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ABSTRACT: Deviations from the Nernst−Einstein relation are commonly attributed to ion−ion
correlation and ion pairing. Despite the fact that these deviations can be quantified by either
experimental measurements or molecular dynamics simulations, there is no rule of thumb to tell
the extent of deviations. Here, we show that deviations from the Nernst−Einstein relation are
proportional to the inverse viscosity by exploring the finite-size effect on transport properties
under periodic boundary conditions. This conclusion is in accord with the established
experimental results of ionic liquids.

■ INTRODUCTION

“Physical chemistry of ionically conducting solutions” is one of
the cornerstones for energy storage applications in super-
capacitors and lithium-ion batteries.1 Historically, most
electrolytes were regarded as incompletely dissociated, and
the dissociation constant is related to the factor α, which can
be expressed as the conductivity ratio Λc/Λ0 according to
Arrhenius, where Λ0 is the value at the infinite dilution.2

Following the idea of using transport properties to quantify
the extent of ion dissociation (“ionicity”), Angell and co-
workers proposed the use of the classical Walden rule for the
purpose of classification.3 In the Walden plot of logΛ versus
log η, the product of the conductivity Λ and the viscosity η of
KCl solution measured at 0.1 m was set as the reference point.
Downward deviations from the KCl line are usually regarded as
the formation of charge-neutral ion pairs.
The concept of ionicity was put forward further by

Watanabe and co-workers.4−6 They suggested the use of the
molar conductivity ratio Λimp/ΛNMR measured by the
impedance spectroscopy (imp) and the pulse-field gradient
NMR to quantify the self-dissociativity of ionic liquids (ILs).
Despite its conceptual simplicity, the nature of ionicity is by

no means simple. Apart from the static picture of charge-
neutral ion pairs, other factors may alter the interpretation of
the experimentally measured ratio Λimp/ΛNMR. For instance,
ΛNMR was obtained via the Nernst−Einstein relation and the
charge transfer effect can lead to the deviation from the formal
charge of ions.7,8 Exceptional case can also be found in which
the ionicity goes up with the concentration counterintuitively
where the chelate effects become important.9

A more general point related to ionicity is that ion pairing is
a subset of ion−ion correlations.10,11 In one of a series of
classic studies on the dense ionized matter from Hansen and
McDonald,12 they commented that “It is also clear that
deviations from the Nernst−Einstein relation are not

necessarily the result of a permanent association of ions of
opposite charge”. However, the remaining question is still what
determines the deviation from the Nernst−Einstein relation if
not ion pairing.
In this work, we used the finite-size effect in molecular

dynamics (MD) simulation of transport properties to
investigate the deviation from the Nernst−Einstein relation
in the case where permanent ion pairing is excluded. It is found
that while the Nernst−Einstein conductivity depends strongly
on the system size, the Green−Kubo conductivity is system-
size independent. We showed that these two types of
conductivities crossover at certain simulation box size Lmin
for both NaCl solutions and [BMIM][PF6] IL. Furthermore,
this observation suggests that the deviation from the Nernst−
Einstein relation, i.e., (ΛN−E − ΛG−K) is inversely proportional
to the viscosity η resembling the classical Walden rule, with
Lmin being a system-specific parameter. We verified this relation
with published experimental data for a variety of ILs. These
results indicate that viscosity is a dominating factor for the
deviation from the Nernst−Einstein relation and provide a new
avenue to gauge the extent of ion−ion correlations in
electrolyte systems.

■ THEORETICAL BACKGROUND OF IONIC
CONDUCTIVITY

At low salt concentrations, the ionic conductivity of a 1:1
symmetric electrolyte can be described by the Nernst−Einstein
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(N−E) equation (eq 1), in which the ionic conductivity is only
linked to the self-diffusion of ions.13

σ ρβ= +− + −q D D( )N E
2 s s

(1)

σ σ= ++ −
s s

(2)

where β = 1/kbT is the inverse temperature, q is the formal
charge of each ion, and ρ = N/Ω is the number density of the
electrolyte (in the formula unit) with Ω as the system volume.
σ+
s and σ−

s are contributions to the ionic conductivity from self-
diffusion coefficients D+

s and D−
s of cations and anions,

respectively.
The Nernst−Einstein relation becomes approximated at

high salt concentrations, where the effect of ion−ion cross-
correlation starts to show up.11,12,14−19 In this case, the ionic
conductivity can be formally defined by the Green−Kubo (G−
K) formula20
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where J is the total current density and P is the itinerant
polarization in ionic solutions21 or the Berry phase polarization
in solids.22,23 ⟨···⟩ indicates the ensemble average.
The difference between σG−K and σN−E can be decomposed

into contributions from so-called distinct diffusion coefficients
of cations D++

d , anions D−−
d , and cation−anion D+−

d .15,18 The
name “distinct” emphasizes the nature of cross-correlation
between different ions either in the same species or in different
species. Subsequently, this allows rewriting the Green−Kubo
conductivity as
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σ σ σ σ= + + +− ++ −− +−N E
d d d

(6)

where σ++
d , σ−−

d , and σ+−
d are the distinct ionic conductivities

from the corresponding distinct diffusion coefficients.
Deviations from the Nernst−Einstein relation, i.e., (σN−E −

σG−K), can be quantified by either experiments or MD
simulations. In experiments, they can be obtained as the
difference between the pulsed-field gradient NMR and the
impedance spectroscopy measurements for the same system
under the same conditions.5,10,24,25 In MD simulations, one
can compute σG−K using either eqs 3 or 4 and σN−E with self-
diffusion coefficients obtained from either velocity autocorre-
lation functions eq 7 or mean squared displacement eq 8.20
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where t is the time, N is the number of cations or anions in
solution, α ∈ {+, −}, vi,α is the velocity of the ith cation or
anion, and ri,α is the corresponding position.
It is worth noting that MD results of σN−E obtained by

computing self-diffusion coefficients D+
s and D−

s contain a
significant finite-size error because of the hydrodynamic self-

interaction in periodic systems.26,27 To obtain the corrected
self-diffusion coefficients Dα

s (L → ∞) that are system-size
independent, the following formula can be applied.

ξ
πβη

→ ∞ = +α αD L D L
L

( ) ( )
6

s s

(9)

where Dα
s (L) is the self-diffusion coefficient obtained from eq 8

with the box length L, ξ is about 2.837297 for cubic simulation
boxes,27 and η is the shear viscosity.

■ MODEL SYSTEMS AND MOLECULAR DYNAMICS
SIMULATIONS

Following the spirit of using the ideal potassium chloride
(KCl) line for the Walden plot,3 here we took sodium chloride
(NaCl) electrolyte solution as a prototype system for aqueous
electrolytes. Water molecules were described by the simple
point charge/extended (SPC/E) model,28 and Na+/Cl− ions
were modeled as point charge plus Lennard-Jones potential
using the parameters from Joung and Cheatham,29 which is
suitable for highly concentrated solution.30−32 The stoichiom-
etry of three different simulation boxes (large, medium, and
small) is listed in Section A of the Supporting Information.
The molecular dynamics simulations were performed with the
LAMMPS code.33 The sizes of cubic simulation boxes were
determined by experimental densities.34 The long-range
electrostatics was computed using the particle−particle
particle−mesh (PPPM) solver.35 Short-range cutoffs for the
van der Waals and Coulomb interactions in direct space are 9.8
Å. For computing ionic conductivities, NVT (constant number
of particles, constant volume, and constant temperature)
simulations ran for 20 ns with a timestep of 2 fs and
trajectories were collected every 0.5 ps. The Bussi−Donadio−
Parrinello thermostat36 was used to maintain the given
temperature of 20 °C.
Because the [BMIM][PF6] system does not show

permanent ion pairing,37 we picked up this model system in
our investigation of ILs here. The interaction model and
parameters derived from the OPLS-based force field38 for ILs
(OPLS-2009IL)39 were used for the [BMIM][PF6] system. A
charge scaling factor of 0.8e was applied to account for the
electronic polarization effects,40 which was shown to improve
the prediction of self-diffusion coefficients.41 The stoichiom-
etry of three different simulation boxes (large, medium, and
small) is listed in Section B of the Supporting Information.
Short-range cutoffs are 13 Å for the [BMIM][PF6] system.
NPT (constant number of particles, constant pressure, and
constant temperature) simulations ran for 100 ns with a
timestep of 1 fs, and trajectories were collected every 0.5 ps.
The Bussi−Donadio−Parrinello thermostat and the Parrinel-
lo−Rahman barostat42,43 were used to maintain the selected
temperatures constant and the pressure at 1.0 atm.

■ RESULTS AND DISCUSSION
System-Size Dependence of the Green−Kubo Con-

ductivity. As shown in Figure 1, we found that the ionic
conductivities computed using the Green−Kubo formula show
no system-size dependence. Such a characteristic is similar to
that of the viscosity η, which is also a system-size-independent
quantity.27

Despite that there is no obvious reason why this should be
the case, note that both the supercell polarization P used for
computing the Green−Kubo conductivity and the pressure
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tensor p used for computing the viscosity are collective
properties of the whole system rather than the average of
individual particle’s properties.
With periodic boundary conditions, point charge density

and point force density are modified by the compensating
background as qi(δ(r − ri) − 1/Ω) and Fi(δ(r − ri) − 1/Ω),
respectively. This gives the supercell polarization and the virial
part of the pressure as P =∑i qi(δ(r − ri) − 1/Ω) * ri and pv =
∑i Fi(δ(r − ri) − 1/Ω) ⊗ ri. Considering the mathematical
similarity between these expressions, it may not be a total
surprise that the resulting Green−Kubo conductivity and the
viscosity from the linear response theory have the same
system-size dependence.
Another angle of looking into this problem may be through

the connection between the ionic conductivity σG−K and the
Maxwell−Stefan diffusion coefficient D+−

M−S. The Maxwell−
Stefan diffusion coefficient D+−

M−S describes the mutual diffusion
between cations and anions, which is independent of the
reference frame. In binary systems, it is linked to the Green−
Kubo conductivity as

σ ρβ=− +−
−q D2G K

2 M S
(10)

Recently, it has been proposed that the system-size depend-
ence of the Maxwell−Stefan diffusion coefficient DM−S in
molecular binary mixtures follows the expression44
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Apart from the familiar expression given in eq 9, the new
ingredient is the inclusion of the thermodynamic factor Γ as a
correction. When Γ is significantly larger than 1, which
happens when the two species like to associate with each other,
DM−S becomes effectively system-size independent. What we
observed in the case of IL [BMIM][PF6] may fall into this
category, where cations and anions attract each other naturally.
However, eq 10 simply does not hold for the case of binary
electrolyte solution (cations, anions, and solvent molecules).

This makes eq 11 not applicable to NaCl solutions. Moreover,
the thermodynamic factor calculated from the experimental
mean activity coefficient is not much larger than 1 over the
whole concentration range of NaCl solutions (see Section C in
the Supporting Information), which further indicates that eq
11 may not be suitable to explain Figure 1.

System-Size Dependence of the Distinct Conductiv-
ities. As we found that σG−K is system-size independent
(Figure 1) and we knew that D+

s and D−
s (therefore σ+

s and σ−
s )

are system-size dependent (eq 9), these together imply that
some if not all of the distinct conductivities in eq 6 should also
be system-size dependent.
To verify this, we calculated the distinct conductivities for

both NaCl solution and [BMIM][PF6] IL with different box
sizes, and the results are shown in Figure 2. It is found that the
distinct conductivity σ++

d of cations (or σ−−
d of anions) has a

very similar and strong system-size dependence to that of the
corresponding σ+

s (or σ−
s ) coming from the self-diffusion of

ions. These system-size dependencies are more apparent in the
case of NaCl solutions than the case of [BMIM][PF6]. This is
likely due to the fact that the viscosities of NaCl solutions are
much smaller than those of [BMIM][PF6] ILs, following the
relation in eq 9. In contrast, the cation−anion distinct
conductivity σ+−

d shows little or no system-size dependence.
Why do these distinct conductivities have different system-

size dependencies? A simple argument would be that it is for
the sake of symmetry. Since there are five terms in eq 5, σ++

d (or
σ−−
d ) should be paired up with σ+

s (or σ−
s ) and this leaves σ+−

d

on its own. In fact, this is not just an intuition. By connecting
Onsager’s phenomenological transport equations with the
linear response theory,45 Schönert showed that the distinct
diffusion coefficient and the self-diffusion coefficient have the
following general relation for 1:1 electrolytes.

σ δ σΩ = + −αβ α αβ
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q N
1 1
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(12)

where α ∈ {+, −}, β ∈ {+, −}, and Ωαβ are the barycentric-
fixed Onsager coefficients; NA is the Avogadro constant; and
δαβ is the Kronecker delta function. A barycentric-fixed
reference frame means the velocity of the center of mass of
the system is set to zero, which is the most suitable reference
frame for MD simulations.
For ILs, these Ωαβ coefficients are not independent but

follow the expression below because of the conservation of
momentum.45

Ω = Ω = − Ω = − Ω+− −+
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where M+ and M2 are the molecular weights of cations and
anions, respectively.
Putting eqs 6, 12, and 13 together, one can arrive at the

following expression

σ σ= + +−
−

+

+

−
+−

M
M

M
M2 2

1G K
di

k
jjjjj

y
{
zzzzz (14)

This means σ+−
d has the same system-size dependence as σG−K

in the case of ILs. Since σG−K is system-size independent,
therefore, σ+−

d is also system-size independent. This theoretical
prediction is exactly what is shown in Figure 2f. Subsequently,
eq 14 also indicates that Ω+−, Ω++, and Ω−− are all system-size
independent quantities.

Figure 1. Ionic conductivities calculated from the Green−Kubo
formula for both (a) NaCl solutions at 20 °C and different
concentrations and (b) [BMIM][PF6] ILs at different temperatures.
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Nevertheless, one needs to be aware that there is no such
simple relation as eq 13 for a solution made of simple salt and
solvent, e.g., NaCl solutions. Therefore, similar behavior of σ+−

d

shown for NaCl solutions in Figure 2c remains as simulation
observations.
Crossover Box Length between the Nernst−Einstein

Conductivity and the Green−Kubo Conductivity. It is
known that the self-diffusion coefficients have strong system-
size dependence (eq 9), and therefore, one would expect that
the Nernst−Einstein ionic conductivity has the same tendency.
Indeed, it is the case for both NaCl solutions and
[BMIM][PF6] ILs as shown in Figure 3.
What is interesting is that for a small enough simulation box,

there exists a crossover box length between the Nernst−
Einstein ionic conductivity σN−E and the Green−Kubo ionic
conductivity σG−K. This is clearly seen in both cases of NaCl
solutions and [BMIM][PF6] ILs. The corresponding crossover
box length for NaCl solutions is 12.3 Å, and it is 18.0 Å for
[BMIM][PF6] ILs.
Of course, one would immediately argue that the actual

crossover box length depends on the force field used even for
the same type of systems. However, this is not the question
that we will dwell on in this work. Instead, the question that
matters here is: Can this crossover between σN−E and σG−K be

always achieved? Supposing that all cations and anions in the
system are paired up permanently, then σG−K will be absolutely
zero, while σN−E is not. In other words, if the system has
permanent ion pairing, then the crossover between σN−E and
σG−K will never happen. Therefore, we restrict our following
discussions to the cases where there is no permanent ion
pairing.

Implication of the Crossover Box Length for Ion
Transport in ILs. The system-size dependence as discussed in
previous sections is usually considered as a finite-size error that
needs to be corrected. However, here we turn the tables and
use it as a tool instead to investigate the role of viscosity in
deviation from the Nernst−Einstein relation.
The observation of the system-size independence of σG−K

and the crossover box length Lmin implies that

σ σ≃ =− − L L( )G K N E min (15)

Combining eqs 1 and 9, one can get

σ σ
ρξ

πη
→ ∞ = = +− −L L L

q
L

( ) ( )
2

6N E N E min

2

min (16)

Inserting eq 15 into eq 16, one arrives at the following
expression

Figure 2. System-size dependence of different contributions to Green−Kubo ionic conductivities for NaCl solutions at 20 °C and different
concentrations: (a) cation contributions, (b) anion contributions, and (c) cation−anion distinct diffusion contribution; the same for [BMIM][PF6]
ILs at different temperatures: (d) cation contributions, (e) anion contributions, and (f) cation−anion distinct diffusion contribution.
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Since Λ = σ/c with c as the molar concentration and c = ρ/NA,
the above equation in terms of the molar conductivity Λ can be
expressed as

η
ξ

π
Λ → ∞ − Λ · ≃− −L

N q
L

( ( ) )
2
6N E G K

A
2

min (18)

Equation 18 suggests that deviations from the Nernst−Einstein
relation have a linear relation with respect to 1/η. In other
words, it states that the system with a high viscosity will have a
small deviation from the Nernst−Einstein relation or vice
versa. Furthermore, it has not escaped our notice that eq 18 is
reminiscent of the well-known Walden rule Λη = k.46

Note that Lmin depends on the specific system. For the
prototype systems NaCl and [BMIM][PF6] used here, Lmin
values are about 12.3 and 18.0 Å, respectively. We notice that
Lmin/2 for NaCl solutions is about 6.1 Å, which is close to the
Kirkwood correlation length in bulk liquid water.47

Then, it is exciting to know what the boundaries set by these
prototype systems would look like according to eq 18 when
compared to experiments. For this purpose, we took a few of
seminal experimental studies on ILs, which promoted the idea
of ionicity5,24,25 and made the following mapping: ΛN−E(L →
∞) ↔ ΛNMR and ΛG−K ↔ ΛImp. This leads to the results
shown in Figure 4.
Figure 4a contains 13 different types of ILs measured at

30 °C (see Table 1 in ref 5 and the list of names in Section D
of the Supporting Information), and in Figure 4b, the
temperature dependence of molar conductivities and viscos-
ities of 6 types of ILs were measured experimentally and fitted
to Vogel−Fulcher−Tammann (VFT) equations.24,25 It is
interesting to see that most experimental data and lines fall
into the boundaries set by NaCl and [BMIM][PF6] and follow
eq 18. Since we now know that the value of Lmin depends on

the specific system under the investigation, this agreement is
somehow fortuitous.
Furthermore, we notice that the corresponding Lmin/2

follows the order [MMIM][TFSI] > [EMIM][TFSI] >
[BMIM][TFSI] > [C6MIM][TFSI] > [C8MIM][TFSI],
which is in reverse to the alkyl chain length. This suggests
that Lmin/2 should be regarded as an effective ion−ion
correlation length that goes down as the size of the cation
becomes larger, following the attenuation of electrostatic
interactions. Alternatively, this trend may originate from the
reduction of the dielectric constant of the corresponding ILs
with an increase of the alkyl chain. Verifying these implications
should be the topics of future studies.
Before closing this section, it is necessary to make a

connection to the quantities related to the ionicity in ILs. For
example, the deviation in ionicity Δ.10

Δ =
Λ − Λ

Λ
− −

−

N E G K

N E (19)

According to the Stokes−Einstein relation, ΛN−E can be
expressed as follows.

πη πη
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where r+ and r− are the hydrodynamic radii for cations and
anions, respectively. r ̅ is the mean hydrodynamic radius.
Combining eqs 18, 19, and 20, one arrives at a succinct

expression of Δ.

Figure 3. Comparison between the system-size dependent Nernst−
Einstein ionic conductivity and the Green−Kubo ionic conductivity:
(a) NaCl solutions at 20 °C and different concentrations and (b)
[BMIM][PF6] ILs at different temperatures.

Figure 4. (a) Experimental deviation from the Nernst−Einstein
relation for 13 types of ILs extracted from ref 5, together with the
theoretical boundaries (gray area) set by prototype systems NaCl and
[BMIM][PF6] using eq 18. (b) Experimental deviation from the
Nernst−Einstein relation for 6 types of ILs at various temperatures
using fitting coefficients of VFT equations from refs 24, 25, together
with the theoretical boundaries (gray area) set by prototype systems
NaCl and [BMIM][PF6] using eq 18.
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ξΔ ≃ ̅r
Lmin

i
k
jjjjj

y
{
zzzzz (21)

As shown in eq 21, Δ does not explicitly depend on the
temperature and the pressure. Therefore, one would expect Δ
to be a constant for one specific system. This agrees with the
experimental pieces of evidence.11,48

When Δ = 1, this implies that ΛG−K = 0 and Lmin is about 3
times of the mean hydrodynamic radius of ions (see the text
around eq 9 regarding the constant ξ). Note that in this limit,
eq 9 is no longer applicable.49 This in turn suggests that Δ = 1
limit will never be met when permanent ion pairing is not
considered. On the other hand, when Δ = 0, this means that
ΛN−E simply equals to ΛG−K, regardless of the system size. For
the infinite dilute solution, this means the correlation length
will diverge and Lmin → ∞.

■ CONCLUSIONS
The system-size dependence of the Nernst−Einstein con-
ductivity σN−E and the Green−Kubo conductivity σG−K in
NaCl solutions and [BMIM][PF6] IL was investigated using
MD simulations. It is found that σN−E is strongly system-size
dependent as expected, while σG−K does not depend on the
system size.
By analyzing the contributions from the distinct diffusion

coefficient we further showed that σ+,−
d between cations and

anions have the same system-size dependence as σG−K, which is
exact for the case of ILs and effective for electrolyte solutions.
Due to different system-size dependencies of the Nernst−

Einstein conductivity and the Green−Kubo conductivity, there
exists a crossover box length where these two types of
conductivities become effectively the same. This leads to an
expression for the deviation from the Nernst−Einstein relation
(ΛN−E − ΛG−K), showing that a low viscosity leads to a strong
deviation and a high viscosity leads to a weak deviation (for
systems without permanent cation−anion associations),
following eq 18.
This new expression was verified against published

experimental data of different types of ILs and the system-
specific crossover box length Lmin may provide a new avenue to
gauge the ion−ion correlation in the electrolyte system. Future
studies should focus on extending the current formulation to
the cases that contain permanent ion pairing and investigating
the relationship between the hydrodynamic radius of ions, the
Lmin, and nano-scale confinement.
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