedinf.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24581700
https://doi.org/10.1016/j.jelectrocard.2018.08.007
https://www.rcr.ac.uk/system/files/publication/field_publication_files/clinical-radiology-uk-workforce-census-2020-report.pdf
https://www.rcr.ac.uk/system/files/publication/field_publication_files/clinical-radiology-uk-workforce-census-2020-report.pdf
https://www.sor.org/news/college-of-radiographers/radiography-census-highlights-staff-bravery-amid-w
https://www.sor.org/news/college-of-radiographers/radiography-census-highlights-staff-bravery-amid-w
https://office.microsoft.com/excel
https://doi.org/10.1016/j.radi.2021.12.010
http://www.ncbi.nlm.nih.gov/pubmed/35012880
https://doi.org/10.1136/thorax-2022-219210
http://www.ncbi.nlm.nih.gov/pubmed/36351688


PLOS One | https://doi.org/10.1371/journal.pone.0322051  May 9, 2025 27 / 27

	31.	 Saporta A., et al. Benchmarking saliency methods for chest X-ray interpretation. Nat Mach Intell. 2022;4, 867–878. https://doi.org/10.1038/
s42256-022-00536-x

	32.	 Zhang Y, Weng Y, Lund J. Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics. 2022;12(2):237. https://doi.
org/10.3390/diagnostics12020237 PMID: 35204328

	33.	 Kitamura FC, Marques O. Trustworthiness of artificial intelligence models in radiology and the role of explainability. American College of Radiology. 
2021. https://doi.org/10.1016/j.jacr.2021.02.008 PMID: 33676912

	34.	 Rainey C, O’Regan T, Matthew J, Skelton E, Woznitza N, Chu K-Y, et al. An insight into the current perceptions of UK radiographers on the future 
impact of AI on the profession: a cross-sectional survey. J Med Imag Radiation Sci. 2022;53(3): https://doi.org/10.1016/j.jmir.2022.05.010 PMID: 
35715359

	35.	 Rainey C, O’Regan T, Matthew J, Skelton E, Woznitza N, Chu K-Y, et al. UK reporting radiographers’ perceptions of AI in radiographic image 
interpretation e Current perspectives and future developments. Radiography. 2022;28(4):881–8. https://doi.org/10.1016/j.radi.2022.06.006 PMID: 
35780627

	36.	 Gaube S, Suresh H, Raue M, Merritt A, Berkowitz SJ, Lermer E, et al. Do as AI say: susceptibility in deployment of clinical decision-aids. NPJ Digit 
Med. 2021;4:(1):31. https://doi.org/10.1038/s41746-021-00385-9 PMID: 33608629

	37.	 Culpan G, Culpan A-M, Docherty P, Denton E. Radiographer reporting: a literature review to support cancer workforce planning in England. Radi-
ography. 2019;25(2):155–163. https://doi.org/10.1016/j.radi.2019.02.010 PMID: 30955689

	38.	 Advanced. The digital natives report. 2019. https://www.oneadvanced.com/trends-report/digital-natives-report-2019-2020/ Accessed 29 June 2021.

	39.	 Moray N, Inagaki T, Itoh M. Adaptive automation, trust, and self-confidence in fault management of time-critical tasks. J Exp Psychol Appl. 
2000;6(1):44–58. https://doi.org/10.1037//1076-898x.6.1.44 PMID: 10937311

	40.	 Rajpurkar P. et al. MURA: large dataset for abnormality detection in musculoskeletal radiographs. 2018. Available at: https://arxiv.org/
abs/1712.06957 Accessed: 15th May 2020.

	41.	 McConnell J, Devaney C, Gordon M. Queensland radiographer clinical descriptions of adult appendicular musculo-skeletal trauma following a 
condensed education programme. Radiography. 2013;19(1):48–55. https://doi.org/10.1016/j.radi.2012.09.002

	42.	 Brealey S., King D., Warnock N. Methodological standards in radiographer plain film reading performance studies. British J Radiol. 2002; 75:107-
113. https://doi.org/10.1259/bjr.75.890.750107

	43.	 Revilla M, Ochoa C. Ideal and maximum length for a web survey. Int J Market Res. 2017;59(5):557–565. https://doi.org/10.2501/IJMR-2017-039

	44.	 Obuchowski N.A. How many observers are needed in clinical studies of medical imaging?. AJR Am J Roentgenol. 2004;182(4):867–9. https://doi.
org/10.2214/ajr.182.4.1820867 PMID: 15039154

	45.	 Allyn and Bacon. Participants, subjects and sampling. 2008. Available at: http://people.uncw.edu/caropresoe/EDN523/523_Spring_08_Spring_09/
McM_Ch5-Rv.ppt. Accessed 28th June 2021.

	46.	 Field A. Discovering statistics using IBM SPSS statistics, 4th edn. London: Sage; 2013.

	47.	 Pallant J. SPSS Survival Manual, 3rd edn. Berkshire: Open University Press/McGraw-Hill; 2007.

https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.3390/diagnostics12020237
https://doi.org/10.3390/diagnostics12020237
http://www.ncbi.nlm.nih.gov/pubmed/35204328
https://doi.org/10.1016/j.jacr.2021.02.008
http://www.ncbi.nlm.nih.gov/pubmed/33676912
https://doi.org/10.1016/j.jmir.2022.05.010
http://www.ncbi.nlm.nih.gov/pubmed/35715359
https://doi.org/10.1016/j.radi.2022.06.006
http://www.ncbi.nlm.nih.gov/pubmed/35780627
https://doi.org/10.1038/s41746-021-00385-9
http://www.ncbi.nlm.nih.gov/pubmed/33608629
https://doi.org/10.1016/j.radi.2019.02.010
http://www.ncbi.nlm.nih.gov/pubmed/30955689
https://www.oneadvanced.com/trends-report/digital-natives-report-2019-2020/
https://doi.org/10.1037//1076-898x.6.1.44
http://www.ncbi.nlm.nih.gov/pubmed/10937311
https://arxiv.org/abs/1712.06957
https://arxiv.org/abs/1712.06957
https://doi.org/10.1016/j.radi.2012.09.002
https://doi.org/10.1259/bjr.75.890.750107
https://doi.org/10.2501/IJMR-2017-039
https://doi.org/10.2214/ajr.182.4.1820867
https://doi.org/10.2214/ajr.182.4.1820867
http://www.ncbi.nlm.nih.gov/pubmed/15039154
http://people.uncw.edu/caropresoe/EDN523/523_Spring_08_Spring_09/McM_Ch5-Rv.ppt
http://people.uncw.edu/caropresoe/EDN523/523_Spring_08_Spring_09/McM_Ch5-Rv.ppt

