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Background. Lung adenocarcinoma is one of the most commonly diagnosed malignancies worldwide. Macrophage plays crucial
roles in the tumor microenvironment, but its autocrine network and communications with tumor cell are still unclear.
Methods. We acquired single-cell RNA sequencing (scRNA-seq) (n =30) and bulk RNA sequencing (n = 1480) samples of lung
adenocarcinoma patients from previous literatures and publicly available databases. Various cell subtypes were identified,
including macrophages. Differentially expressed ligand-receptor gene pairs were obtained to explore cell-to-cell
communications between macrophages and tumor cells. Furthermore, a machine-learning predictive model based on ligand-
receptor interactions was built and validated. Results. A total of 159,219 single cells (18,248 tumor cells and 29,520
macrophages) were selected in this study. We identified significantly correlated autocrine ligand-receptor gene pairs in tumor
cells and macrophages, respectively. Furthermore, we explored the cell-to-cell communications between macrophages and
tumor cells and detected significantly correlated ligand-receptor signaling pairs. We determined that some of the hub gene
pairs were associated with patient prognosis and constructed a machine-learning model based on the intercellular interaction
network. Conclusion. We revealed significant cell-to-cell communications (both autocrine and paracrine network) within
macrophages and tumor cells in lung adenocarcinoma. Hub genes with prognostic significance in the network were also identified.

1. Introduction

Lung cancer remains the leading cause of cancer incidence
and death worldwide; lung adenocarcinoma is the largest
subtype with increasing incidence [1-3]. Previous studies
have suggested that the tumor microenvironment, including
that of lung adenocarcinoma, plays crucial roles in the differ-
ent steps of tumorigenesis and therapeutic responses [4-7].
The function of macrophages has been reported to be altered
in lung cancer [8]. Ohtaki et al. revealed that CD204+ mac-
rophages represented a tumor-promoting phenotype in lung
adenocarcinoma [9]. Lavin et al. determined that tumor-
associated macrophages had a distinct transcriptional signa-

ture in lung adenocarcinoma and summarized their immu-
nosuppressive role in early stages of the disease [10].
However, the network of cell-to-cell communications (both
autocrine and paracrine network) within macrophages and
tumor cells in lung adenocarcinoma has not been fully
explored. The communications among different cells are
regulated by pairs of ligand and cell-surface receptor.

In recent decades, gene profiling of cancers has primarily
depended on RNA sequencing (RNA-seq) technology, in
which samples are regarded as a whole. Tumors, together
with the tumor microenvironment, are comprised of hetero-
geneous cell populations, including macrophages, T cells,
and cancer cells. However, bulk RNA-seq measures the
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averaged expression level across all cell subtypes, which fails
to reflect the intrinsic heterogeneities of gene profiling and
functional features [11]. Single-cell RNA sequencing
(scRNA-seq) enables investigations of the tumor microenvi-
ronment at a single-cell level rather than cell-population
level [12-14]. Therefore, the applications of scRNA-seq
allow us to go a step further in analyzing cell-to-cell crosstalk
within macrophages and tumor cells.

In this study, we explored the coexpression of ligand-
receptor pairs by both RNA-seq and 10x genomics single-
cell RNA sequencing (10x scRNA-seq) data, which might
provide us a framework to investigate the cell-to-cell com-
munications within macrophages and tumor cells in lung
adenocarcinoma. We identified differentially expressed
genes of ligand-receptor pairs in both autocrine and para-
crine network within macrophages and tumor cells. Their
clinical significance was also tested in lung adenocarcinoma
using a machine learning model.

2. Methods

2.1. Study Cohorts. We integrated three independent cohorts
of scRNA-seq data as the main study population. One was
composed of tumor samples based on 14 patients with pri-
mary lung adenocarcinoma from previous literature follow-
ing relevant data availability statement [15]. The other two
cohorts of scRNA-seq samples were downloaded from
ArraryExpress (https://www.ebi.ac.uk/arrayexpress/) data-
base (accession numbers: E-MTAB-6149 and E-MTAB-
6653) based on previous literatures. Detailed clinicopatholo-
gical characteristics of all patients enrolled in the sScRNA-seq
cohort were showed in Supplement Table 1.

Five Gene Expression Omnibus (GEO, https://www.ncbi
nlm.nih.gov/geo/)  datasets  (GSE30219,  GSE31210,
GSE50081, GSE37745, and GSE68465) were enrolled in this
study. The first four datasets were derived from the GPL570
GeneChip of Affymetrix (Santa Clara, CA, USA), while
GSE68465 was based on GPL96 GeneChip of Affymetrix.
Raw data and GeneChip files were downloaded directly from
GEO database. For data integration of different datasets, we
adopted a robust multichip average method based on
RMAExpress for background adjustment, quantile normali-
zation, and summary for gene profiling [16-18]. The
GPL570 GEO cohort (544 patients) was adopted for the cor-
relation and prognostic analyses of ligand-receptor pair
genes, and the GPL96 cohort (443 patients) was used as
the training cohort for the construction of the machine-
learning prognostic model. Moreover, level 3 RNA-seq data
of lung adenocarcinoma patients were also downloaded
from The Cancer Genome Atlas (TCGA) before October 6,
2019 (https://portal.gdc.cancer.gov/). A total of 493 tumor
samples were obtained with complete follow-up informa-
tion. We chose the TCGA dataset as the validation cohort
for the construction of machine-learning prognostic model.
Detailed baseline features of all patients from both GEO
and TCGA database were listed in Supplement Table 2.

2.2. Analyses of 10x scRNA-Seq Data. The detailed methods
of 10x scRNA-seq and data preprocessing are described in
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the Supplement Methods. The normalized 10x scRNA-seq
data was transformed into a Seurat object using the Seurat
R package [19]. Principal component analysis (PCA) was
performed based on the top 2000 highly variable genes. To
integrate three 10x scRNA-seq cohorts in this study, we used
the Harmony R package. Uniform manifold approximation
and projection (UMAP) was conducted for cell clustering
and visualization (Supplement Figure 1). The identifications
of different cell subtypes were achieved using the CellMarker
dataset and the SingleR R package [20, 21]. According to the
literature, EPCAM, SOX4, and MDK are considered as gene
markers for tumor cells, while SFTPD, AGR3, and FOLRI
are closely associated with epithelial cells [14]. Owing to the
distinct subtypes of myeloid cells, we used CDI63, LYZ,
ELANE, and FCERIA to differentially identify macrophages,
Langerhans cells, and granulocytes [10, 20, 21]. Detailed
information of the cell typing markers is shown in
Supplement Figures 2 and 3.

2.3. Cell-to-Cell Communication Analyses. In this step, we
basically followed the steps as described in the previous liter-
atures [22, 23]. The list of ligand-receptor pairs was down-
loaded from the FANTOMS5 project [24].

First, we explored the network of autocrine ligand-
receptor gene pairs in tumor cells and macrophages. The
expressions of ligand or receptor genes were compared
between lung adenocarcinoma cells and normal epithelial
cells using the MAST package in the scRNA-seq cohort
[25]. Then, we selected pairs of ligand-receptor genes that
were concurrently upregulated or downregulated in lung
adenocarcinoma cells or tumor-associated macrophages.
To quantify the coexpression levels of ligand-receptor pairs,
Spearman’s rank correlation coefficients were adopted for
calculations in the bulk RNA-seq cohort (the GPL570 GEO
cohort). We selected a coefficient value of 0.3 as the thresh-
old for further screening. Gene set variation analysis (GSVA)
with the Hallmark gene set was conducted to detect changes
of enriched pathways [26].

Second, we explored the paracrine network of crosstalk
between macrophages and lung adenocarcinoma cells. Com-
parisons of ligand or receptor gene expressions were also
performed in macrophages stratified by its neoplastic and
nonneoplastic origins in the scRNA-seq cohort. Then, we
selected ligand-receptor pair genes that were separately
highly expressed in these two types of cells. Subsequent cor-
relation analyses in the bulk RNA-seq cohort and coefficient
threshold were the same as above. Furthermore, we selected
pathways of Hallmark and Kyoto Encyclopedia of Genes and
Genomes (KEGG) which contain selected top ligand-
receptor gene pairs in the above analyses. We comprehen-
sively studied the expression changes of genes in the selected
pathways in the scRNA-seq cohort. Here, we aimed to
observe the transcriptional consequences at the single-cell
level of ligand-receptor pathways activation. Also, the Gene
Ontology (GO) analyses were performed based on selected
ligand-receptor genes.

Third, we displayed the potential roles and interactions
of ligand-receptor gene pairs within tumor cells and sub-
types of macrophages. To calculate the M1/M2 polarization
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and pro-/anti-inflammatory potential of macrophages cells,
we retrieved associated gene sets following previous literatures
[12,27]. In the scRNA-seq cohort, we classified and annotated
subclusters of tumor-associated macrophages [15]. Based on
the significantly differentially expressed ligand and receptor
gene pairs in the scRNA-seq cohort, we evaluated the interac-
tion scores of gene pairs within tumor cells and subtypes of
macrophages by toolkit CellChat [15, 28].

2.4. Construction of the Machine-Learning Model. The
Extreme Gradient Boosting (XGBoost) method is an
advanced machine-learning algorithm based on the Gradi-
ent Boosting framework, which has been widely adopted.

XGBoost enhances upon the base Gradient Boosting
framework by systematic and algorithmic optimizations.
XGBoost provides a parallel tree boosting for effective pre-
diction, which has been proven in many cases [29-31].
Details of the XGBoost algorithm can be obtained elsewhere
(https://xgboost.readthedocs.io/en/latest/). The GEO GPL96
(GSE68465) dataset was split into low-risk (I-II stage
patients) and high-risk (III-IV stage patients) groups for
machine-learning predictions. Then, it was randomly
divided into a training and internal test cohort with a ratio
of approximately 2: 1. We adopted significantly differentially
expressed ligands or receptors in the scRNA-seq analyses as
the initial gene set, and then selected those genes with prog-
nostic values in the GSE684865 cohort. The sklearn package
of Python was adopted to establish the machine-learning
model based on the selected gene set. Finally, the TCGA
dataset was used as the validation cohort for the machine-
learning model evaluation.

2.5. Validations of Hub Ligand-Receptor Gene Pairs in
Tumor Cells and Macrophages in Lung Adenocarcinoma.
Ten lung adenocarcinoma samples and matched normal tis-
sues were selected for validations with flow cytometry and
quantitative real-time polymerase chain reaction (qRT-
PCR). Experiment steps were described in previous litera-
tures [23, 32]. Single cells of selected samples were sus-
pended in phosphate-buffered saline with 3% fetal bovine
serum and incubated with human IgG (20 ug/ml, Sigma-
Aldrich) for 15 minutes to remove nonspecific antibody
binding. Afterwards, single cells were placed on ice and
incubated with Alexa 647-conjugated mouse antihuman
EPCAM (10 ul/10° cells; cat. no.: 566658, BD Biosciences,
San Jose, CA, USA), PE-conjugated mouse antihuman
FOLRI (10 ul/10° cells; cat. no.: FAB5646P, R&D Systems,
Minneapolis, MN, USA), or Alexa 647-conjugated mouse
antihuman CD163 (10 ul/10° cells; cat. no.: 562669, BD Bio-
sciences, San Jose, CA, USA) for 30 minutes. We applied
Fortessa analyzer (BD Biosciences) and FACS Arial III (BD
Biosciences) to quantitate and isolate stained single cells.
Moreover, FlowJo software (Version 10, TreeStar, Wood-
burn, OR, USA) was adopted for generating and analyses.
To validate the associations of selected hub ligand or recep-
tor genes with macrophages, we adopted a public resource
(Tumor IMmune Estimation Resource, TIMER) by compu-
tational approaches in the TCGA cohort. We analyzed the
correlations of selected hub ligand or receptor gene expres-

sion with the level of macrophage infiltrating. Moreover,
the above sorted single cells were used for subsequent RNA
extraction and reverse transcription by an RNA kit (Takara,
Kusatsu, Japan). We tested and compared the expressions of
selected hub ligand or receptor genes in lung adenocarci-
noma cells, normal epithelial cells, and macrophages (Sup-
plement Methods).

2.6. Statistical Analyses. All statistical analyses were per-
formed with IBM SPSS Statistics 22.0 (IBM, Inc., Armonk,
NY, USA) and R version 3.6.1 (R Foundation for Statistical
Computing, Vienna, Austria). The ligand-receptor network
among cells in lung adenocarcinoma were displayed by Cytos-
cape version 3.7.2 (https://cytoscape.org/). Survival curves
were estimated and compared following the Kaplan-Meier
method and the log-rank test. Patients were divided based
on the median level of gene expression. A two-tailed P value
<0.05 was set as the threshold of statistical significance.

3. Results

3.1. Cell Typing and the Identification of Tumor Cells and
Macrophages. After quality filtering and merging of datasets,
159,219 cells from 21 patients (23 lung adenocarcinoma
samples and 7 normal lung tissue samples) were identified
based on 10x scRNA-seq (Figure 1(a) and Supplement
Figure 1C). A total of 122,082 cells (76.7%) were derived
from lung adenocarcinoma samples and 37,137 cells
(23.3%) originated from normal lung tissue. The whole
single-cell cohort was then classified into clusters using the
PCA and UMAP algorithms. Subsequently, the displayed
cell clusters were further distinguished by marker genes.
We identified single cells in the alveolar cluster (14,712
cells, 17.6% of normal samples), lung adenocarcinoma
tumor cluster (18,248 cells, 97.3% of tumor samples), and
macrophage cluster (29,520 cells in total, 20,379 cells of
neoplastic origin and 9141 cells of nonneoplastic origin)
(Figures 1(a)-1(c)).

3.2. Expression Correlation Analyses Suggested Significant
Autocrine Ligand-Receptor Gene Pairs of Tumor Cells in
Lung Adenocarcinoma. We detected 13,560 differentially
expressed genes by comparing lung adenocarcinoma tumor
cells and normal epithelial cells based on 10x scRNA-seq
cohort (Figure 2(a)). As a result, we identified 240 upregu-
lated and 234 downregulated ligand-receptor pair genes that
were significantly increased or decreased simultaneously in
lung adenocarcinoma tumor cells, which constituted the
autocrine network of tumor cells. Correlation analyses were
performed for each pair in the GEO GPL570 dataset. We
chose 44 upregulated and 63 downregulated pairs with coef-
ficients >0.3 (Figures 2(b) and 2(c), Supplement Table 3).
The top five upregulated and downregulated gene pairs
were as follows: TGFBI-ENG, TGMZ2-TBXA2R, HSPG2-
PTPRS, BMP5-ACVR2A, and HLA-G-KIR2DL4; B2M-
HLA-F, SELPLG-ITGB2, ILIRN-ILIRL2, ICAM3-ITGAL,
and SERPINGI-LRP1, respectively. A direct comparison of
enriched pathways was conducted between tumor cells and
epithelial cells in the scRNA-seq cohort. As shown in
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FIGURE 1: (a) Overview distribution of the 159,219 single cells stratified by the identified cell subtypes (red cluster: T cells, orange cluster: B
cells, green cluster: alveolar cells, blue cluster: myeloid cells, yellow cluster: endothelial cells, pink cluster: mast cells, purple cluster: fibroblast
cells, and turquoise cluster: cancer cells). (b) Overview distribution of myeloid cells stratified by the sample types (normal and tumor
samples). (c) Overview distribution of macrophages (red cluster), Langerhans cells (green cluster), and granulocytes (blue cluster).

Figure 2(d), pathways associated with glycolysis, mTORC1
signaling, Myc targets, DNA repair, and G2M checkpoint
were significantly enriched in tumor cells.

3.3. Expression Correlation Analyses Revealed Important
Autocrine Ligand-Receptor Gene Pairs of Tumor-Associated
Macrophages in Lung Adenocarcinoma. A total of 11,192 dif-
ferentially expressed genes were identified in macrophages
stratified by origin (neoplastic cells vs. nonneoplastic cells)
based on the 10x scRNA-seq cohort (Figure 3(a)). Similarly,
307 upregulated and 73 downregulated ligand-receptor pair
genes in tumor-associated macrophages were identified,
which constituted the autocrine network of tumor-associated
macrophages. Correlation analyses were performed for each
pair in the GEO GPL570 dataset. We detected 84 upregulated
and 25 downregulated ligand-receptor pair genes with coef-
ficients >0.3 (Figures 3(b) and 3(c), Supplement Table 3).
The top five upregulated and downregulated gene pairs
were as follows: TGFBI-ENG, B2M-HLA-F, SELPLG-
ITGB2, SERPINGI-LRPI, and AGRP-SDC3; 2PRS19-CCR7,
ILIRN-ILIRL2, CCL19-CXCR3, CD70-CD27, and CXCL13-
CXCR5, respectively. We also compared the enriched

pathways between macrophages with different origins in
the scRNA-seq cohort. Glycolysis pathway was still the
leading enriched pathway in tumor-associated macrophages.

3.4. Crosstalk between Tumor Cells and Macrophages Is
Associated with Prognosis of Lung Adenocarcinoma
Patients. To assess how macrophages connect with tumor
cells in lung adenocarcinoma, we chose 52 gene pairs, of
which ligands in tumor-associated macrophages and recep-
tors in tumor cells were highly expressed, respectively
(Figure 4(a)). The top five upregulated gene pairs were:
TGFBI-ENG, TGM2-TBXA2R, AGRP-SDC3, HLA-G-
KIR2DL4, and GNAI2-TBXAZ2R. In total, there were 54
ligands or receptors in the network that showed prognostic
significance in the GPL570 GEO cohort (Supplement
Table 3). We selected pathways containing top five
upregulated ligand-receptor gene pairs and analyzed the
gene expression changes of these pathways in the scRNA-
seq cohort. We found that there was a trend of
overexpression of genes in the TGF-f signaling pathway of
cancer cells, which suggested potential pathway activation
of TGFBI-ENG at the single-cell level (Supplement
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F1GURE 2: The ligand-receptor gene pairs identified in the autocrine network of lung adenocarcinoma tumor cells. (a) Volcano plot of the
differentially expressed genes between tumor cells and normal epithelial cells. (b) The network of selected upregulated ligand-receptor gene
pairs in tumor cells of lung adenocarcinoma (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width is consistent with the
correlation coeflicient between the ligand and receptor). (c) The network of selected downregulated ligand-receptor gene pairs in tumor cells
of lung adenocarcinoma (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width: consistent with the correlation
coefficient). (d) GSVA analysis of the Hallmark gene sets identifies significant functional pathways in lung adenocarcinoma cells (tumor

cells vs. normal epithelial cells).

Figure 4A). Then, gene functional enrichment analysis of
GO suggested that the crosstalk between macrophages and
tumor cells were significantly associated with cytokine
productions and secretions (Supplement Figure 5A).

To evaluate how lung adenocarcinoma tumor cells com-
municate with macrophages, we selected 70 gene pairs, of
which ligands in tumor cells and receptors in tumor-
associated macrophages were upregulated, respectively
(Figure 4(b)). The top five upregulated gene pairs were:
TGFBI-ENG, HSPG2-PTPRS, HLA-G-CD4, BMP5-
ACVR2A, and MFGES-ACVR2A. In total, there were 80
ligands or receptors in the network that showed prognostic

significance in the GPL570 GEO cohort (Supplement
Table 3). We selected pathways containing top five
upregulated ligand-receptor gene pairs and analyzed the
gene expression changes of these pathways in the scRNA-seq
cohort. We found that there was a trend of overexpression
of genes in the allograft rejection, antigen processing, and
presentation  signaling pathways of tumor-associated
macrophages, which suggested potential pathway activations
of HLA-G-CD4 at the single-cell level (Supplement
Figures 4B and 4C). Then, gene functional enrichment
analysis of GO indicated that the communications between
tumor cells and macrophages were significantly related to



Journal of Immunology Research

300 4
o
=
E
Ay
T 200+
2
2=
=
[}
® 100 A
0
0 4
T T T T T
-2 -1 0 1 2
Log FC
(a)
e
) e
- i3]
e
o -, E -
|
(o -
e} b — =]
wony (IR e ]
- T -
woo oy -
oo - P
. . .
== (o — G e
[eaiz | =) - - b T
- - - e Aoy
fear] ® -

(b)

(0

FiGure 3: Continued.



8 Journal of Immunology Research

HALLMARK GLYCOLYSIS [ —
HALLMARK MTORIC 1 SIGNALING [N
HALLMARK E2F TARGETS [
HALLMARK UNFOLDED PROTEIN RESPONSE [
HALLMARK MYC TARGETS V2 [
HALLMARK G2M CHECKPOINT [
HALLMARK MYC TARGETS V1 [
HALLMARK DNA REPAIR [N
HALLMARK P53 PATHWAY [
HALLMARK OXIDATIVE PHOSPNORYLATION [
HALLMARK XENOBIOTIC METABOLSM [

HALLMARK PEROXISOME [
HALLMARK PROTEIN SECRETION [N

HALLMARK WNT BETA CATENIN SIGNALING
HALLMARK MITOTIC SPINDLE

HALLMARK P13K AKT MTOR SIGNALING
HALLMARK ESTROGEN RESPONSE EARLY
HALLMARK APOPTOSIS

HALLMARK ADIPOGENESIS

HALLMARK FATTY ACID METABOLISM
HALLMARK KRAS SIGNALING ON
HALLMARK ALLOGRAFT REJECTION
HALLMARK APICAL SURFACE

HALLMARK INTERFERON ALPHA RESPONSE
HALLMARK UV RESPONSE CN

HALLMARK INTERFERON GAMMA RESPONSE
HALLMARK COAGULATION

HALLMARK PANCREAS BETA CELLS
HALLMARK IL2 STATS SIGNALING
HALLMARK ANDROGEN RESPONSE
HALLMARK CHOLESTEROL HOMEOSTASIS
HALLMARK BILE ACID METABOLISM
HALLMARK TNFA SIGNALING VIA NFKB
HALLMARK COMPLEMENT

HALLMARK REACTIVE OXIGEN SPECIES PATHWAY
HALLMARK APICAL JUNCTION

HALLMARK IL6 JAK STAT3 SIGNALING
HALLMARK ESTROGEN RESPONSE LATE
HALLMARK HEME METABOLISM
HALLMARK MYOGENESIS

[ [
-10 0

[ |
10 20

GSVA score, Macrophage neoplastic versus non-neopiastic cells

F1GURE 3: The ligand-receptor gene pairs identified in the autocrine network of macrophages. (a) Volcano plot of the differentially expressed
genes between tumor-associated macrophages and nontumor-associated macrophages. (b) The network of selected upregulated ligand-
receptor gene pairs in macrophages of lung adenocarcinoma (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width is
consistent with the correlation coefficient between the ligand and receptor). (c) The network of selected downregulated ligand-receptor
gene pairs in macrophages of lung adenocarcinoma (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width is
consistent with the correlation coefficient between the ligand and receptor). (d) GSVA analysis of the Hallmark pathways in
macrophages (tumor-associated macrophages vs. nontumor-associated macrophages).

lymphocytes adhesions, migrations, and differentiations
(Supplement Figure 5B).

3.5. Heterogeneities of Interaction Roles of Ligand-Receptor
Gene Pairs within Tumor Cells and Subtypes of Tumor-
Associated Macrophages. Considering the heterogeneities of
tumor-associated macrophages, we tried to display the dif-
ferences of interaction roles of ligand-receptor gene pairs
in the autocrine and paracrine network of tumor cells and
macrophages. In the scRNA-seq cohort, we reclustered
tumor-associated macrophages and 4 subtypes were revealed
in our study (Figure 5(a)). We also calculated the M1/M2
polarization and pro-/anti-inflammatory scores based on
previous study [27]. The M1/M2 polarization and pro-/
anti-inflammatory scores for each subtypes of macrophages
were shown in Figures 5(b) and 5(c). Then, interaction

scores were evaluated for the significantly differentially
expressed ligand-receptor gene pairs (Figure 5(d)).

3.6. Machine-Learning Prognostic Model Based on Ligand-
Receptor Interactions. To further investigate the prognostic
significance of the above ligand-receptor gene pairs, we built
a machine-learning model using XGBoost algorithm. Differ-
entially expressed ligands or receptors in the scRNA-seq
analyses (Supplement Table 3) with prognostic value in the
GSE68465 cohort were included for calculation. We
enrolled a gene set composed of 155 genes for subsequent
model construction. The entire GSE68465 cohort was
randomly divided into a training and test dataset with a
ratio of approximately 2:1. We found that the machine-
learning high- and low-risk predictive model achieved a
precision value of 0.94 and a recall value of 0.78 in the
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F1GURE 4: The crosstalk between macrophages and lung adenocarcinoma cells. (a) The network of selected upregulated ligand-receptor pairs
from macrophages to tumor cells (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width is consistent with the
correlation coefficient between the ligand and receptor). (b) The network of selected upregulated ligand-receptor pairs from tumor cells
to macrophages (blue round rectangles: ligands; yellow ellipse shapes: receptors; line width is consistent with the correlation coefficient

between the ligand and receptor).

randomly selected test dataset based on GSE68465 cohort.
We then adopted the TCGA cohort to validate the
XGBoost predictive model. There was a significant
prognostic difference between the predicted high- and low-
risk groups in the TCGA cohort (P =0.029, Figure 6).

3.7. Validations of Hub Ligand-Receptor Gene Pairs in
Tumor Cells and Macrophages in Lung Adenocarcinoma.
We used flow cytometry to validate lung adenocarcinoma
cells, normal epithelial cells, and macrophages with cell
markers (EPCAM, FOLRI, and CDI63). Supplement
Figure 6 shows the reliability of selected cell markers in
this study. EPCAM+/FOLRI- cells had a larger proportion
in tumor samples, while there were more EPCAM-/FOLRI
+ cells in normal lung tissues (Supplement Figure 6A-6D).
Moreover, CD163+ cells accounted for a larger proportion
in tumor samples than normal lung tissues, which was
mainly consistent with our initial results of cell typing for
macrophages by scRNA-seq (Supplement Figure 6E-6H).
In the TIMER database, we selected top ligand or receptor
genes which were associated with the cell-to-cell paracrine
or autocrine communications of macrophages. As shown
in Supplement Figure 7, we found that the selected ligand
or receptor genes were significantly associated with the
level of macrophage infiltrating in the TCGA cohort. It
proved the potential significance of ligand and receptor
genes in macrophages based on previous scRNA-seq
investigations. Furthermore, we investigated the expression
level of selected ligand or receptor genes in the above
sorted cells by qRT-PCR. We found that TGFBI, ENG,
TGM2, TBXA2R, HSPG2, and PTPRS were significantly
upregulated in lung adenocarcinoma cells (Supplement
Figure 8A). Also, TGFBI1, ENG, B2M, HLA-F, SELPLG, and
ITGB2 were significantly increased in tumor-associated
macrophages, compared with those nontumor-associated

macrophages (Supplement Figure 8B). These findings were
similar to the scRNA-seq results which effectively explored
the differentially expressed genes. And the identified ligand
or receptor genes in scRNA-seq analyses showed
significant expression changes in tumor cells and tumor-
associated macrophages.

4. Discussion

An increasing number of studies have revealed the crucial
roles of the tumor microenvironment in cancer prolifera-
tion, invasion, metastasis, and therapeutic efficacy, especially
in lung adenocarcinoma [6, 33, 34]. However, the most com-
monly used bulk RNA-seq fails to reflect intrinsic expression
differences and cell heterogeneities within tumors and in the
surrounding stromal cells. Moreover, cell-to-cell crosstalk
within the tumor microenvironment has not been fully
investigated. The establishment of multicellular gene net-
work may facilitate to identify promising biomarkers for
predicting prognosis and therapeutic resistance of cancer
patients [35, 36]. We are now able to explore cell-to-cell
communications of lung adenocarcinoma as a result of
scRNA-seq [14, 34]. Here, we explored the network of cell-
to-cell crosstalk within lung adenocarcinoma cells and mac-
rophages based on analyzing coexpressions of ligand-
receptor pairs.

The tumor microenvironment is of great importance in
promoting tumor proliferation, invasion, and metastasis.
Macrophages are enriched in the core site and play roles in
biological functions, such as migration, metabolism, and
polarization [37]. First, we explored the network of auto-
crine ligand-receptor gene pairs of tumor cells in lung ade-
nocarcinoma. We found that TGFBI and its binding
partner ENG were both highly expressed in tumor cells
and TGFBI-ENG gene pair occupied a key position in the
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network (Figure 2(b)). The comparison of enriched path-
ways between tumor cells and normal epithelial cells were
consistent with previous literatures with respect to cancer
proliferation, invasion, and metastasis [38-41]. Second, we
analyzed the network of autocrine ligand-receptor gene pairs
of macrophages in lung adenocarcinoma. Some of the
selected ligand or receptor genes were found to have poten-
tial vital roles in the communications, which were similar to
previous literatures. For example, LRP! is an endocytic and
cell-signaling receptor that regulates cell migration. Staudt
et al. observed that LRP1 mediated macrophage recruitment
and angiogenesis in tumors [42]. In this study, we detected

the significant role of LRPI in the network of macrophage
autocrine signaling (Figure 3(b)). Also, previous research
has shown that CXCR3 is correlated with decreased M2
macrophage infiltration and a favorable prognosis in gastric
cancer. Our results indicated that CXCR3 was downregu-
lated in tumor-associated macrophages (Figure 3(c)) [43].
In the differentiated pathway analyses, glycolysis pathway
was the leading one in tumor-associated macrophages. Stud-
ies have found the significant roles of immunometabolism in
the tumor microenvironment, suggesting potential thera-
peutic implications [44-47]. Finally, we established the net-
work of crosstalk between tumor cells and macrophages in
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(P =0.029).

lung adenocarcinoma. In this study, we found that overex-
pression of TGM2 conferred a significantly worse survival
in the GPL560 GEO cohort and had an active part in the
paracrine crosstalk (Figure 4(a) and Supplement Table 3).
Furthermore, we identified M1/M2 polarization and pro-/
anti-inflammatory tumor-associated macrophages based on
previous studies [27]. Then, we explored potential
associations of ligand-receptor gene pairs with cell-to-cell
communications among subclusters of cells (tumor cell and
macrophage). In addition, we established a machine-learning
model to predict survival based on identified ligand-receptor
pairs in lung adenocarcinoma. Good performance in both
test and validation cohorts suggested the significance of
autocrine and paracrine in tumorigenesis and progression.
Taken together, our study provides a landscape of the
autocrine interactions and cell-to-cell communications
within macrophages and tumor cells, which may help guide
future experiments.

Traditional bulk RNA-seq fails to reveal the heterogene-
ity of gene profiling and tumor-infiltrating cells [11].
Recently, silico algorithms have been developed to estimate
the tumor microenvironment using bulk RNA-seq; how-
ever, these methods are still not as direct and thorough as
scRNA-seq [48, 49]. The use of scRNA-seq may provide
new insight about new potential targets or cell-specific
abnormally expressed genes. For example, we observed that
PLXNAIL, PLXNA2, and PLXNA3 were all significantly
associated with prognosis in the GPL570 GEO dataset (Sup-
plement Table 3). However, few studies have focused on the
plexin-A family in terms of cancer progression or tumor-
associated macrophages. The advancements of scRNA-seq
have greatly facilitated novel approaches for precision and
translational medicine [50]. For example, Kim et al. adopted
scRNA-seq and extensively showed the molecular and

cellular dynamics in metastatic lung adenocarcinoma [51].
Kim et al. detected the transformation of proinflammatory
monocytes into macrophages with cells losing their
proinflammatory nature and gaining anti-inflammatory
signatures by trajectory analyses [51]. The identifications of
transitions and subpopulations during the process revealed
potential targets in cancer-microenvironment interactions.
There were limitations of this research that should be
mentioned. We investigated the crosstalk of autocrine and
paracrine networks of macrophages and validated the strat-
egies we employed in the scRNA-seq analyses by flow
cytometry and qRT-PCR. However, the detailed mecha-
nisms of these ligands and receptors will require further val-
idations in vitro and in vivo, such as immunofluorescence.
Moreover, the activations of ligand-receptor or downstream
pathways require confirmations to the communications
between macrophages and tumor cells. Thorough experi-
mental plans may be needed, especially for top listed
ligand-receptor pairs. The above validations could further
lead to identity effective signatures with predictive value
for survival and therapeutic resistance [35]. Furthermore,
with the extensive applications of scRNA-seq, increasing
tools were built to model not only functional intercellular
communications but also intracellular gene regulatory net-
work, such as scMLnet [52]. These tools may facilitate us
in the establishment of crosstalk network. More importantly,
the extensive morphologic heterogeneities among tumors,
including tumor cellularity, extent, and compositions of
matrix and vascularity, should also be further considered,
which requires highly precise evaluation and extraction pro-
cess of single cells. Kim et al. collected different samples, like
pleural fluids and lymph node or brain metastases, to eluci-
date the cellular dynamics in LUAD progression [51]. How-
ever, we still need to consider the differences of
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clinicopathological features among patients, like EGFR
mutation status and ground-glass imaging feature, which
will require a larger study population.

5. Conclusion

We explored the landscape of cell-to-cell communication
and crosstalk between macrophages and tumor cells in lung
adenocarcinoma. Hub genes with prognostic significance in
the network were also identified. The machine-learning pre-
dictive model showed the significance of ligand and receptor
genes in tumor progression.
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Supplementary Materials

Supplement Figure 1: A. The integration of single-cell data
with Harmony shows the sample corresponding cohort
(red cluster: samples from E-MTAB-6149; green cluster:
samples from E-MTAB-6653; blue cluster: samples from
previous literatures). B. Three scRNA-seq are well integrated
in the first 2 dimensions after Harmony. C. Overview distri-
bution of the 159,219 single cells from 18 lung adenocarci-
noma samples and 7 normal tissue samples (red cluster:
normal samples; turquoise cluster: tumor samples). Supple-
ment Figure 2: Expression of the cell typing marker genes
for identifying tumor cells, alveolar cells, and macrophages.
Supplement Figure 3: A. Dot plot of the expression of
marker genes for cell subtypes. B. Dot plot of the expression
of marker genes for macrophages. Supplement Figure 4. A.
Heatmap of gene expression in the Hallmark TGF-f signal-
ing pathway stratified by cell types in the scRNA-seq. B.
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Heatmap of gene expression in the KEGG allograft rejection
signaling pathway stratified by cell types in the scRNA-seq.
C. Heatmap of gene expression in the KEGG antigen pro-
cessing and presentation signaling pathway stratified by cell
types in the scRNA-seq. Supplement Figure 5. A. GO analy-
sis for selected ligand-receptor genes in the crosstalk from
macrophages to lung adenocarcinoma cells. B. GO analysis
for selected ligand-receptor genes in the crosstalk from lung
adenocarcinoma cells to macrophages. Supplement Figure 6:
Identified and sorted the key cell marker genes in normal
epithelial cells, lung adenocarcinoma cells, and macrophages
by flow cytometry. A, B. FOLRI+/EPCAM- cells accounted
for larger proportions than FOLRI-/EPCAM+ in normal
lung samples (0.30% vs 1.95%, 0.19 vs 1.32%) (X-axis: PE-
conjugated mouse antihuman FOLRI, Y-axis: Alexa 647-
conjugated mouse antihuman EPCAM). C, D. FOLRI-/
EPCAM+ cells accounted for larger proportions than
FOLRI1+/EPCAM- in lung adenocarcinoma samples (10.4%
vs 2.03%, 17.1 vs 1.47%) (X-axis: PE-conjugated mouse anti-
human FOLRI, Y-axis: Alexa 647-conjugated mouse antihu-
man EPCAM). E, F. CD163+ cells (macrophages) accounted
for 2.66% and 3.86% in normal lung samples (X-axis: Alexa
647-conjugated mouse antihuman CDI163). G, H. CDI163+
cells (macrophages) accounted for 6.86% and 6.65% in lung
adenocarcinoma samples (X-axis: Alexa 647-conjugated
mouse anti-human CDI163). Supplement Figure 7: Associa-
tions of the expressions of selected ligand or receptor genes
with macrophage infiltrating in lung adenocarcinoma of the
TCGA cohort by TIMER database. A. TGFBI (P <0.05,
Spearman’s p =0.261). B. ENG (P <0.05, Spearman’s p =
0.293). C. B2M (P < 0.05, Spearman’s p =0.175). D. HLA-F
(P>0.05, Spearman’s p=-0.082). E. SELPLG (P <0.05,
Spearman’s p =0.321). F. ITGB2 (P < 0.05, Spearman’s p =
0.293). G. TGM2 (P < 0.05, Spearman’s p = 0.273). H. AGRP
(P <0.05, Spearman’s p =0.163). I. PTPRS (P < 0.05, Spear-
man’s p =0.169).]. CD4 (P < 0.05, Spearman’s p = 0.43). Sup-
plement Figure 8: Validations of the expression changes of top
ligand or receptor genes in lung adenocarcinoma cells and
tumor-associated macrophages. A. The mRNA relative
expressions level of TGFBI, ENG, TGM2, TBXA2R, HSPG2,
and PTPRS were significantly increased in lung adenocarci-
noma cells than normal epithelial cells. B. The mRNA relative
expressions of TGFBI1, ENG, B2M, HLA-F, SELPLG, and
ITGB2 were significantly increased in tumor-associated mac-
rophages than macrophages. Supplement Method: The
detailed methods of 10x scRNA-seq and data preprocessing.
Supplement Table 1: Characteristics of the 21 LUAD patients
included in this study for scRNA-seq analysis. Supplement
Table 2: Baseline characteristics of enrolled patient cohorts
from GEO and TCGA databases. Supplement Table 3: Identi-
fied significant ligand-receptor gene pairs in the cell-to-cell
communications within tumor cells and macrophages in lung
adenocarcinoma. (Supplementary Materials)
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