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Introduction. Apolipoprotein E (APOE) is an important risk factor for Alzheimer’s disease (AD) and is present in 30–50% of
patients who develop late-onset AD. Several single-nucleotide polymorphisms (SNPs) are present in APOE gene which act as the
biomarkers for exploring the genetic basis of this disease. The objective of this study is to identify deleterious nsSNPs associated
with APOE gene. Methods. The SNPs were retrieved from dbSNP. Using I-Mutant, protein stability change was calculated. The
potentially functional nonsynonymous (ns) SNPs and their effect on protein was predicted by PolyPhen and SIFT, respectively.
FASTSNP was used for functional analysis and estimation of risk score. The functional impact on the APOE protein was evaluated
by using Swiss PDB viewer and NOMAD-Ref server. Results. Six nsSNPs were found to be least stable by I-Mutant 2.0 with DDG
value of > −1.0. Four nsSNPs showed a highly deleterious tolerance index score of 0.00. Nine nsSNPs were found to be probably
damaging with position-specific independent counts (PSICs) score of ≥2.0. Seven nsSNPs were found to be highly polymorphic
with a risk score of 3-4. The total energies and root-mean-square deviation (RMSD) values were higher for three mutant-
type structures compared to the native modeled structure. Conclusion. We concluded that three nsSNPs, namely, rs11542041,
rs11542040, and rs11542034, to be potentially functional polymorphic.

1. Introduction

Alzheimer’s disease, the most common form of dementia in
the elderly currently, affects more than five million people
in the USA alone. Four leading genes (APP, PS1, PS2, and
APOE) have been determined, as causative elements of this
disorder. It has been seen that the mutations in APP, PS1, and
PS2 cause early onset AD while APOE is the only gene that
has been always marked as a risk factor for late-onset disease
[1–3].

APOE is broadly considered as a crucial agent for AD and
is present in 30–50% of patients who develop late-onset AD
[4]. It is a circulating 34-kDa secretory protein, synthesized
primarily in the liver, and functions in the periphery as a
mediator of lipoprotein metabolism through the binding
of APOE-containing plasma lipoprotein particles to mem-
bers of the low-density lipoprotein (LDL) superfamily of

receptors. Within the central nervous system (CNS), APOE is
synthesized and secreted primarily by astrocytes and micro-
glia, and its importance is underscored by the absence of
most other plasma apolipoproteins in brain [5]. Additionally,
brain apoE is believed to play a role in the redistribution of
lipid and cholesterol during membrane repair and synaptic
plasticity as well as in the transport of APOE-containing li-
poproteins in the cerebrospinal fluid [6, 7]. The human apoE
gene contains several SNPs distributed across the gene [8].

SNPs are the most common polymorphisms of DNA se-
quence variation for mapping complex genetic traits. About
500,000 SNPs fall in the coding regions of the human
genome. Among these, the nonsynonymous SNPs cause
changes in the amino acid residues. These are likely to be an
important factor contributing to the functional diversity of
the encoded proteins in the human population [9]. A num-
ber of databases of SNPs are available, such as the human
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genome variation database, HGVBase [10], and the National
Center for Biotechnology Information database, dbSNP [11].
The effect of noncoding SNPs on gene regulation is difficult
to understand. So attention is being focused towards nonsyn-
onymous coding SNPs. These types of mutations are believed
to be more likely to cause a change in structure and as such
alter the function of a protein. These nsSNPs affect gene
expression by modifying DNA and transcription factor bind-
ing [12, 13] and inactivate active sites of enzymes or change
splice sites, thereby produce defective gene products [14, 15].

Epidemiologic association studies focus a great amount
of effort into identifying SNPs in genes that may have an
association with disease risk. Often, the SNPs that have an
association with disease are those that are known as nonsyn-
onymous SNPs, which result in an amino acid substitution.
Many molecular epidemiologic studies focus on studying
SNPs found in coding regions in hopes of finding significant
association between SNPs and disease susceptibility but often
find little or no association [16]. With the availability of
high-throughput SNP detection techniques, the population
of nsSNPs is increasing rapidly, providing a platform for
studying the relationship between genotypes and phenotypes
of human diseases. Our ability to better select a nsSNP for
an association study can be enhanced by first examining the
potential impact an amino acid variant may have on the
function of the encoded protein with the use of different
SNP detection programs like I-Mutant, Sort Intolerant from
Tolerant (SIFT), and Polymorphism Phenotype (PolyPhen)
[16]. Discovering the deleterious nsSNPs out of a pool of all
the SNPs will be very useful for epidemiological population-
based studies. So the main aim of this study is to identify
deleterious nsSNPs associated with APOE gene.

2. Methods

Methodology used was the same as described earlier [9, 16,
17].

2.1. Extraction of SNPs. We used dbSNP (http://www.ncbi
.nlm.nih.gov/SNP/) to identify SNPs and their related pro-
tein sequence for the APOE gene [11].

2.2. Protein Stability Analysis. I-Mutant 2.0 software was
used to predict nsSNP causing protein stability change [18].
I-Mutant 2.0 is a support vector machine- (SVM-) based
tool for the automatic prediction of protein stability change
upon single amino acid substitution. The protein stability
change was predicted from the APOE protein sequence
(NP 000032). The software computed the predicted free
energy change value or sign (DDG) which is calculated from
the unfolding Gibbs free energy value of the mutated protein
minus unfolding Gibbs free energy value of the native protein
(kcal/mol). A positive DDG value indicates that the mutated
protein possesses high stability and vice versa.

2.3. Analysis of Functional Effect on Protein. There are many
web-based resources available that allow one to predict
whether nonsynonymous coding SNPs may have functional

effects on proteins. We chose SIFT [19] to perform protein
conservation analysis and predict the phenotypic effect of
amino acid substitutions. SIFT is based on the premise that
protein evolution is correlated with protein function. Vari-
ants that occur at conserved alignment positions are expected
to be tolerated less than those that occur at diverse positions.
The algorithm uses a modified version of PSIBLAST [20] and
Dirichlet mixture regularization [21] to construct a multiple
sequence alignment of proteins that can be globally aligned
to the query sequence and belong to the same clade. The
underlying principle of this program is that it generates
alignments with a large number of homologous sequences
and assigns scores to each residue, ranging from zero to one.
SIFT scores [22] were classified as intolerant (0.00–0.05),
potentially intolerant (0.051–0.10), borderline (0.101–0.20),
or tolerant (0.201–1.00). the higher the tolerance index of
a particular amino acid substitution, the lesser is its likely
impact.

2.4. Evaluation of Functional Change in nsSNPs. PolyPhen
[23] is a computational tool for identification of potentially
functional nsSNPs. Predictions are based on a combination
of phylogenetic, structural, and sequence annotation infor-
mation characterizing a substitution and its position in the
protein. For a given amino acid variation, PolyPhen performs
several steps: (a) extraction of sequence-based features of the
substitution site from the UniProt database, (b) calculation
of profile scores for two amino acid variants, and (c) calcula-
tion of structural parameters and contacts of a substituted
residue. PolyPhen scores were classified as “benign” or
“probably damaging” [22]. Input options for the PolyPhen
server are protein sequence or accession number together
with sequence position with two amino acid variants. We
submitted the query in the form of protein sequence with
mutational position and two amino acid variants. PolyPhen
searches for three-dimensional protein structures, multiple
alignments of homologous sequences, and amino acid con-
tact information in several protein structure databases. Then,
it calculates position-specific independent counts (PSICS)
scores for each of two variants and computes the differenceis
of the PSIC scores of the two variants. The higher a PSIC
score difference, the higher functional impact a particular
amino acid substitution is likely to have. PolyPhen scores
of >2.0 are expected to be “probably damaging” to protein
structure and function, and PolyPhen scores of 1.99–1.50
are expected to be “possibly damaging” to protein function
[17].

2.5. Analysis of Functional nsSNPs by FASTSNP. The Func-
tional Analysis and Selection Tool for Single Nucleotide
Polymorphism (FASTSNP) is a web server which connects
many software and databases for processing analysis [24].
We used FASTSNP for the prediction of the functional
effect of nsSNPs and an estimation of their risk score. The
FASTSNP uses a decision tree for prioritizing the functional
effect and estimating risk score. The nsSNPs were submitted
for FASTSNP analysis, and output files were displayed as a
decision tree.
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Table 1: I-Mutant, SIFT and PolyPhen results of APOE.

SIFT PolyPhen

SNP ADs Alleles Amino acid change DDG Tolerance index Predicted impact PSIC score Predicted impact

rs121918399 C/T R43C 0.66 0.07 Potentially intolerant 1.534 Possibly damaging

rs121918398 A/G R292H −2.06 0.06 Potentially intolerant 1.979 Possibly damaging

rs121918397 G/A R163H 0.05 0.16 Borderline 1.961 Probably damaging

rs121918395 C/T R246C −0.48 0.06 Potentially intolerant 2.386 Possibly damaging

rs121918394 A/C K164Q −1.28 0.08 Potentially intolerant 1.550 Possibly damaging

rs121918393 C/A R154S −0.51 0.10 Potentially intolerant 1.962 Possibly damaging

rs121918392 G/A E21K 1.17 0.18 Borderline 1.373 Borderline

rs41382345 A/T E139V −1.32 0.00 Intolerant 2.246 Probably damaging

rs28931579 A/C S314R −0.09 0.12 Borderline 1.343 Borderline

rs28931578 G/A R152Q −0.43 0.01 Intolerant 1.772 Possibly damaging

rs28931577 G/A A117T 0.65 0.06 Intolerant 1.451 Borderline

rs28931576 A/G T60A 0.57 0.15 Borderline 0.669 Benign

rs11542041 C/A R132S −2.75 0.00 Intolerant 2.204 Probably damaging

rs11542040 C/A P102T −1.20 0.00 Intolerant 2.396 Probably damaging

rs11542035 G/A R137H 0.83 0.13 Borderline 0.080 Benign

rs11542034 A/G E150G −1.24 0.00 Intolerant 2.284 Probably damaging

rs11542032 G/A E189K −0.89 0.01 Intolerant 1.607 Possibly damaging

rs11542030 A/G Q205R 0.48 0.11 Borderline 0.794 Benign

rs11542029 C/T R50C −0.82 0.00 Intolerant 2.654 Probably damaging

rs11542027 C/T S215F 0.84 0.01 Intolerant 1.437 Borderline

rs11083750 C/A P102Q −1.15 NA NA 2.396 probably damaging

C/G P102R −1.18 NA NA 2.621 probably damaging

rs769455 C/T R163C 0.08 0.00 Intolerant 1.502 Possibly damaging

rs769452 T/C L46P −0.11 0.12 Borderline 1.334 Borderline

rs429358 T/C C130R −0.07 1.00 Tolerant 0.231 Benign

rs7412 C/T R176C −1.19 0.02 Intolerant 2.654 Probably damaging

Note: nsSNPs which were found to be deleterious by I-Mutant and SIFT as well as PolyPhen are highlighted as bold.

2.6. Modeling of APOE: Its Mutant Forms and RMSD Calcula-
tions. Structural analyses are performed based on the crystal
structure of the protein for evaluating the structural stability
of native and mutant proteins. We used dbSNP to identify
the protein coded by APOE gene. The 3D structure of APOE
protein was not available, so we used homology modeling
approach for its 3D structure prediction. The modeling
was performed by automated homology modeling program,
SWISS MODEL [25]. The following steps were followed:
template structure search using BLAST (http://www.ncbi
.nlm.nih.gov/). The FASTA sequence of APOE was submit-
ted to NCBI BLAST. Following BLAST query, a receptor
binding domain of human APOE (PDB ID: 2KC3) was se-
lected as template sequence [26]. The template was sub-
mitted to SWISS MODEL automated homology modeling
server. The validation for structure model obtained from the
SWISS MODEL was performed by using PROCHECK [27]
and energy minimization performed by Verify 3D [28] and
NOMAD-Ref server [29]. The overall stereochemical quality
of the protein was assessed by Ramachandran plot analysis
[30]. The structures were visualized using Swiss PDB viewer.

The mutation was performed by using Swiss PDB viewer,
and energy minimization for 3D structures was performed

by NOMAD-Ref server [29]. This server use Gromacs as de-
fault force field for energy minimization based on the
methods of steepest descent, conjugate gradient and L-BFGS
methods [31]. We used conjugate gradient, method for opti-
mizing the 3D structures. Divergence in mutant structure
with native structure is due to mutation, deletions, and
insertions [32], and the deviation between the two structures
is evaluated by their RMSD values which could affect stability
and functional activity [33].

3. Results

3.1. SNP Analysis. The APOE gene investigated in this work
contained a total of 88 SNPs, of which 26 were nsSNPs, 8 were
synonymous SNPs, and 2 were in noncoding regions, which
comprise 1 SNP in the 5′ UTR and 1 SNP in the 3′ UTR. The
rest were in the intron region. We selected nonsynonymous
coding SNPs for our investigation (Table 1).

3.2. Identification of Functional nsSNP. The more negative
the DDG value is, the less stable the given point mutation is
likely to be, as predicted by I-Mutant 2.0 server. We obtained
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17 nsSNPs that were found to be less stable by this serv-
er as shown in Table 1. Out of 17 nsSNPs, 8 nsSNPs,
namely, rs121918398, rs121918394, rs41382345, rs11542041,
rs11542040, rs11542034, rs11083750, and rs7412 showed,
a DDG value of >−1.0. The remaining nsSNPs showed a
DDG value of <−1.0, as depicted in Table 1. Out of these 8
nsSNPs, the four nsSNPs, namely, rs121918398, rs11542041,
rs11542040, and rs11083750, changed their amino acid from
nonpolar to polar two nsSNPs, namely, rs41382345 and
rs11542034, changed their amino acids from polar to non-
polar. The other two do not show any change in property.
Since the amino acid mutations in these six nsSNPs changed
their physiochemical properties, we considered these nsSNPs
to be least stable and deleterious by this analysis.

3.3. Prediction of Deleterious nsSNPs. Twenty-six nsSNPs re-
trieved from APOE gene, submitted independently to the
SIFT showed 10 nsSNPs to be deleterious, having the toler-
ance index score of ≤0.05. The results are shown in Table 1.
We observed that, out of 10 deleterious nsSNPs, 5 nsSNPs
showed a highly deleterious tolerance index score of 0.00.
Among these deleterious 10 nsSNPs, two nsSNPs showed
a nucleotide change from C→A, two from G→A, one
from A→T, four from C→T, and the other one from A→
G (Table 1). Also, according to the SIFT results, the two
nsSNPs, namely, rs11542041 and rs11542040, changed their
amino acid from nonpolar to polar and two nsSNPs, namely,
rs41382345 and rs11542034, changed their amino acid from
polar to nonpolar in the mutant protein. We found that
these four nsSNPs that are seen to be deleterious according
to SIFT were also found less stable by I-Mutant 2.0 server.
Therefore, these four nsSNPs were found deleterious by this
investigation.

3.4. Identification of Damaged APOE nsSNPs. To identify the
APOE nsSNPs that affected protein structure, the APOE nsS-
NPs were analyzed for predicting a possible impact of amino
acids on the structure and function of the protein using
PolyPhen server. The APOE protein sequence (NP 000032)
with each nsSNP position and their 2 amino acid variants
was submitted as input for analyzing the protein structural
change due to amino acids. Our result showed 9 nsSNPs,
namely, rs121918395, rs121918395, rs41382345, rs11542041,
rs11542040, rs11542034, rs11542029, rs11083750, and
rs7412, to be probably damaging with PSIC score of ≥2.0.
The rs41382345, rs11542041, rs11542040, and rs11542034
which were observed to be the cause of protein less stability
by I-Mutant 2.0 server and SIFT were also predicted to
be probably damaging by PolyPhen server. In addition
the other five nsSNPs are highly confidently predicted as
probably damaging and the remaining as benign by PolyPhen
(Table 1).

3.5. Investigation of Functional Effect and Estimated Risk of
APOE nsSNPs. In order to identify nsSNP with a high possi-
bility of having a functional effect, FASTSNP was applied for
the detection of nsSNP influence on cellular and molecular
biological function, for example, transcriptional and splicing

regulation. In addition the estimation of risk score was also
calculated by FASTSNP. The functional effect and estimated
risk of APOE nsSNPs are shown in Table 2. Seven APOE
nsSNPs exhibited medium-high-risk score (risk score =
3-4). The functional nsSNPs were rs28931578, rs11542041,
rs11542040, rs11542035, rs11542034, rs11083750, and
rs7412. The eight nsSNPs showed low-medium risk (risk
score = 2-3). The risk score of the remaining ten nsSNPs
was unknown. The most important findings detected by
FASTSNP were the five nsSNPs, namely, rs28931578,
rs11542041, rs11542040, rs11542034, and rs7412 to have
high possible functional effect. These were also found
polymorphic by I-Mutant 2.0 SIFT as well as by PolyPhen
server.

3.6. Modeling of Mutant Proteins. The mutations in the
APOE were performed by Swiss PDB viewer independently
to achieve modeled structures. Then, energy minimizations
were performed by NOMAD-Ref server for the homology
modeled structure and its mutant forms. The total energy
and the RMSD values for the homology modeled structure
and the mutant-structures are given in Table 3. The higher
the RMSD value is, the more the deviation between the
two structures, which in turn changes their functional
activity. The total energies and RMSD values were higher for
three mutant-structures compared to the homology modeled
structure (Table 3); these three nsSNPs could be believed
to affect the structure of the proteins. These three nsSNPs
were also shown to be deleterious and damaging by I-Mutant
2.0 and SIFT, PolyPhen as well as by FASTSNP server. The
structure of template and the newly predicted structure
of APOE are shown in Figure 1 while the superimposed
structure of homology-modeled protein with its mutant
forms is given in Figure 2.

4. Discussion

Our analysis revealed 26 SNPs as nonsynonymous out
of which 6 nsSNPs, namely, rs121918398, rs11542041,
rs11542040, rs11083750, rs41382345, and rs11542034,
were found to be least stable by I-Mutant 2.0 with DDG
value of >−1.0. nsSNPs, namely, rs11542041, rs11542040,
rs41382345, and rs11542034, showed a highly deleterious
tolerance index score of 0.00 with a change in their
physicochemical properties by SIFT server. Nine nsSNPs
namely, rs121918395, rs121918395, rs41382345, rs11542041,
rs11542040, rs11542034, rs11542029, rs11083750, and
rs7412, were found to be probably damaging with
PSIC score of ≥2.0 by PolyPhen server. Seven nsSNPs,
namely, rs28931578, rs11542041, rs11542040, rs11542035,
rs11542034, rs11083750, and rs7412, were found to be
highly polymorphic with a risk score of 3-4 with a possible
effect of nonconservative change and splicing regulation by
FASTSNP. The total energies and RMSD values were higher
for three mutant-type structures compared to the native
modeled type structure. Three nsSNPs are rs11542041,
rs11542040, and rs11542034 which were also shown to be
deleterious and damaging by I-Mutant 2.0, SIFT, and
PolyPhen as well as by FASTSNP server.
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Table 2: Functional effect and estimated risk (FASTSNP).

SNP IDs Alleles Amino acid change Possible effect Risk score

rs41382345 A/T E139V Conservative change, splicing regulation 2-3

rs28931579 A/C S314R Conservative change, splicing regulation 2-3

rs28931578 G/A R152Q Nonconservative change, splicing regulation 3-4

rs28931577 G/A A117T Conservative change, splicing regulation 2-3

rs28931576 A/G T60A Conservative change, splicing regulation 2-3

rs11542041 C/A R132S Nonconservative change, splicing regulation 3-4

rs11542040 C/A P102T Nonconservative change, splicing regulation 3-4

rs11542035 G/A R137H Non conservative change 3-4

rs11542034 A/G E150G Nonconservative change, splicing regulation 3-4

rs11542032 G/A E189K Conservative change, splicing regulation 2-3

rs11542030 A/G Q205R Conservative change, splicing regulation 2-3

rs11542027 C/T S215F Conservative change 2-3

rs11083750 C/A P102Q Nonconservative change, splicing regulation 3-4

rs429358 T/C L46P Conservative change 2-3

rs7412 T/C C130R Nonconservative change, splicing regulation 3-4

rs11542029 C/T R50C NP

rs769455 C/G P102R NP

rs769452 C/T R163C NP

rs121918399 C/T R43C NP

rs121918398 A/G R292H NP

rs121918397 G/A R163H NP

rs121918395 C/T R246C NP

rs121918394 A/C K164Q NP

rs121918393 C/A R154S NP

rs121918392 G/A E21K NP

NP: No Prediction; nsSNPs which show high risk score are highlighted as bold.

Table 3: RMSD and total energy of modeled structure and its mutant forms.

Total energy (Kcal/mol) RMSD (Å)

Homology modeled structure −10003.979 —

Mutant model (E139V) −9997.772 0.06

Mutant model (E150G) −9576.393 2.83

Mutant model (E189K) −9788.449 0.42

Mutant model (K164Q) −10173.771 0.00

Mutant model (P102Q) −10191.791 0.00

Mutant model (P102R) −10272.199 0.00

Mutant model (P102T) −9601.084 2.35

Mutant model (R50C) −9923.915 0.12

Mutantmodel (R132S) −9537.828 2.45

Mutant model (R152Q) −9995.500 0.11

Mutant model (R154S) −9961.830 0.09

Mutant model (R176C) −9743.661 0.41

Note: nsSNPs which show highest energy and RMSD values are highlighted as bold.

A major interest in human genetics is to distinguish
mutations that are functionally neutral from those that con-
tribute to disease. Amino acid substitutions currently ac-
count for approximately half of the known gene lesions
responsible for human inherited disease. Therefore, the iden-
tification of nsSNPs that affect protein functions and relate to

disease is an important task. The effect of many nsSNPs will
probably be neutral as natural selection will have removed
mutations on essential positions. Assessment of nonneutral
SNPs is mainly based on phylogenetic information (i.e., cor-
relation with residue conservation) extended to a certain de-
gree with structural approaches. However, there is increasing
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Superimposed homology modeled structure (green) with (a) mutant (E139V), (b) mutant (E150G), (c) mutant (E189K), (d) mu-
tant (K164Q), (e) mutant (P102Q), (f) mutant (P102R), (g) mutant (P102T), (h) mutant (R50C), (i) mutant (R132S), (j) mutant (R152Q),
(k) mutant (R154S), (l) mutant (R176C) all in red colour.

(a) (b)

Figure 2: (a) 3D structure of template (PDB ID 2KC3), (b) homology modeled structure of APOE protein predicted using SWISS-MODLE.

evidence that many human disease genes are the result of
exonic or noncoding mutations affecting regulatory regions
[17, 34]. Much attention has been focused on modeling by
different methods the possible phenotypic effect of SNPs

that cause amino acid changes and only recently has interest
focused on functional SNPs affecting regulatory regions
or the splicing process. Moreover, because of their wide-
spread distribution on the species genome, SNPs become
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particularly important and valuable as genetic makers in
the research for the diseases and corresponding drug [35].
Currently, millions of human SNPs have reported by high-
throughput methods. The vast number of SNPs causes a
challenge for biologists and bioinformaticians although they
provide lot information about the relationships between
individuals [35]. Beside numerous ongoing efforts to identify
millions of these SNPs, there is now also a focus on studying
associations between disease risk and these genetic variations
using a molecular epidemiological approach. This plethora
of SNPs points out a major difficulty faced by scientists in
planning costly population-based genotyping, which is to
choose target SNPs that are most likely to affect phenotypic
functions and ultimately contribute to disease development
[17, 35, 36].

Presently, most molecular studies are concentrating on
SNPs located in coding and regulatory regions; yet several of
these studies have been unable to identify substantial asso-
ciations between SNPs and disease vulnerability. To develop
a rational approach for prioritizing SNP selection for geno-
typing in molecular studies, an evolutionary perspective to
SNP selection is applied. The assumption is that amino acids
conserved across species are more expected to be functionally
significant. Therefore, SNPs that alter these amino acids
might more probably be related with disease vulnerability. It
has been documented that use of the molecular evolutionary
approach may be a potent tool for prioritizing SNPs to be
genotyped in upcoming molecular epidemiological studies
[17]. Therefore, our analysis will provide useful information
in selecting SNPs of APOE gene that are likely to have po-
tential functional impact.

5. Conclusion

In our analysis, we found out that nsSNPs (rs11542041,
rs11542040, and rs11542034) showed less stable, deleterious,
probably damaging, and high-risk score by I-Mutant 2.0,
SIFT, PolyPhen, and FASTSNP, respectively. The mutant
protein structures of these three nsSNPs also showed very
high energy and RMSD values compared to the homology-
modeled structure. We therefore concluded these three nsS-
NPs as the potential functional polymorphic. To those con-
ducting large-scale population-based epidemiologic studies,
the idea of prioritizing nsSNPs in the investigation of
association of SNPs with disease risk is of great interest. The
use of these servers to select potentially polymorphic nsSNPs
for epidemiology studies can be an efficient way to explore
the role of genetic variation in disease risk and to curtail cost.
Furthermore, predicted impact of these nsSNPs can be tested
with the use of animal models or cell lines to determine if
functionality of the protein has indeed been altered.
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[6] D. H. Mauch, K. Nägier, S. Schumacher et al., “CNS synap-
togenesis promoted by glia-derived cholesterol,” Science, vol.
294, no. 5545, pp. 1354–1357, 2001.

[7] P. S. Roheim, M. Carey, T. Forte, and G. L. Vega, “Apolipopro-
teins in human cerebrospinal fluid,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 76, no.
9, pp. 4646–4649, 1979.

[8] L. S. Dieter and S. Estus, “Isoform of APOE with retained
intron 3; quantitation and identification of an associated sin-
gle nucleotide polymorphism,” Molecular Neurodegeneration,
vol. 5, no. 1, article 34, 2010.

[9] R. Rajasekaran, C. Sudandiradoss, C. G. Doss, and R. Sethu-
madhavan, “Identification and in silico analysis of functional
SNPs of the BRCA1 gene,” Genomics, vol. 90, no. 4, pp. 447–
452, 2007.

[10] D. Fredman, M. Siegfried, Y. P. Yuan, P. Bork, H. Lehväslaiho,
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