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a b s t r a c t

Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel
form of programmed cell death called necroptosis was recently reported. The process of necroptosis is
regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus,
the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive
field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the
literature about necroptosis drug screening in recent years. In addition, the identification of the critical
drug targets of the necroptosis is also discussed.
& 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction of necroptosis

Programmed cell death is of great significance in the physio-
logical process, such as maintaining the human homeostasis,
eliminating the damaged cells and improving the ability of anti-
infection [1]. For a long time, people maintain the perception that
apoptosis is the sole form of regulated cell death, while necrosis is
unregulated, and the work giving an insight to the necrosis
mechanism has no value. Nevertheless, along with the investiga-
tion of the cellular mechanisms of necrosis, researchers find that
besides apoptosis, there exist several cell-death types which are
also regulated by certain signaling molecules, such as pyroptosis,
ferroptosis, and autophagic cell death [2–8]. These discoveries
change the conventional ideas about the classification of cell
death, which may offer a different and effective therapy for ne-
crotic diseases. Among these programmed cell deaths, necroptosis
is a notable form of regulated necrotic cell death which is caspase-
independent. As shown in Fig. 1, necroptosis can be triggered by
multiple stimuli like tumor necrosis factor (TNF), TNF-related
apoptosis-inducing TRAIL ligand, Fas ligand, interferons (IFN) and
other signals when apoptosis is prevented [9]. Although the sig-
naling molecules are shared partly in apoptosis and necroptosis,
their results are totally distinct [10]. The changes of morphology
on and hosting by Elsevier B.V. Th
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,

are similar between necroptosis and necrosis [11]. TNF-induced
necroptosis requires the kinase activity of receptor interacting
protein kinase 1 (RIPK1), which was first identified by Holler and
colleagues [12]. After the activation of RIPK1, the second key
protein, receptor interacting protein kinase 3 (RIPK3), is recruited
and phosphorylated by the RIPK1 [13–15]. In some cases, RIPK3
can be activated without RIPK1, for instance, the execution of
necroptosis induced by the murine cytomegalovirus (MCMV) in-
fection is RIPK1-independent [16]. After phosphorylation of RIPK3,
the downstream critical protein mixed lineage kinase domain-like
protein (MLKL) is activated and forms oligomers, then the tri-
merized MLKL translocates to the plasma membrane, so the cal-
cium ion channel protein and sodium ion channel protein are
activated, and the ions flow into the cell, resulting in the increase
of cell osmotic pressure and cell lysis [17–23]. Another model of
plasma membrane disruption caused by MLKL is that the activated
protein will combine with lipids and break the integrity of cell
membrane [24]. As the cell swelling and plasma membrane rup-
turing, the intracellular contents and danger associated molecular
patterns (DAMPs) are released into the interstitial fluid and blood,
which will lead to an array of human necrotic diseases, including
liver injury [25,26], cold hypoxia-reoxygenation injury [27], renal
ischemia/reperfusion injury [28–30], acute necrotizing pancreatitis
[31,32], systemic inflammatory response syndrome [33,34], stroke
[35,36], and other clinical diseases. Hence, it is essential to in-
vestigate the mechanism and discover the inhibitors of the
necroptosis.
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Fig. 1. Necroptotic pathways. After TNF stimulation, TNFR1 recruits TNF-receptor associated death domain (TRADD), cellular inhibitor of apoptosis proteins-1 and �2 (cIAP1/
2), TNF receptor associated factor-2 (TRAF2) and RIPK1 to form complex I. K63-linked polyubiquitination of RIPK1 by cIAP1, leads to the recruitment of I-κB kinase (IKK)
complex and transforming growth factor-β activating kinase-1 (TAK1), activating the nuclear factor κB (NF-кB) and mitogen-activated protein kinase (MAPK) survival
pathways. Complex IIa consisting of RIPK1, FADD and caspase-8 activates apoptosis in the absence of cIAP1. RIPK1 interacts with RIPK3 and MLKL to form complex IIb, which
mediates necroptosis in the presence of caspase-8 inhibitor (zVAD) [17].
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2. Screening of necroptosis inhibitors

2.1. Screening based on cell level

This kind of drug screening is objective owning to the similarity
to the human physiological process. The cells should be cultured in
vitro before we start the experiment. Researchers can get an in-
tuitive evaluation of the drug effect through the observation of the
cell viability, morphology, growth and migration, etc. Fauster et al.
[37] employed the Fas-associated protein with death domain
(FADD)-deficient Jurkat cells to undergo cell death, which were
treated with the second mitochondrial-derived activator of cas-
pases (Smac) mimetic and the caspases inhibitor z-Val-Ala-Asp-
(OMe)-Fluoromethyl Ketone (z-VAD-FMK) 30–60min before the
addition of TNF-α in the concentration of 10 ng/mL, and then was
seeded onto the drug plates which was at two concentrations of
1.5 μM and 0.5 μM, respectively. Cell viability was assessed using a
luminescence-based Cell Titer-Glo. The screening procedure is
demonstrated in Fig. 2. The result indicated that ponatinib and
pazopanib were capable of blocking the process of necroptosis.
Rodriguez et al. reported a newly found RIPK3 inhibitor,
GW440139B, which was screened from the library containing
more than 8900 compounds. This molecule provided a tool for
preventing the phosphorylation of MLKL, thus blocking the ne-
croptotic pathway [38]. According to the study by Degterev's la-
boratory [39], necroptosis of human monocytic U937 cells trig-
gered by TNF-α in the presence of caspase inhibitor was used to
conduct a cell based screen and the inhibitor of RIPK1, necrostatin-
1, was first identified from a chemical library and demonstrated
that it had a relatively high selectivity to suppress necroptosis.
However, as reported by Degterev et al. [40], in view of the con-
dition that Nec-1 could inhibit another enzyme activity named
indoleamine 2,3-dioxygenase (IDO) [41], as well as the poor
pharmacokinetics, the feasibility of the compound in the clinic was
reduced. A different type of RIPK1 inhibitor, termed GSK963, was
identified by Berger et al. This compound presented a high in-
hibitory activity for RIPK1 in vitro [42]. And a natural product
kongensin A (KA) was also identified via a cell-based assay from a
chemical library and it has a potential value to inhibit necroptosis
efficiently [43]. The detailed information of representative ne-
croptosis inhibitors screened by different labs is shown in Table 1.
However, the excessive cost and complicated operation of the
screening promote researchers to seek more simple methods,
especially in modern pharmaceutical studies, because of the huge
amounts of compounds.

2.2. Structure and fragment-based drug discovery

In contrast to the former screening, structure-based drug dis-
covery can reduce the time and accelerate the experimental pro-
cess since it utilizes the understanding of the three-dimensional
structure of the target during the screening, and conduct further
experiments with compounds which bind well. Molecular docking
technique is a virtual drug design aided by the computer [44–47].
Fayaz et al. obtained the cocrystal structure of RIPK3 and analyzed
the binding site in order to identify the novel inhibitors of RIPK3.
Three compounds that exhibited an effective ability to interfere
with the process of cerebral ischemia were discovered by the
structure-based method. Further, these compounds can be opti-
mized to design new inhibitors by the replacement of chemical
groups [48]. According to the principle of induced fit theory, we
can obtain a series of small molecule compounds with large
binding force through screening of the compound libraries, and
the application of X-ray diffraction enables researchers to get the
three-dimensional structure of the small molecule compounds
targeting the key kinases. Finally, the small molecule compounds
can be optimized by adding substituents to have stronger potency
and higher selectivity [2]. For instance, Xie et al. [49] displayed the
crystallization of necrostatins/RIPK1 domain, and proved that
these inhibitors all possessed a similar binding pocket, which



Fig. 2. A cell-based screening workflow of necroptosis inhibitors.

P. Pan et al. / Journal of Pharmaceutical Analysis 9 (2019) 71–76 73
offered a structure basis of RIPK1 inhibition by necrostatins. And
the proceeding of the lead optimization and drug discovery can be
facilitated due to the structural analysis. Ponatinib-based selective
RIPK1 inhibitors were designed as described by Najjar et al. [50].
They found that ponatinib can inhibit dual activity of RIPK1 and
RIPK3 in vitro, which may limit its clinic application considering
the safety. Therefore, in order to enhance its selectivity and retain
its excellent binding affinity to kinases, they exploited molecular
docking to get the three-dimensional combining model of pona-
tinib with RIPK1 on the basis of cocrystal structure of ponatinib/
RIPK2 analog and designed a set of ponatinib chemical structures
(CS) analogs by introduction of different groups on phenyl ring in
consideration of the differences between the binding pocket of
RIPK1 and other kinases, referred to as DLG (Asp-Leu-Gly) and DFG
(Asp-Phe-Gly) motif, respectively. The results displayed that CS6
can selectively inhibit RIPK1 over RIPK3 with a mild reduction in
activity. Additionally, they also synthesized a new type of
inhibitors termed ponatinib-Nec-1 (PN) hybrids with the ex-
pectation of combining the advantage of high potency of ponatinib
and prominent selectivity of necrostatin-1. PN10, one of the hybrid
inhibitors. It was testified to achieve a favorable combination of
the two agents mentioned above. Another similar approach,
fragment-based drug discovery, also contributes to the drug
design and development. Firstly, creating a molecular fragments
library, then screening the activity of molecular fragments and
using nuclear magnetic resonance (NMR) or X-ray diffraction to
get its conformation and binding sites, finally, optimizing the
molecular fragment on the micro to get a lead compound [51–54].
The method consists of activity screening, molecular modeling,
and the structure-activity relationship analysis. To certain extent,
fragment-based drug screening is more valuable than the struc-
ture-based drug discovery due to the small molecular weight of
the obtained compound, which can conduct a further optimization
to improve its activity and selectivity.

2.3. DNA-encoded library screening

Recently, DNA-encoded library screening has been attracting
more and more attention from pharmaceutical researchers and
major pharmaceutical companies. It is foreseeable that DNA-en-
coded library screening would be a primary method in drug
discovery [55–57]. This concept was first proposed by Brenner and
Lerner in 1992 [58], then Nielsen et al. [59] and Needels et al. [60]
adopted this approach to conduct their research, respectively. In
fact, encoding and selection methods are very significant to DNA-
encoded library screening, which shows the efficiency of the
approach. The first step of DNA-encoded library screening is to
design a compound library via combinatorial chemistry, and the
number of compounds can reach into billions of above, then every
specific compound would be covalently connected with a unique
sequence of DNA tag which is used as an identifier for the com-
pound, so the DNA can be regarded as a medium for chemistry
library. After selected by the targets, researchers can obtain the
corresponding compound structure information and synthesize
the compound through DNA sequencing. And finally, researchers
can verify the activity of the compound to the target via cell
proliferation assay. In conclusion, DNA-encoded library screening
can be divided into five steps containing split-and-pool synthesis,
affinity-based selection, PCR amplification, DNA sequencing and
resynthesis without DNA. The chemical space of DNA-encoded
library is a few orders of magnitude larger than traditional
screening methods [61]. Therefore, the problems of time wasting
and compounds insufficient in traditional high-throughput
screening could be resolved efficiently [62], providing a more
rapid method for drug screening. Harris et al. [63] established a
library using a split-pool method with three cycles of building
blocks, which contains 7.7 billion compounds. And they got a
series of high-selective, potent inhibitors of RIPK1 through the
drug screening from the library. Experiments showed that the
compounds selected by the above method have higher activity and
more excellent selectivity versus the known RIPK1 inhibitors in
the previous literature, and they subsequently identified another
compound, GSK2982772, by optimizing the former compound. It
possesses a similar chemical structure, but the pharmacokinetic
property of the compound is more prominent than that of GSK481.
The agent is recognized as a first-in-class inhibitor of RIP1 and
now is in clinic trials [64]. Hence, DNA-encoded library screening
would play a critical role in discovering the lead compounds.
3. Target identification

Degterev et al. [2] has reported that RIPK1 is the direct cellular
target of necrostatins. According to the previous studies, phos-
phorylation of RIPK1 requires its own kinase activity. Thereby, the
determination of phosphorylation of RIPK1 content can reflect the
activity of RIPK1. To identify the target of necrostatins, they chose
the 293 T cells transfected with pcDNA3-FLAG-RIPK1 vector
to express the protein, then anti-FLAG M2 agarose beads were
applied to enrich RIPK1, and the beads were incubated in the
reaction buffer with different concentrations of necrostatins.
Afterwards, immunoblotting was performed to obtain the RIPK1
band. Finally, the phosphorylation of RIPK1 band was visualized by
autoradiography (Fig. 3). The results showed that necrostatins can
inhibit the autophosphorylation of RIPK1 in a dose-dependent
fashion, which indicated that RIPK1 was the molecular target of
necrostatins. And they designed a molecular docking model of
RIPK1/Nec-1 complex using molecular modeling techniques. And
the result of the structure-activity relationship of Nec-1 further
suggested that RIPK1 was the direct target of Nec-1. Besides,



Table 1
Information of representative necroptosis inhibitors.

NO. Name Target EC50/IC50 Structure Ref

1 Compound1 MLKL (KD¼9.3 μM) IC50 o 0.05 μM (MDFs cell) [22]

2 6E11 RIPK1 (KD¼0.13 μM) EC50 ¼ 4.6 μM (Jurkat cell) [27]

3 7-Cl-O-Nec-1 RIPK1 (KD¼0.026 μM) EC50 ¼ 0.1 μM (Jurkat cell) [27]

4 Pazopanib RIPK1 (KD¼0.26 μM) EC50 ¼ 0.254 μM (Jurkat cell) [37]

5 Ponatinib RIPK1 (KD¼0.037 μM), EC50 ¼ 0.089 μM (Jurkat cell) [37]

RIPK3

6 GW440139B RIPK3 EC50 ¼ 0.0736 μM (NIH 3T3 cell) [38]

7 Necrostatin-1 RIPK1 (IC50 ¼2 μM) EC50 ¼ 0.494 μM (Jurkat cell) [39,42]
IC50 ¼ 1 μM (L929 cell)
IC50 ¼ 2 μM (U937 cell)

8 GSK963 RIPK1 (IC50 ¼0.029 μM) IC50 ¼ 0.001 μM (L929 cell) [42]

IC50 ¼ 0.004 μM (U937 cell)

9 ponatinib-Nec-1 (PN10) RIPK1 IC50 ¼ 0.01 μM (Jurkat cell) [50]

10 GSK481 RIPK1 (IC50 ¼0.01 μM) IC50 ¼ 0.01 μM (U937 cell) [63]

11 GSK2982772 RIPK1 (IC50 ¼0.001μM) IC50 ¼ 0.0063 μM (U937 cell) [64]

12 Necrosulfonamide
(NSA)

MLKL IC50 ¼ 0.124 μM (HT29 cell) [67]

13 Dabrafenib RIPK3 (KD¼0.0265 μM) EC50 ¼ 0.75 μM (HT29 cell) [68]

EC50 ¼ 0.65 μM (U937 cell)

14 GSK872 RIPK3 (IC50 ¼0.0018 μM) EC50 ¼ 0.7 μM (HT29 cell) [70]

EC50 ¼ 0.12 μM (PECs cell)

P. Pan et al. / Journal of Pharmaceutical Analysis 9 (2019) 71–7674



Fig. 3. The experimental workflow of cell-based RIP1 kinase activity assay for small molecules.
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Ren et al. [65] discovered a new compound via screening the li-
brary and made an optimization to get higher efficiency and se-
lectivity. To identify the target of compound, they monitored the
phosphorylation of RIPK1 and RIPK3 through western blotting and
evaluated the activities of RIPK1 and RIPK3 by ADP-Glo assay. The
results showed that RIPK1 was the target of the novel compound.
Martens et al. [66] found that the anti-career drug sorafenib can
inhibit the TNF-induced cell death at a lower concentration with
non-toxic effect. To identify the target of sorafenib, they applied
the biotinylated sorafenib to make a pull-down experiment. First,
different concentrations of biotinylated sorafenib were pre-
incubated with streptavidin agarose beads respectively, and then
the beads were washed with lysis buffer twice. After that, the
beads were incubated with the cell lysates. After incubation, the
2 � Laemli buffer was used to gather the samples, then the sam-
ples were boiled and analyzed via immunoblotting with the in-
dicated antibodies. The results showed that sorafenib can inhibit
the activity of RIPK1 and RIPK3 with a dose-dependent effect.
Through the similar method, Sun et al. [67] confirmed that the
direct target of necrosulfonamide (NSA) was MLKL, one of the
critical signaling proteins in the necroptosis process. In addition, Li
et al. [43] found that chaperone heat shock protein (HSP90) in-
hibited RIPK3-dependent necroptosis and was the cellular target
of natural product KA.

In addition, the research of Li et al. [68] identified dabrafenib,
an anticancer drug used in the clinic, was a new inhibitor of RIPK3.
They established a non-radioactive luminescent kinase assay to
screen the inhibitors of RIPK3, and the surface plasmon resonance
(SPR) assay was used to demonstrate that dabrafenib can bind to
the RIPK3. The recombinant RIPK3 was immobilized to the CM5
chip, then the drug dabrafenib was flowed into the sensor chip
with a rate of 30 μL/min and used buffer to make it dissociation.
4. Conclusion and outlook

Researchers find that necroptosis is involved in multiple in-
flammatory diseases, which carries a new therapeutic direction.
And most of these diseases exist in a substantial number of pa-
tients, so big pharma and labs concentrate mainly on the discovery
of the inhibitors of RIPK1, RIPK3 and MLKL to suppress the process
of necroptosis [69]. Unfortunately, none of the compounds dis-
covered in recent decades meet the expectation of clinical
application, and the limitations of these compounds impel
researchers to continuously screen new drugs with higher
selectivity and potency. Furthermore, the molecular mechanism of
necroptosis is not fully understood. Thus, we may explore novel
key transducers of necroptosis during the study period and screen
the corresponding compounds to block the necroptosis pathway,
as well as to alleviate diseases associated with cell necrosis.
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