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Neutrophils have been classically viewed as a homogenous population. Recently,
neutrophils were phenotypically classified into pro-inflammatory N1 and anti-
inflammatory N2 sub-populations, but the functional differences between the two
subtypes are not completely understood. We aimed to investigate the phenotypic and
functional differences between N1 and N2 neutrophils, and to identify the potential
contribution of the S100A9 alarmin in neutrophil polarization. We describe distinct
transcriptomic profiles and functional differences between N1 and N2 neutrophils.
Compared to N2, the N1 neutrophils exhibited: i) higher levels of ROS and oxidative
burst, ii) increased activity of MPO and MMP-9, and iii) enhanced chemotactic response.
N1 neutrophils were also characterized by elevated expression of NADPH oxidase
subunits, as well as activation of the signaling molecules ERK and the p65 subunit of
NF-kB. Moreover, we found that the S100A9 alarmin promotes the chemotactic and
enzymatic activity of N1 neutrophils. S100A9 inhibition with a specific small-molecule
blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO
and MMP-9 activity, by interfering with the NF-kB signaling pathway. Together, these
findings reveal that N1 neutrophils are pro-inflammatory effectors of the innate immune
response. Pharmacological blockade of S100A9 dampens the function of the pro-
inflammatory N1 phenotype, promoting the alarmin as a novel target for therapeutic
intervention in inflammatory diseases.

Keywords: neutrophil polarization, N1 neutrophils, N2 neutrophils, S100A8/A9, ABR-238901, RNA-Seq,
neutrophil chemotaxis
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INTRODUCTION

Neutrophils are the first responders in host defense, with an
important role in promoting the innate immune response. They
originate from the bone marrow and are released in the
circulation when they mature and are stimulated by invasive
pathogens and inflammatory signals that facilitate their
migration to sites of infection or tissue injury. At the site of
infection, neutrophils eliminate the invading pathogens utilizing
a combination of NADPH oxidase-derived reactive oxygen
species (ROS), cytotoxic granule components, and neutrophil
extracellular traps (NETs) (1).

Although regarded for a long time as a homogenous
population with conserved phenotype and function, recent
evidence has suggested the existence of neutrophil heterogeneity
with different functional phenotypes, both in healthy individuals
and in pathological conditions including cancer, infections, and
autoimmune and inflammatory disorders (2, 3). The heterogeneity
of neutrophil populations is characterized by differences in life
span, cytokine release, surface proteins, antibacterial responses, as
well as pro-inflammatory, proangiogenic, or immunosuppressive
functions (2–5). It has been reported that a unique neutrophil
population emerging during acute inflammation suppresses T cell
function, a process dependent of neutrophil Mac-1 and ROS (6).
Infection with Staphylococcus aureus leads to two subsets of
murine polymorphonuclear neutrophils with important
differences in their expression of surface markers, cytokine
production and macrophage activation potential (7). In systemic
lupus erythematosus and other autoimmune diseases, a
subpopulation of low-density neutrophils (LDN) with an
unclear physiological role has been detected (8). The LDN
population with immunosuppressive properties has also been
found to accumulate in tumor-bearing mice and cancer patients.
In contrast, the high-density neutrophils (HDN) have been shown
to have anti-tumorigenic functions (9). Moreover, circulating
neutrophil subsets in advanced lung cancer patients have unique
immune signatures and are associated with the disease
prognosis (10).

Recently, the consecutive myocardial infiltration of two
neutrophil subpopulations has been described in a mouse
model of myocardial infarction (MI). Cardiac N1 neutrophils
isolated on day one post-MI, during the inflammatory phase,
showed high levels of pro-inflammatory markers (CCL3, IL-1b,
IL-12a, and TNF-a). In contrast, cardiac N2 neutrophils isolated
at days 5 and 7, during the reparatory phase, exhibited increased
expression of anti-inflammatory markers CD206 and IL-10.
Moreover, neutrophils polarized in vitro with a combination of
lipopolysaccharide (LPS) and interferon-g (IFN-g) for N1 or
interleukin-4 (IL-4) for N2, exhibited similar markers as the sub-
populations found in vivo (11). Uncovering the potentially
important role of the different neutrophil subtypes in driving
inflammation or the resolution of inflammation could have
significant therapeutic relevance, as targeting a specific
subpopulation may modulate the course of the disease.

S100A8/A9 is an immune mediator abundantly secreted by
neutrophils that plays a complex role in various pathologies with
an immune and inflammatory component. S100A9 and its
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dimerization partner S100A8 are rapidly released as the
S100A8/A9 heterodimer upon cell activation (12) and
functions as a damage-associated molecular pattern (DAMPs)
that binds to toll-like receptor 4 (TLR4) (13), and to the receptor
for advanced glycation end products (RAGE) (14). Activation of
TLR4 by S100A8/A9 has been shown to have an important pro-
inflammatory role in the pathogenesis of endotoxin-induced
shock (15), autoimmune disease and cancer (16).

After MI, S100A8/A9 is abundantly secreted by activated
neutrophils and promotes cardiac inflammation by stimulating
myeloid cell production and trafficking to the ischemic
myocardium (17). We have recently found that short-term
S100A9 blockade with the specific blocker ABR-238901 during
the inflammatory phase of MI reduces myocardial and systemic
inflammation, and improves cardiac function (17). The precise
mechanisms behind these beneficial therapeutic effects remain to
be investigated. Interestingly, binding of S100A8/A9 to TLR4 on
neutrophils has subsequently been shown to drive IL-1b
production, leading to increased myelopoesis in MI (18). As
IL-1b secretion is characteristic for the N1 neutrophil phenotype,
we hypothesize that S100A8/A9 might play an important role in
the development of this particular subpopulation.

In this work, our main aims were: i) to perform a comparative
study of N1 and N2 neutrophil genotype, phenotype and
function, and ii) to investigate the effects of S100A9 blockade
with ABR-238901 on the functions of the two neutrophil
subpopulations. Elucidating the immunomodulatory properties
of S100A9 inhibition is highly relevant for further development
of the compound toward a potential anti-inflammatory
treatment in MI and other immune and inflammatory diseases.
MATERIALS AND METHODS

Mice
Male and female C57BL/6J mice, between 12-16 weeks old, were
bred and housed in pathogen-free conditions at the Institute of
Cellular Biology and Pathology (ICBP) “Nicolae Simionescu”.
The mice were euthanized through cervical dislocation, and the
femurs and tibias were collected in a Petri dish containing ice-
cold RPMI 1640 supplemented with 10% FBS and 1% Penicillin/
streptomycin, for further isolation of bone marrow.

All animal experiments were performed in strict accordance
with the European Guidelines for animal welfare (Directive
2010/63/EU) and approved by The National Sanitary
Veterinary and Food Safety Authority (nr. 425/22.10.2018). All
procedures were approved by the Institutional Ethics Committee
of ICBP “N. Simionescu” (Bucharest, Romania).
Isolation and Polarization of Neutrophils
Isolation of Neutrophils
Cells were isolated from mouse bone marrow by Percoll gradient
centrifugation, using a simplified and improved version of a
previous protocol (19). Briefly, the bones were placed in HBSS-
Prep to prevent drying, the ends were cut and the bone marrow
(BM) was flushed into a 50 ml conical tube with HBSS-Prep and
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centrifuged at 400 × g for 5 min. For erythrocyte lysis, the pellet
was resuspended in 10 ml NaCl 0.2% for 30-40 s and the
osmolarity was then restored with 10 ml 1.6% NaCl. The
resulting suspension was centrifuged in 62.5% Percoll in
HBSS-Prep for 30 min at 1000 × g, without brake. At the end
of centrifugation, the neutrophils-containing pellet was
transferred to another 15 ml tube, washed twice with HBSS
and cells were resuspended in RPMI. The purity of isolated
neutrophils was confirmed by flow cytometry using the
neutrophil marker Ly-6G and by fluorescence microscopy
using Hoechst/PI staining (Figure S1).

Polarization of Neutrophils
Freshly isolated neutrophils were pooled from 6–10 mice and
cultured for 2h/18h in RPMI medium, in the presence of 100 ng/
ml lipopolysaccharide (LPS) and 20 ng/ml interferon gamma
(IFNg) or 20 ng/ml interleukin 4 (IL-4) - in order to obtain
polarized N1 (inflammatory) and N2 (anti-inflammatory)
neutrophil subsets respectively. This polarization protocol has
previously been shown by Ma et al. to generate neutrophil sub-
populations with a similar phenotype as the N1/N2 neutrophils
isolated from infarcted hearts in vivo (11). Unstimulated
neutrophils were used as controls (N). In the experiments
when S100Ab was blocked, N1 and N2 neutrophils were
polarized in the presence of the S100A9 inhibitor ABR-238901
(100µM, Active Biotech AB, Sweden).

mRNA-Sequencing
To profile the gene expression of N1 and N2 neutrophils after 2h
polarization, we used 3 samples per condition and 20x106

neutrophils per sample, pooled from several mice. Total RNA
was isolated using TRIzol reagent and Phasemaker Tubes
(Thermo Fischer, Waltham, Massachusetts, US) and was sent
to Novogene (Cambridge, UK) for mRNA-seq analysis. RNA
degradation and contamination were monitored on 1% agarose
gels. RNA purity was checked using the NanoPhotometer®

spectrophotometer (IMPLEN, CA, USA). RNA integrity and
quantitation were assessed using the RNA Nano 6000 Assay
Kit with the Bioanalyzer 2100 system (Agilent Technologies, CA,
USA). A sample from the LPS+IFNg polarization did not pass the
quality control test and was excluded from the downstream analysis.

A total amount of 1 µg RNA per sample was used as input
material for RNA analysis. Sequencing libraries were generated
using the NEBNext UltraTM RNA Library Prep Kit for Illumina
(NEB, USA) following the manufacturer’s recommendations and
index codes were added to attribute sequences to each sample.
Library quality was assessed on the Agilent Bioanalyzer 2100
system (Agilent Technologies, CA, USA). The clustering of
index-coded samples was performed on a cBot Cluster
Generation System using the PE Cluster Kit cBot-HS (Illumina).
After cluster generation, the library preparations were sequenced
using Illumina NovaSeq 6000 (Illumina) and paired-end reads
were generated.

Raw data (raw reads) of FASTQ format were first processed
through fastp (20). Clean data were obtained by removing reads
containing adapter and poly-N sequences and reads with low
quality from raw data. Simultaneously, Q20, Q30 and GC
Frontiers in Immunology | www.frontiersin.org 3
content of the clean data were calculated (Supplementary
Table 1). Paired-end clean reads were aligned to the Ensembl
mouse reference genome (GRCm38.p6) (21) using the Spliced
Transcripts Alignment to a Reference (STAR) software (22). A
summary of the mapping result is presented in (Supplementary
Table 2). Gene expression values FPKM (expected number of
Fragments Per Kilobase of transcript sequence per Millions base
pairs sequenced) were calculated and used for the PCA and
Pearson correlation coefficient matrix, using R software (23).

Differential Expression Analysis
Differential expression analysis was performed using the
DESeq2R package (2_1.6.3) (24). The resulting P values were
adjusted using Benjamini and Hochberg’s approach for
controlling the false discovery rate (FDR). Genes with an
adjusted P-value <0.05 found by DESeq2 were assigned as
differentially expressed (DEGs). Using a built-in R package,
pheatmap, a hierarchical clustering heatmap was generated
presenting the log2(FPKM+1) of DEG union within all
comparison groups. Volcano plots were realized using
EnhancedVolcano R package (25).

Functional Analysis of DEGs
Functional enrichment analysis of the up-regulated N1 gene
cluster was performed using g:GOSt function in gProfiler version
e102_eg49_p15_7a9b4d6, database updated on 15/12/2020 (26).
The selected organism was Mus musculus, the significance
threshold was g:SCS, with a user threshold of 0.01. Gene
Ontology, pathways from KEGG, Reactome and regulatory
motif matches from TRANSFAC databases were inquired.

GO enrichment and KEGG database enrichment analysis was
performed using the clusterProfiler R package (27) on all the
DEGs, either down or up-regulated and the terms with a corrected
P value less than 0.05 were considered significantly enriched.

Quantitative RT-PCR
Validation of key molecules found to be highly increased by
RNA-seq was performed by qPCR using RNA obtained from
pooled neutrophils isolated from subsequent experiments. Total
cellular RNAwas extracted from N, N1 and N2 neutrophils using
TRIzol or Qiagen PureLink RNA Kit (Ambion™, Carlsbad, CA).
First-strand cDNA synthesis was performed employing 1 mg of
total RNA and MMLV reverse transcriptase, according to the
manufacturer’s protocol (Invitrogen). Assessment of mRNA
expression was done by amplification of cDNA using a
LightCycler 480 Real-Time PCR System (Roche) and SYBR
Green I. The primer sequences for the mRNAs of interest are
shown in Supplementary Table 3. The relative quantification
was done by the comparative CT method and expressed as
arbitrary units. Beta-actin was used as reporter gene.

Cytokine Array
The presence of soluble pro-inflammatory cytokines and
chemokines in the neutrophil condition media was analyzed
using the Proteome Profiler Mouse Cytokine Array Kit (ARY006,
R&D Systems) in conditioned media from the N, N1 and N2
subpopulations. Detection of the chemiluminescent signal was
August 2021 | Volume 12 | Article 708770
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performed using the Luminescent image analyzer LAS 4000
(Fujifilm). The mean pixel density of each point was calculated
using ImageJ (Bethesda, MD).

Enzyme Linked Immunosorbent
Assay (ELISA)
The supernatant was harvested from control (N) or polarized N1
and N2 neutrophils cultured in the presence or absence of ABR-
238901 (100 µM). We measured the amount of the proteins of
interest released in the condition media by using specific kits (R&D
Systems & Mabtech), following the manufacturer’s instructions.

Measurement of Reactive Oxygen Species
Control (N) or activated neutrophils (N1 and N2) were assayed
for intracellular ROS using 2′,7′-dichlorofluorescein diacetate
(DCFH-DA) as previously described (28). Briefly, the cells were
incubated with 5 mM DCFH-DA (30 min at 37°C) and the DCF
fluorescence emission was detected at 535 nm with an excitation
wavelength of 485 nm in a 96-well microplate reader (GENios,
Tecan). Immediately after DCF measurements, cells were further
incubated for 20 min with Hoechst 33342 (0.2 µg/ml) and the
fluorescence was measured at 460 nm (with an excitation
wavelength of 345 nm). ROS was expressed as DCF/Hoechst
fluorescence units.

The Cellular Energetics of
N1 and N2 Neutrophils
An XFp Extracellular Flux Analyzer (Seahorse, Agilent
Technologies) was used to measure the oxygen consumption
rate (OCR) and the proton efflux rate (PER) as a measure of
extracellular acidification in control (N) or polarized neutrophils
(N1 and N2). Immediately following isolation, neutrophils were
added at 5 x 105 cells/well onto a poly-L-lysine coated XFp plate
and stimulated for 2 h to obtain polarized N1 and N2 neutrophil
subsets. The OCR and PER were measured in XF media (non-
buffered DMEM containing 10 mM glucose, 4 mM L-glutamine,
and 2 mM sodium pyruvate) under basal conditions and in
response to phorbol 12-myristate 13-acetate (PMA) activation.
After 3 h, 500 nM Rotenone was injected to measure the amount
of OCR due to mitochondrial activity. After the measurements,
data were normalized to the cell number by staining the cells for
10 min with Hoechst 33342 (5 µg/ml) followed by measurement
on a microplate reader (GENios, Tecan). The assay was
performed twice in duplicates for each condition.

Determination of Cell Migration by
Chemotaxis Assay
Real-time migration was monitored using CIM-plate-16 and the
xCELLigence System RTCA DP Instrument (Roche). We used a
16-well modified Boyden chamber composed of an upper
chamber (UC) and a lower chamber (LC) that snapped together
to form a tight seal. The bottom of the UC consists of a
microporous polyethylene terephthalate membrane that permits
the translocation of cells from the upper to the bottom side. Cell
migration was monitored by interdigitated gold microelectrode
sensors that generate an impedance signal by contact with the
migrated cells. IL-8 (300ng/ml) was added as a chemoattractant in
Frontiers in Immunology | www.frontiersin.org 4
the LC. We seeded 4x105 neutrophils in the UC of the CIM-plate-
16 in RPMI medium without FCS. Cell migration was monitored
for up to 20 h.

Gelatin Zymography
The gelatinolytic activity of the MMP‐9 released by N, N1 and
N2 neutrophils in the culture medium was evaluated by gelatin
zymography, as previously described (29). Briefly, the cell culture
medium was collected and the nonreducing Laemmli’s buffer was
added to the cell‐free neutrophil supernatants and subjected to
electrophoresis under non‐reducing conditions on 10%
polyacrylamide gels containing 1 mg/mL gelatin as substrate.
After electrophoresis, the gels were re‐natured in 2.5% Triton X‐100
(2 × 30 minutes) and incubated with 50 mmol/L Tris‐HCl pH 7.4,
containing 10 mmol/L CaCl2 and 0.2 mmol/L PMSF (18 hours, 37°
C). The gels were subsequently stained with 0.2% Coomassie
brilliant blue R‐250 and de‐stained with 10% acetic acid and 25%
methanol. The white bands against the blue background were
indicative of the gelatinolytic activity of MMP-2/-9. Image
acquisition was done with a transillumination imaging system
LAS 4000 (Fujifilm). Data are presented as fold increase over the
unstimulated control.

Western Blot
Following polarization, neutrophils were rapidly chilled by the
addition of ice‐cold HBSS. Neutrophils were pelleted,
supernatants were collected and the cell pellets were lysed
using RIPA lysis buffer supplemented with a protease inhibitor
cocktail. After centrifugation (12000 × g), the proteins were
quantified by bicinchoninic acid (BCA) Protein Assay Kit.
Samples (30 mg protein) were separated on 10% SDS-PAGE
(sodium dodecyl sulfate-polyacrylamide) gel electrophoresis and
transferred to nitrocellulose membranes, which were
subsequently probed with specific antibodies. The signals were
visualized using SuperSignal West Pico chemiluminescent
substrate (Pierce) and quantified by densitometry employing
the gel analyzer system Luminescent image analyzer LAS 4000
(Fujifilm) and the Image reader LAS 4000 software.

Detection of Myeloperoxidase (MPO)
and Nitric Oxide (NO)
Quantification of MPO activity was performed in the cell lysate,
and of NO levels in the conditioned media, using specific kits
from Elabscience (K074 and K035, respectively). Following
polarization, conditioned media from N, N1, N2 neutrophils
were harvested and used for NO detection, while neutrophils
were rapidly chilled with ice‐cold PBS, centrifugated and the
resulted cell lysate used for MPO quantification according to the
manufacturer’s instructions.

Statistical Analyses
GraphPad Prism 7.0 with data points expressed as mean ± standard
deviation (SD) was used for all statistical analyses. We used a two-
tailed Student’s t-test when comparing two experimental groups
and a one-way ANOVA and Tukey’s multiple comparison test
when comparing more than two groups. A p-value of p<0.05 was
considered statistically significant.
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Data Access
All sequencing data have been deposited in the ArrayExpress
database, https://www.ebi.ac.uk/arrayexpress/E-MTAB-10508.
All other data are available from the authors on request.
RESULTS

N1 and N2 Neutrophils Exhibit a Distinct
Transcriptomic Profile
RNA obtained from freshly isolated neutrophils polarized for 2h
with LPS+IFNg (N1) or IL-4 (N2), was analyzed by RNA-seq.
The sample replicates showed a high degree of correlation, as
determined by Pearson correlation matrix (Figure S1).

The hierarchical clustering analysis showed a distinct
transcriptomic profile of the N1 and N2 neutrophil populations
compared with control neutrophils (N) (Figure 1A). Additionally,
we performed a differential expression analysis to generate
modules of genes that are significantly modulated in each
neutrophil population. With a cutoff criterion of absolute fold
change ≥ 1.0 and adjP < 0.05, 966 genes were found to be
differentially expressed in N1 neutrophils compared to control
(771 genes were increased and 195 genes were decreased), and 532
genes were found to be differentially expressed in N2 neutrophils
(408 genes were increased and 124 genes were decreased)
(Figures 1B, C). In N1 neutrophils, a substantial number of up-
regulated genes code for inflammatory cytokines and chemokines
such as TNF-a, IL-10, IL-12, IL-1b, IL-1a, CCL3, CCL4, CCL5,
CCL7, CCL9, CXCL1, CXCL2, CXCL3, CXCL10, CXCL16
(Figure 1D). These molecules were either unmodified in N2
neutrophils or were down-regulated compared to controls
(TNF-a, IL-1b, CXCL16, CXCL2, CXCL10) (Figure 1D).

The gene ontology (GO) enrichment analysis highlighted
biological processes and functions that are significantly
associated with the modified genes in N1 and N2 neutrophils.
The differentially modulated genes in N1 neutrophils are
associated with cytokine production, cell response to LPS, cell
chemotaxis and cytokine mediated-signaling pathways (Figure
S2A). In contrast, genes found to be modified in N2 cells are
related to T cell activation and differentiation, cell-cell adhesion
and immune response (Figure S2B).

Interestingly, a central cluster of 391 highly up-regulated
genes is well represented in N1 neutrophils compared with N2
and control cells (Figures 1A and S3). Functional enrichment
analysis for the genes in this cluster revealed as significantly
enriched the following terms: i) biological process - “defense
response”; ii) molecular function - “cytokine activity” and
“cytokine receptor binding”; iii) KEGG pathway analysis -
“TNF signaling pathway”, “NF-kappa B signaling pathway”;
iv) TRANSFAC - Factor: RelA-p65 as the most enriched
transcription factor (Figure 1E). The results emphasize that
the highly up-regulated genes in the N1 subset are associated
with an inflammatory response. A list of the 10 most enriched
terms for each database searched is presented in Figure S4.

Following the RNA-seq analysis, we validated a selection of
differentially expressed inflammatory/anti-inflammatory genes
by qPCR in neutrophils polarized for 2h or 18h. Compared to
Frontiers in Immunology | www.frontiersin.org 5
control neutrophils, the N1 neutrophils exhibited higher gene
expression of the pro-inflammatory mediators TNF-a, IL-12, IL-
1b, CCL2 (MCP-1), CCL3 (MIP-1a), and CCL5 (RANTES) both
at 2h and 18h (Figures 2A–G). The gene expression of
inflammatory cytokines was time-dependent, reaching higher
levels at 18h compared with 2h of activation. IL-6 was highly
induced in N1 neutrophils only after 18h of activation
(Figure 2D). The anti-inflammatory markers CD206, Ym1 and
Arg1 were increased in N2 neutrophils, but not in N1 cells
(Figures 2I–K). However, the IL-10 gene expression was
unchanged in N2 neutrophils and was overexpressed in N1
cells (Figure 2H). The data are in agreement with the results
of RNA-seq expression where the gene encoding for IL-10 was
found to be ~10-fold upregulated in N1 neutrophils.

Expression of inflammatory genes in N2 neutrophils was
similar to unstimulated controls, except for the IL-1b that was
decreased (Figure 2C). These results are in agreement with the
results obtained by RNA-seq, where IL-1b and TNF-a were
significantly decreased in N2 neutrophils compared with controls.

To validate these findings in an inflammatory state in
humans, we analyzed the gene expression of CCL3, IL-6, IL-
1b, and CD206 in human blood neutrophils isolated from MI
patients during the first 24h after infarction. We found that the
gene expression of CCL3 and IL-6 was significantly increased in
neutrophils from these patients compared with healthy controls
(Figure S6). These data demonstrate the involvement in human
pathology of N1-like inflammatory neutrophils with a gene
expression profile similar to the N1 neutrophils isolated from
the infarcted myocardium (11) and to the N1 neutrophils derived
in vitro. The gene expression of the N2 marker CD206 was not
significantly affected in this early stage of the disease.

Additionally, we investigated the expression of N1/N2 surface
markers by flow cytometry in a mouse model of endotoxemia
(LPS-induced acute systemic inflammation). Circulating
neutrophils were analyzed at 24h after the LPS treatment.
Neutrophils from these mice were characterized by a
significantly higher surface expression of CD11b (Mac-1) and
ICAM-1 (Figures S7D, E), molecules involved in neutrophil
adhesion, rolling and recruitment into the tissue. These results
offer in vivo support for our in vitro data: RNA-seq data where
ICAM-1 expression was 11 times increased in N1 compared with
control neutrophils (log2FC:3,56; Figure 1D), cytokine array
showing the increased shedding of sICAM-1 in N1 neutrophils
(Figures 4A, B), and with the increased chemotactic activity of N1
neutrophils (Figure 5G). Similar toMI patients, LPS treatment did
not modulate the surface CD206 expression of mice circulating
neutrophils (Figures S7D, E), suggesting that N2-like neutrophils
are not present in blood during the inflammatory stage.
S100A9 Blockade Decreases
Gene Expression of the Myeloid
Chemotactic Chemokines CCL2, CCL3
and CCL5 in N1 Neutrophils
To assess the importance of S100A8/A9 for the immunostimulatory
function of N1 neutrophils, we polarized bone marrow-derived
neutrophils with LPS and IFNg in the presence of the specific
August 2021 | Volume 12 | Article 708770
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S100A9 blocker ABR-238901 (ABR). ABR-238901 inhibits the
binding of S100A9 to its cognate receptors, as previously
described (17).

Gene expression of the inflammatory cytokines TNFa, IL-12,
and IL-1b, and of the chemokines CCL2 (MCP-1), CCL3 (MIP-
1a), and CCL5 (RANTES) was measured after 2h and 18h of
stimulation. We found that S100A9 blockade significantly reduces
the expression of CCL2, CCL3, and CCL5 (Figures 3D–F),
Frontiers in Immunology | www.frontiersin.org 6
but has no effect on the gene expression for inflammatory
cytokines (Figures 3A–C).

Soluble Immune Mediators Released by
N1 and N2 Neutrophils
To confirm the mRNA results on protein expression level, we
evaluated the levels of cytokines and chemokines present in the
condition media of N1/N2 neutrophils after 18h polarization
A B D

E

C

FIGURE 1 | Gene expression profiling of the different neutrophil subsets. (A) Hierarchical Clustering Heatmap analysis of N, N1, and N2 neutrophils. Hierarchical
clustering analysis was conducted of log2(FPKM+1) of differential expression genes union within all comparison groups. The color coding indicates different
levels of expression: red indicates genes with high expression, and blue indicates genes with low expression levels. A major cluster of DEGs up-regulated in N1
is highlighted in a black square. (B, C) Volcano plot of differential gene expression between N1/N2 and N cells. The red dots represent significantly up-regulated
and down-regulated genes with – adjP < 0.05 and Log2FC > 1: 771 genes were up-regulated and 195 genes were down-regulated in N1 vs N neutrophils; 532
genes were up-regulated and 124 genes were down-regulated in N2 vs N cells. (D) Heatmap showing log2 Fold change and adjusted p-value for selected
inflammatory cytokines and chemokines differentially expressed either in N1 (upper panel) or N2 neutrophils (lower panel). Red color indicates the up-regulated,
and blue the down-regulated genes. (E) Manhattan plot illustrating the results of the enrichment analysis of the gene cluster of highly up-regulated genes in N1
compared with N and N2 neutrophils. The functional terms are grouped and color-coded by data sources, i.e., molecular function (MF) in red, biological
processes (BP) in orange, cellular components (CC) in green, KEGG in pink and TRANSFAC in dark blue. Numbered terms are detailed below the plot with their
respective adjP values.
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with LPS and IFNg, with or without ABR-238901. The levels of
inflammatory molecules were measured by a Proteome Profiler
Mouse Cytokine array kit or by ELISA.

The cytokine protein profiler was assessed in the neutrophil
condition media pooled from 3 independent experiments. We
found that control neutrophils secrete only 6 of the 40 cytokines
determined by the kit, namely, IL-1ra, sICAM-1, IL-16, CXCL10,
SDF1 and TREM. Compared with controls, N1 neutrophils
secreted higher levels of 18 inflammatory cytokines/chemokines
Frontiers in Immunology | www.frontiersin.org 7
including CCL2, CCL3, CCL5, TNF-a (>30-fold change), as well
as IL-6 and IL-1b (>2-fold change) (Figures 4A, B). S100A9
blockade significantly decreased the secretion of IL-1ra, IL-10,
CCL2, CCL3, CCL5 and increased the production of IL-16. The
inhibitory effects of the treatment on chemokine secretion agree
well with the gene expression data (Figure 3).

To further verify the gene and protein array data, we have
used ELISA to quantify the levels of a mediator that was
modulated by ABR (CCL3) and one that was not (IL-12). The
A B

D E F

C

FIGURE 3 | The effect of S100A9 blockade on gene expression of immune mediators (A–F) in neutrophils exposed to LPS+IFNg (N1) or IL-4 (N2) in the presence of
ABR-238901 (ABR). The treatment decreases significantly the gene expression of CCL2, CCL3 and CCL5 in N1 neutrophils at both 2h and 18h. n = 3; **p < 0.01,
***p < 0.001, ****p < 0.0001 (N1 vs N); #p < 0.05, ##p < 0.01 (N1+ABR vs N1).
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FIGURE 2 | Gene expression of inflammatory and anti-inflammatory markers in neutrophils polarized for 2 or 18h with LPS+IFNg (N1) or IL-4 (N2). (A–G) qPCR for
inflammatory markers: TNFa, IL-12, IL-1b, IL-6, CCL3, CCL5, MCP-1, in N1 and N2 compared to control neutrophils (N). (H–K) qPCR for anti-inflammatory markers:
IL-10, CD206, Ym1 and Arg1, in N1, N2 and N. n = 5, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (N1 or N2 vs. N).
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levels of both molecules were significantly higher in the N1
culture medium compared with control neutrophils, but S100A9
inhibition only reduced the secretion of CCL3 (Figure 4C).
Additionally, we found a significantly higher S100A8/A9
secretion by N1 neutrophils compared to unstimulated
controls and N2 neutrophils (Figure 4C), which was reduced
by the ABR-238901 treatment. Taken together, the results
suggest that S100A8/A9 promotes the secretion of chemotactic
factors by N1 neutrophils, and that ABR-238901 has a dual
inhibitory effect on S100A8/A9 secretion and function.

Functional Assessment of the N1 and N2
Neutrophil Subtypes
Production of ROS and NO
It has previously been shown that stimulated neutrophils activate
NADPHoxidase (NOX2) to generate large amounts of superoxide,
which acts as a precursor of hydrogen peroxide andotherROS (30).
Intriguingly, factors that stimulate the oxidative burst might also
simultaneously trigger iNOS activation in neutrophils or vice versa
(31).We set up experiments to compare the capacity of N1 andN2
neutrophils to produce ROS and NO, and to determine whether
S100A9 blockade influences these processes. We found that, in
contrast with the N2 subtype, N1 neutrophils have significantly
higher levels ofROSandNOcompared to controls (Figures 5A,D).
The S100A9 inhibition significantly reduced NO production in N1
neutrophils but did not affect ROS levels in either population.
Frontiers in Immunology | www.frontiersin.org 8
The Energetic Profile of N1 and N2 Neutrophils
Cellular metabolism plays a decisive role in the function and
plasticity of immune cells (1). Since the effector functions of
neutrophils during inflammation are tightly linked to their
metabolic state, we have investigated the energetic changes
occurring in the N1 and N2 populations. The oxidative burst
of neutrophils in basal conditions (control) or the presence of
LPS + IFNg (N1) or IL-4 (N2) was quantified by measuring the
oxygen consumption rate (OCR) in response to phorbol 12-
myristate 13-acetate (PMA). We found an increased OCR by N1
neutrophils compared to controls or N2. The increase in OCR or
oxidative burst after activation with PMA was associated with a
simultaneous increase in the Proton Efflux Rate (PER),
indicating that neutrophils depend on glycolysis for activation
(Figures 5B, C). Exposure to LPS+IFNg increased the glycolytic
function of neutrophils, which were transformed into
metabolically less efficient cells. Inhibition of mitochondrial
respiration with rotenone revealed that mitochondria only
have a modest contribution to neutrophil oxidative burst after
PMA activation (Figures 5B, C).
MPO and MMP-9 Activity in Polarized Neutrophils
MPO and MMP-9, along with elastase, are the main tissue
destructive enzymes produced by neutrophils and are involved
in matrix and protein degradation. We measured the activity of
A B

C

FIGURE 4 | Effects of S100A9 blockade on neutrophil mediators released in the conditioned media after 18h of culture. (A) Quantification of mediators present in
the culture medium from N1, N1 treated with ABR-23901, and N2 neutrophils compared to control neutrophils (N), as detected by the Proteome Profiler mouse
cytokine array. The culture medium was pooled from three experiments. Protein levels were normalized to references on each membrane. #p < 0.05 (N1+ABR versus
N1 neutrophils). (B) Representative membranes incubated with the condition media from N, N1, N1+ABR and N2 neutrophils. (C) Measurement of CCL3, IL-12 and
S100A8/A9 in the neutrophil s condition media by ELISA. The data represent mean ± SD from three experiments; **p < 0.01, ***p < 0.001, ****p < 0.0001 (N1 vs N);
#p < 0.05; ##p < 0.01 (N1+ABR versus N1).
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MPO in the cell lysate and of MMP-9 released in the condition
media collected from N1 and N2 neutrophils. As shown in
Figure 5E, MPO activity was significantly increased in both
neutrophil phenotypes compared to control. In contrast, MMP-9
activity was only augmented in N1 neutrophils (Figure 5F).
S100A9 inhibition with ABR-238901 restored both MPO and
MMP-9 activity in N1 neutrophils to levels similar to the
unstimulated control (Figures 5E, F).

Transmigration of Polarized N1 and N2 Neutrophils
The transmigration capacity of polarized neutrophils was
monitored using the chemokine IL-8 as a chemoattractant.
Despite the lack of a gene coding for IL-8, mice express a
receptor homologous to human CXCR2 that mediates
neutrophil chemotaxis in response to human IL-8 (32).
Neutrophils were placed in the upper chamber of a CIM-plate,
and RPMI culture medium containing IL-8 was added to the lower
chamber. The chemotactic activity was monitored over 20h using
the xCELLigence software. As shown in Figure 5G, N1
neutrophils exhibited significantly increased migration capacity
compared with N2 or control neutrophils. Only a few neutrophils
transmigrated in the lower chamber when RPMI without IL-8 was
used as a negative control (not shown). The addition of ABR-
238901 in the upper chamber inhibited the migratory capacity of
N1 neutrophils (Figure 5H).
Frontiers in Immunology | www.frontiersin.org 9
Molecular Players Involved
in the Function of Polarized Neutrophils
NADPH Oxidase Subunits Regulate
ROS Production in Neutrophils
Upon activation, neutrophils produce large amounts of ROS via the
NADPH oxidase complex (33). To investigate the mechanisms
responsible for the differences in ROS production between the N1
andN2 neutrophils, we assessed the expression of the main subunits
ofNADPHoxidase complex inbothneutrophil subtypesby real-time
PCR and Western blot. Gene expression of Nox2, p47phox and
p22phox was significantly increased in N1 neutrophils compared to
control (Figure 6A–C). Inhibition of S100A9 significantly reduced
gene expression of the p22phox subunit. Protein expression of Nox2
and p47phox was also increased in N1 cells. Interestingly, the
treatment of polarized neutrophils with ABR-238901 significantly
reduced p47phox and Nox2 protein level in N1 neutrophils
(Figure 6D–F), although no effect was observed at gene expression
level (Figure 6A, B). Expression of the NADPH subunits in N2
neutrophils was similar to controls on both gene and protein levels
and was not influenced by the S100A9 blockade.

Signaling Pathways Activated in N1 and N2
Polarized Neutrophils
RNA-seq analysis identified over 20 signaling pathways that were
significantly enriched in N1 and N2 neutrophils [-log10(p adj)>5]
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C

FIGURE 5 | Functional analysis of neutrophil populations. The cells were treated for 18h with LPS + IFNg (N1) or IL-4 (N2) in the presence or absence of ABR-238901
(ABR). (A)Quantification of intracellular ROS using the DCFDA assay. (B, C)Measurement of the neutrophil oxidative burst evaluated in response to phorbol 12-myristate
13-acetate (PMA): (B)the oxygen consumption rate (OCR) and (C) the glycolytic proton efflux rate (PER), calculated using extracellular acidification rate (ECAR)
measurements. (D)Quantification of NO released in the conditioned medium of neutrophil subtypes. (E) evaluation of MPO enzymatic activity in the cell lysate of neutrophil
populations. (F) Quantification of MMP-9 gelatinase activity assessed by SDS‐PAGE zymography in the condition media of neutrophils. (G, H) The chemotactic activity of
neutrophil populations toward IL-8 evaluated using a CIM-plate 16 and the xCELLigence RTCA DP system. The cell index (CI), proportional to the number of transmigrated
neutrophils, was measured as the cell electrical impedance every 15 min over 10h. Data are from four independent experiments; every experiment used pooled neutrophils
from at least 5 mice. Data are shown as mean fold change to control ± SE (n = 4). Statistical significance is shown as *p < 0.05, **p < 0.01, ***p < 0.001, #p ≤ 0.05.
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(Figures 7A, B), withNF-kB signaling pathway comprising over 30
DEGs (Figure 7A). Among the transcription factors, RelA-p65was
themost up-regulated inN1neutrophils compared to control (adjP:
2.162 x 10-16) (Figure 1E). To validate these results, we compared
the activation status of the NF-kB signaling pathway in N1 versus
N2 neutrophils. Phosphorylated p65 was significantly increased in
N1 neutrophils and unchanged in N2 cells compared with
unstimulated control, as assessed by Western Blot (Figure 7C).
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We also evaluated the activation of two other signaling molecules
associated with inflammation and oxidative burst, ERK1/2 and
PKC. We found a significant increase in pERK1/2 protein
expression, but no differences in pPKC levels (Figures 7D, E).
Blockade of S100A9 with ABR-238901 significantly inhibited both
pERK and pp65, supporting its anti-inflammatory properties.
pPKC was not modified by ABR-238901 in any of the neutrophil
subtypes (Figure 7E).
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FIGURE 6 | Gene and protein expression of NADPH oxidase subunits in the different neutrophil populations in the presence or absence of ABR-238901 (ABR).
(A-C) Quantification of gene expression for NADPH oxidase subunits Nox2, p47phox and p22phox by qPCR. (D-F) Protein expression of NADPH oxidase subunits
p47phox and Nox2 determined by Western blot. n = 3, *p < 0.05, **p < 0.01 ****p < 0.0001 (N1 versus control); #p<0.05 (N1 versus N1 + ABR).
A B
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FIGURE 7 | Signaling pathways activated in neutrophils subtypes. (A, B) The top 20 signaling pathways revealed by the KEGG signaling pathway enrichment
analysis in N1 and N2 compared with control neutrophils (N). (C-E) Analysis of the phosphorylation form of p65, ERK and PKC in neutrophil subsets. Cell lysate from
control (N), or polarized neutrophils (N1 and N2) cultured for 18h in the presence or absence of ABR-238901 (ABR) was analyzed by Western blot; n = 3, *p < 0.05,
**p < 0.01 (N1 vs N), #p < 0.05, ###p < 0.001 (N1 vs N1 + ABR).
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DISCUSSION

Neutrophils, the most abundant leukocytes in human blood, are
the first innate immune effectors in infections and sterile
inflammation. Aberrant neutrophil responses are associated
with various diseases such as sepsis, asthma, MI, and
rheumatoid arthritis (34, 35). Recent data have shed new light
on the neutrophil responses in various pathologies and the
classical view that neutrophils are a homogeneous population
has been revised following the identification of novel functions
and phenotypic diversity (33, 34). Pro-inflammatory (N1) and
anti-inflammatory (N2) neutrophils have been identified under
various pathological conditions in vivo (2, 11, 36). Recently, Ma
et al. have described the sequential infiltration of N1 and N2
neutrophils in infarcted mouse hearts and demonstrated that
these cells share phenotypic features with N1 neutrophils derived
in vitro from naïve neutrophils in the presence of LPS/IFNg and
with IL-4 derived N2 neutrophils (11).

The purpose of our study was to examine the functional
differences between the N1 and N2 subpopulations, and to assess
the importance of the abundant neutrophil mediator S100A8/A9
in promoting these phenotypes. We have therefore used the same
in vitro protocol employed by Ma et al. (11). We found that N1
and N2 neutrophil populations have distinct transcriptomic
profiles and functions. N1 neutrophils exhibit increased
production of inflammatory cytokines/chemokines, elevated
levels of ROS and NO, augmented oxidative burst, increased
activity of protein and matrix-degrading enzymes, as well as
enhanced chemotactic response. Conversely, N2 neutrophils
display increased expression of CD206, Ym1 and Arg1, and
have similar ROS and NO levels, oxidative burst and chemotactic
response as the unstimulated controls. Further, we found that the
phosphorylated forms of ERK1/2 and p65, signaling molecules
associated with an inflammatory phenotype, are increased in N1
but not in N2 neutrophils. Finally, S100A8/A9 blockade lowered
the phosphorylation of ERK1/2 and p65 in N1 neutrophils,
leading to reduced production of the chemokines CCL2, CCL3,
CCL5, reduced NO, MPO and MMP-9 activity, and slower N1
migration. These data are all the more important as in vivo we
found that similar N1 inflammatory neutrophils are present in a
human inflammation state (post-MI patients), as well as in a
mouse model of endotoxemia.

Our RNA-seq analysis of the transcriptomic profile of the two
neutrophil populations polarized in vitro revealed that N1
neutrophils overexpress genes associated with cytokine
production, chemotaxis and cytokine mediated-signaling
pathways involved in pro-inflammatory responses. In contrast,
the N2 gene profile includes genes involved in T cell activation and
differentiation, cell-cell adhesion and other immune responses.
Our data confirm the previously described expression of CCL3,
CCL5, IL-12a, and TNF-a in N1 neutrophils (11), and identify
additional inflammatory chemokines and cytokines up-regulated
in this population, such as IL-1a, CCL4, CCL7, CCL9, CXCL1,
CXCL2, CXCL3, CXCL10, and CXCL16. Importantly, we found
that IL-16 was down-regulated in N1 neutrophils, and TNF-a and
IL-1b were down-regulated in N2 neutrophils compared with
controls. IL-16 has previously been found to be stored in the
Frontiers in Immunology | www.frontiersin.org 11
neutrophil cytosol and released under conditions of insufficient
clearance of apoptotic neutrophils that typically occur at sites of
infection and inflammation (37). However, the biological
significance of the lower IL-16 release from N1 neutrophils
found in our study remains unclear.

Our study is the first to identify that the alarmin S100A8/9,
abundantly secreted by activated neutrophils, is an important
promoter of the aggressive pro-inflammatory N1 phenotype
through an autocrine mechanism. We show that N1
neutrophils secrete higher amounts of S100A8/A9 compared to
N2 cells, and that inhibition of S100A9 with the specific blocker
ABR-238901 reduces the secretion of S100A8/A9 and of the
myeloid chemoattractants CCL2, CCL3 and CCL5. These results
extend previous data showing that S100A8/A9 modulates the
production of pro-inflammatory mediators including cytokines,
chemokines, ROS, and NO in various cell types (38). The
reduced production of myeloid chemoattractants induced by
S100A9 inhibition provide important mechanistic support to our
previous findings in a mouse model of MI in vivo, showing that
treatment with ABR-238901 prevents neutrophil and monocyte
migration from the bone marrow and spleen into the circulation,
and recruitment into the heart (17, 39). Consequently, the
treatment reduced myocardial inflammation and significantly
improved cardiac function compared to controls (17). A close
examination of the myocardial environment showed reduced
S100A8/A9 staining and CCL5 gene expression at the end of the
3-day treatment (17), which is in agreement with the in vitro data
presented here. Our findings support the important role of
S100A8/A9 as a pro-inflammatory neutrophil mediator, adding
to previous data showing that S100A8/A9 induces neutrophil
release from the bone marrow and directs their migration in
response to LPS (40), primes the NLRP3 inflammasome in
neutrophils and stimulates IL-1b production post-MI (41), and
is indispensable for MI-induced granulopoiesis (18). Interestingly,
in the presence of extracellular calcium the S100A8/A9
heterodimers form inactive (S100A8/A9)2 tetramers that prevent
excessive systemic pro-inflammatory effects (42). S100A9
blockade did not have any consequences on N2 neutrophil
phenotype and function evaluated in this study. However, we
have previously shown that S100A8/A9 activates the transcription
factor Nur77 in monocytes and promotes the generation of
MerTKhi reparatory macrophages (39). These data add further
evidence for the complex activity of these proteins, depending on
their biological form, cell type and disease stage.

At the site of infections, activation of NOX2 in neutrophils
generates large amounts of ROS, which are essential for
antimicrobial host defense (30). However, excessive ROS
production also induces tissue injury and exacerbation of the
inflammatory reaction in different pathologies. In MI, excessive
ROS production by neutrophils may damage the healthy
myocardium and promote ventricular remodeling (43). We
found that the level of ROS was significantly higher in N1
neutrophils, which have also been shown to dominate the pro-
inflammatory phase of the immune response in MI (11).
Inhibition of S100A9 significantly decreased the protein levels
of the NADPH oxidase subunits Nox2 and p47 in N1
neutrophils, but the gene expression was unaffected. Previous
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studies have found that S100A8/A9 heterodimer interacts
directly with the cytosolic phox proteins p67 and p47phox (44)
and with Nox2 (45) and induces ROS production by activating
NADPH oxidases (45, 46). This interaction might explain the
observed effects of S100A9 inhibition in our study, but the exact
mechanisms remain to be elucidated.

We also found that N1 neutrophils migrate in higher numbers
toward IL-8 compared with N2 or control neutrophils, and
S100A9 inhibition with ABR-238901 significantly reduced N1
neutrophil transmigration. These data are in good agreement
and extend previous results reporting that S100A8, S100A9, and
S100A8/A9 are involved in neutrophil migration to inflammatory
sites (47), and that leukocyte migration is deficient in S100A9-
knockout mice (48). Limiting neutrophil chemotaxis by S100A9
blockade could be a therapeutic strategy for pathologies where
excess neutrophil infiltration and activation cause inflammation,
impair tissue repair and lead to loss of organ function. Neutrophils
mediate tissue damage through the release of proteases from their
cytoplasmic granules. As expected, we found that inflammatory
N1 neutrophils release an increased level of active MMP-9 and
MPO. Exposure of N1 neutrophils to ABR-238901 reduces the
activity of both enzymes to levels similar to control cells, adding
support to the possible importance of S100A9 blockade in limiting
tissue damage.

Understanding the signaling mechanisms involved in the
production and release of cytokines/chemokines, proteases, and
ROS from neutrophils could provide novel targets for anti-
inflammatory therapies. Both LPS and S100A8/A9 activate the
TLR4/MD2 receptor complex, leading to recruitment of the
adaptor protein MyD88 and sequential activation of IRAK1,
ERK, p38 MAPK, and NF-kB (38). S100A8/A9 binding to RAGE
also leads to NF-kB activation (14, 38). Here, we show that the
MyD88 gene is significantly upregulated and the phosphorylated
forms of ERK1/2 and the p65 subunit of NF-kB are more
abundant in N1 neutrophils compared to controls. These
pathways mediate the neutrophil response to aggressors,
including ROS production, cytokine and chemokine synthesis,
and induction of anti-apoptotic signals (49). S100A9 blockade
reduced the phosphorylation of both p65 and ERK1/2,
demonstrating an important contribution of the protein in
triggering these pathways. Since both externally-supplied LPS
and neutrophil-secreted S100A8/A9 are present in our in vitro
system, it is difficult to distinguish the relative contribution of the
two mediators in triggering TLR4 activation, as they compete for
the receptor. The magnitude of the observed effects of S100A9-
blockade on N1 neutrophils varied depending on the outcome.
The treatment led to important inhibition of N1 migratory
ability, NO, MPO and MMP-9 secretion, but only modest
reduction in cytokine and chemokine secretion. These results
suggest that only certain pathways are affected by the S100A9
inhibition in our system. One possibility could be that ABR-
238901 only interferes with the activation of RAGE, while
S100A8/A9 binding to TLR4/MD2 is prevented by the
presence of LPS. However, this hypothesis is highly speculative
and requires confirmation in future experiments employing
different combinations of TLR4 and RAGE blockers or LPS-
free experimental systems.
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Recently, it has been demonstrated that the absence of TLR4 in
a mouse model of stroke polarizes the cells toward an N2
phenotype associated with neuroprotection (50). The data
suggest a different modulation of neutrophils in absence of
TLR4. In N2 neutrophils we found an increased expression of
anti-inflammatory markers and reduced production of the
inflammatory cytokines TNF-a and IL-1b. Functionally, these
cells were similar to control neutrophils in our experimental
setting. However, the N2-like phenotype obtained by IL-4
stimulation in vitro may differ from the anti-inflammatory
neutrophils found in vivo. While the N1 inflammatory
phenotype appears to dominate the acute response to infection
or inflammation in vivo, a complex microenvironment is likely to
lead to higher neutrophil diversity after the acute phase has ended.
This assumption is supported by a recent report investigating
cardiac neutrophil diversity in murine MI. The study
demonstrated the existence of temporal diversity of neutrophil
states in the infarcted heart, identifying 6 transcriptionally distinct
cell clusters with a time-dependent appearance (51). In a study
focused on tumor-associated neutrophils, the authors also used
LPS and IFNg/IFNb to derive N1 neutrophils and a much more
complex mediator cocktail to derive N2 cells. The cocktail
included L-lactate, adenosine, TGF-b, IL-10, prostaglandin E2,
and G-CSF, in an attempt to mimic the tumor environment (52).
The resulting N2 neutrophils are likely to differ from the IL-4-
derived neutrophils used in the present study.

Study Limitations
Our study has several important limitations that have to be
considered when interpreting the findings. Firstly, it is
important to acknowledge that our simplified experimental
system is unlikely to fully reproduce the complex environment
present in vivo. We chose to employ the same in vitro conditions
proposed by Ma et al., as these have been shown to generate N1/
N2 neutrophils similar to the cells found by these authors in the
infarcted mouse hearts in vivo. However, as mentioned above, a
more detailed study of neutrophil genetic profile post-MI has
identified 6 distinct cell clusters that sequentially infiltrated the
post-ischemic myocardium (51). It remains unclear whether and
how these cells will be able to be generated in vitro with enough
fidelity in future studies. Secondly, as discussed above, LPS and
S100A8/A9 are competing for the TLR4 receptor, which makes it
difficult to discern to what extent the two mediators contribute to
the observed effects. Lastly, ABR-238901 has specifically been
developed to bind to S100A9 and inhibit activation of TLR4 and
RAGE. Quinoline-3-carboxamides, first-generation S100A9
blockers, have been shown to block the binding of both the
S100A9 homodimer and of the S100A8/A9 heterodimer to
mouse and human TLR4 and RAGE (53). However, it has not
been tested whether the next-generation blocker ABR-238901 is
also able to inhibit the binding of both forms of the protein to the
receptors. Therefore, we cannot determine with certainty whether
the observed effects are solely due to S100A9 blockade or to the
blockade of both forms of the protein.

In conclusion, our study contributes to the understanding of
the transcriptomic, phenotypic and functional characteristics N1
and N2 neutrophils and is the first to identify an important
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autocrine role of the neutrophil mediator S100A8/A9 in
promoting the pro-inflammatory N1 phenotype. These data
support previous results suggesting a pathogenic role of
S100A8/A9 in clinical trials and in vivo models, and promote
pharmacological blockade of S100A9 as a potentially important
therapeutic strategy in inflammatory disorders with a
neutrophil component.
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