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Abstract: In resource-limited settings, where pneumocystosis in immunocompromised patients is
infrequently observed, cost-efficient, reliable, and sensitive approaches for the diagnostic identifica-
tion of Pneumocystis jirovecii in human tissue samples are desirable. Here, an in-house fluorescence
in situ hybridization assay was comparatively evaluated against Grocott’s staining as a reference
standard with 30 paraffin-embedded tissue samples as well as against in-house real-time PCR with
30 respiratory secretions from immunocompromised patients with clinical suspicion of pneumocysto-
sis. All pneumocystosis patients included in the study suffered from HIV/AIDS. Compared with
Grocott’s staining as the reference standard, sensitivity of the FISH assay was 100% (13/13), speci-
ficity was 41% (7/17), and the overall concordance was 66.7% with tissue samples. With respiratory
specimens, sensitivity was 83.3% (10/12), specificity was 100% (18/18), and the overall concordance
was 93.3% as compared with real-time PCR. It remained unresolved to which proportions sensitivity
limitations of Grocott’s staining or autofluorescence phenomena affecting the FISH assay accounted
for the recorded reduced specificity with the tissue samples. The assessment confirmed Pneumocystis
FISH in lung tissue as a highly sensitive screening approach; however, dissatisfying specificity in
paraffin-embedded biopsies calls for confirmatory testing with other techniques in case of positive
FISH screening results. In respiratory secretions, acceptable sensitivity and excellent specificity were
demonstrated for the diagnostic application of the P. jirovecii-specific FISH assay.

Keywords: paraffin-embedded tissue; FISH; Pneumocystis jirovecii; diagnosis; test evaluation;
Grocott’s staining; real-time PCR; bronchoalveolar lavage; sputum

1. Introduction

Pneumocystosis is a life-threatening opportunistic infection that affects immuno-
compromised patients, especially those within the acquired immunodeficiency syndrome
(AIDS) stage of the human immunodeficiency virus (HIV) infection, but also those with
other immunocompromising conditions like haematological malignancies, inflammatory
disease, and steroid therapy [1,2]. Due to a particularly high risk for patients with CD-4
lymphocyte counts < 200/µL, trimethoprim-sulfamethoxazole (TMP/SMX) prophylaxis
is recommended for those individuals [3]. TMP/SMX is also the therapeutic drug of first
choice [4].
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Focusing on the aetiology of the disease, pneumocystosis is caused by the fungal
pathogen Pneumocystis (P.) jirovecii, an ascomycete that has an affinity for the pulmonary path-
ways, which adheres to the wall of the pneumocytes and induces infection there [5,6]. This
organism is characterized by not being cultivable under diagnostic routine conditions, a fact
that makes its detection and identification difficult [7], so alternative diagnostic approaches [8]
including indirect methods like (1-3)-β-D-glucan detection [9] have been suggested.

In short, the diagnosis of pneumocystosis is essentially based on known host factors,
in particular immunosuppression [1,2], next to clinical symptoms, radiological images,
biochemical and antigenic parameters, as well as on histopathological stains including
immunostaining [8,9]. Due to the resulting complex diagnostic algorithms which are based
on composite reference standards rather than on individual diagnostic results in a defined
diagnostic specimen, it is important to stress that it is challenging to virtually impossible
to definitely conclude on the presence or absence of P. jirovecii just based on an individual
analysed sample material.

To facilitate the diagnosis of other fungal diseases, thorough evaluations of the molec-
ular tool fluorescence in situ hybridization (FISH) for the detection and identification of
pathogenic fungi in samples from patients with suspected fungal infections were con-
ducted. Several studies and reviews suggested a considerable potential of this method as
an important add-on for a fast, sensitive, and specific diagnosis of fungal diseases [10–31].
Early diagnosis and specific treatment of fungal infections is fundamental to improve the
prognosis of patients, or even to avoid the mortality caused by such infections. In a recent
study, FISH was tested in hospitalized patients with candidiasis, leading to considerable
improvement in the diagnosis and specific treatment of this infection. The time of identifi-
cation, time of treatment with the specific antifungal drug, length of stay of the patients in
hospital, mortality, and cost per patient including diagnosis and treatment were analysed.
With the implementation of FISH, it was observed that the identification time took four
hours, while the conventional method required four days. Considering this, there were
savings per patient of $415 and decreased mortality [21].

In the present study, the use of an in-house P. jirovecii-specific FISH probe was evalu-
ated by performing tests with paraffin-embedded samples containing lung biopsies with
positive and negative results for pneumocystosis obtained by conventional methods used
in routine. Further, evaluation of P. jirovecii FISH was conducted with respiratory secretions
like sputum and bronchoalveolar lavage with real-time PCR as the reference standard. By
doing so, it was assessed whether FISH may also contribute to facilitating routine diagnosis
of P. jirovecii. Of note, the included pneumocystosis patients suffered from HIV/AIDS as
the underlying disease.

2. Materials and Methods
2.1. Paraffin-Embedded Tissue Samples

The P. jirovecii-specific fluorescence in situ hybridization (FISH) assay was evaluated
with paraffin blocks containing lung biopsies from patients diagnosed with HIV/AIDS
and pneumocystosis as cause of death and also from patients with other underlying
pulmonary diseases. All samples were taken at the Fundação de Medicina Tropical Heitor
Vieira Dourado (FMT-HVD) between 1996 and 2013. In total, the sample set comprised
13 histologically confirmed cases of pneumocystosis as causes of death of the patients next
to 17 cases who had other fatal pulmonary conditions. For the latter population, HIV status
was not documented. Only tissue blocks comprising post-mortally taken lung biopsies
were included in the assessment. In order to prepare them for FISH and histological
analyses, the blocks were cut in a microtome (MicroTec 4050/USA) to obtain successive,
thin, uniform cuts of approximately 5 to 7 microns. After that, the sections were fixed on
slides pre-treated with polylisin and labelled with the information on the year of sampling
as well as on the necropsy number. After all the slides were ready for further sample
processing, neighboring slides of the ones chosen for FISH were subjected to Gomori
Grocott’s staining, which is a specific histological staining technique for fungi including
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Pneumocystis spp. [32]. In this study, Grocott’s staining [33] was performed as a reference
standard in order to define positive and negative samples. Prior to either FISH or Grocott’s
staining, all slides were deparaffinized first in two xylene immersions lasting 10 min each.
Subsequently, deparaffinization was proceeded by immersions in alcohol sequences with
different concentrations (100%, 80%, and 70%) for 10 min each, after which the slides were
subjected to drying at room temperature.

2.2. Deep Airway Secretions

In order to evaluate the P. jirovecii probe for FISH with respiratory secretions, a total of
30 samples including sputum (n = 17, no hints for sputum induction on the sample accom-
panying sheets) and bronchoalveolar lavage (BAL, n = 13) were obtained from HIV/AIDS
patients admitted to the FMT-HVD presenting symptoms suggestive of pneumocystosis
between October 2015 and June 2016. Details on the symptoms of the HIV/AIDS patients
leading to the clinical suspicion of pneumocystosis were not specifically reported to the
laboratory but usually comprise radiological signs of interstitial pneumonia and suggestive
laboratory findings like increased lactate dehydrogenase levels in severely immunosup-
pressed patients [8,9]. After arrival at the mycology laboratory of this institution, the
specimens were centrifuged at 2000 rpm (rounds per minute) for 10 min using an Excelsa
Baby II 206-R Ind. Brasileira centrifuge (Fanem, Cumbica, Guarulhos, Brazil). Subsequently,
the samples were smeared on slides for microscopical assessment, resulting in circular
smears of approximately 1.5 cm in diameter. Afterwards, the slides were dried at room
temperature and immersed in sequences of alcohol at descending concentrations (100%,
80%, and 70%) for 10 min each. Then, the slides were once more dried at room temperature
prior to further FISH assessment.

As a comparative reference standard, the respiratory samples were assessed by in-
house real-time PCR for P. jirovecii applying a recently described protocol [34]. In detail, the
PCR was run as a Sybr Green-based assay using the forward primer 5′-GATCCGAGACATG
GTCGCTATT-3′ and the reverse primer 5′-TTCAACCTCCTTCATGGAAACAG-3′ but no
hybridization probe in contrast to the described protocol. Melting temperature within the
76.3 ◦C ± 0.3 ◦C range was expected in this assay and the amplicons were additionally
visualized in agarose gels. In a previous multicentric comparison based on standardized
samples [34], the hybridization probe version of the applied assay showed acceptable
sensitivity and high specificity, thus confirming its general appropriateness for diagnos-
tic purposes.

2.3. In Silico Evaluation of the FISH Probe

The in silico evaluation of the assessed FISH probe was performed with the probeCheck
software using the sequence collection SILVA [35,36]. Applying the internet-based soft-
ware tool “Oligo Calc: Oligonucleotide Properties Calculator” (http://biotools.nubic.
northwestern.edu/OligoCalc.html, last accessed on 21 December 2021), melting tempera-
ture (Tm), GC content, and potential tendencies towards hairpin formation of the probe
were checked. In line with previous recommendations [37,38], a variable region of highly
abundant ribosomal RNA with 20 and 30 base pairs length was chosen as the target for the
FISH probe; because such probe lengths best combine sensitivity and specificity with easy
penetration into the cells.

2.4. P. jirovecii FISH-Protocol with Paraffin-Embedded Tissue Samples

The hybridization mix was prepared as follows. In a microtube, 5 ng of the P. jirovecii-
specific FISH probe PJ1 (5′-GGCTTCATGCCAACAGTCC-3′, conjugated to a Cy5 fluo-
rophore) and of the previously described Cy3-conjugated pan-eucaryotic probe [37] each
were added to 10 µL hybridization buffer containing 30% formamide as optimized previ-
ously. In detail, the hybridization buffer composition was as follows: 0.9 M NaCl, 0.01%
w/v SDS, 20 mM Tris-HCl pH 7.2, 30% formamide, and 1 µM of probe. For the FISH
reaction, the slides were incubated for 2 h at 55 ◦C in line with the probes’ calculated
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melting temperature (see “Results” chapter for details). Afterwards, excess probe was
removed by immersing the slides for 20 min in washing solution (5 mM Tris, 15 mM NaCl
and 0.1% Triton X-100) at 55 ◦C as described [20]. Subsequently, the slides were counter-
stained with DAPI (4′6′-diamidino-2-phenylindol), which is specific for nucleic acids. After
that, the excess dye was removed again in a washing solution, and finally, the slides were
air-dried at room temperature and mounted on a glass slide. In detail, the slides were
mounted with Vectashield solution (Vector, Burlingame, CA, USA) and examined with a
Zeiss Axioskop 40 microscope (Zeiss, Jena, Germany) equipped with a standard filter set as
detailed elsewhere [39].

2.5. P. jirovecii FISH Protocol with Deep Airway Secretions

The FISH assay was performed as described by [40]. Slides containing fixed sample
materials after preparation as described above were overlain with probe-containing hy-
bridization buffer (0.9 M NaCl, 0.01% w/v SDS, 20 mM Tris-HCl, pH 7.2, 30% formamide,
and 1 µM Cy3-labeled P. jirovecii-specific FISH probe PJ1 probe) and incubated at 55 ◦C for
2 h. After this period, the slides were washed using washing buffer (20 mM Tris-HCl, pH
8.0, 0.01% w/v SDS, 5 mM EDTA, and 150 mM NaCl) for 20 min. In addition to the specific
staining with the probe, all samples were counterstained with DAPI (4′,6-diamidino-2-
phenylindole-dihydrochloride). The stained slides were dried at 37 ◦C for 20 min and
afterwards examined with a Zeiss Axioskop 40 microscope (Zeiss, Jena, Germany).

2.6. Ethics

Ethical clearance for the anonymized use of the sample materials for the applied test
comparison was provided by the Human Research Ethics Committee of the Dr. Heitor Vieira
Dourado Tropical Medicine Foundation without requirement for informed consent. The
reference numbers for the ethical clearances were 50817615.2.0000.0005 for the assessment
of the respiratory samples and 23715813.80000.0005 for the assessments of the post-mortally
taken lung biopsies. The study was performed in line with requirements of the Declaration
of Helsinki and all its amendments.

3. Results
3.1. In Silico Evaluation

In silico evaluation of the applied FISH probe PJ1 indicated 100% matching with the
18S rRNA gene of P. jirovecii (GenBank accession number AB266392). The also observed
perfect matching with respective sequences of the species P. murina (GenBank accession
number AY532651), P. wakefieldiae (GenBank accession number L27658), and P. carinii
(GenBank accession numbers S83267 and X12708) were considered as clinically irrelevant
due to the pronounced host-specificity of Pneumocystis spp. [4,7]. Assessment with the
internet-based software tool “Oligo Calc: Oligonucleotide Properties Calculator” (http:
//biotools.nubic.northwestern.edu/OligoCalc.html, last accessed on 21 December 2021)
indicated a 58% GC-proportion as well as a salt-adjusted melting temperature of 60 ◦C and
excluded potential hairpin formation in silico.

3.2. In Vitro Evaluation with Paraffin-Embedded Tissue Samples

After in-silico evaluation, validation of P. jirovecii FISH with paraffin-embedded tissue
samples was performed as follows. In order to detect P. jirovecii in paraffin-embedded tissue
blocks containing lung biopsies, FISH reactions applying the PJ1 probe were compared
to traditional histological staining. The latter was applied as the reference method in
this assessment, defining the positive and negative controls for the evaluation. In detail,
histological sections of the same block were investigated using Grocott’s staining.

As indicated in Table 1, which is the cross-table indicating co-positivity and co-
negativity of FISH as competitor approach and histopathology applying Grocott’s staining
as reference standard for the detection of P. jirovecii in paraffin-embedded lung tissue

http://biotools.nubic.northwestern.edu/OligoCalc.html
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(Figure 1), the FISH assay applying the PJ1 probe achieved 100% sensitivity and 41%
specificity with an overall concordance of 66.7% (Table 1).

Table 1. Comparison of Grocott’s staining results and FISH staining results with paraffin-embedded
tissues. Grocott’s staining was used as the reference standard.

Grocott’s Staining

Positive Negative
FISH Positive 13 10 23

Negative 0 7 7
13 17 30

Concordance 66.7%
Sensitivity 100%
Specificity 41%
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Figure 1. FISH staining results in paraffin-embedded tissue applying paneukayotic and P. jirovecii-
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Figure 1. FISH staining results in paraffin-embedded tissue applying paneukayotic and P. jirovecii-
specific FISH probe. Magnification 1000×. No size band available, so the 5–8 µm size of the Pneu-
mocystis cysts serves as a size standard. The positive sample row—(a–d)—shows the staining with
(a) Grocott’s stain (counterstained with Goldner’s stain III), (b) the DAPI dye visualized in blue,
(c) the pan-eukaryotic probe visualized in red, and (d) the P. jirovecii probe visualized in green,
respectively. Subsequently, the negative sample row—(e,f)—shows the staining (e) with the DAPI
dye and (f) the P. jirovecii probe, respectively. On note, only cysts were seen.

3.3. In Vitro Evaluation with Respiratory Secretions

For the evaluation of P. jirovecii FISH with 30 respiratory secretions obtained from HIV-
/AIDS patients (Figure 2) with suspicion of P. jirovecii infections, in house real-time PCR
was used as the diagnostic reference standard. For all PCR-positive samples, the recorded
cycle threshold (Ct) values were in a robust 30.6 ± 0.6 cycle range with melting curves
in the expected temperature spectrum as well as with visible bands in agarose gels. A
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positive result was never based on the amplification curve and the Ct value alone, because
non-specific SybrGreen signals were observed at a mean Ct value of 34.8. So, assessments
of melting curves and agarose gels were always included in the diagnostic interpretation.
Compared to real-time PCR, sensitivity of FISH was 83.3% with 100% specificity and 93.3%
overall concordance of real-time PCR and FISH. Details are provided in Table 2.
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Figure 2. FISH staining results in respiratory secretions with sputum and BAL (bronchoalveolar
lavage) samples. Magnification 1000×. No size band available, so the 5–8 µm size of the Pneumocystis
cysts serves as a size standard. (a) Positive sputum sample, stained with the probe JP1 targeting
P. jirovecii, visualized in green. (b) Positive BAL sample, stained with the probe JP1 targeting P. jirovecii,
visualized in green. (c) Negative sputum sample. Of note, Grocott’s staining was not applied with
respiratory samples in this study and only cysts were seen.

Table 2. Comparison of in-house real-time PCR results and FISH staining results with respiratory
secretion. Real-time PCR was used as the reference standard.

In-House Real-Time PCR

Positive Negative
FISH Positive 10 0 10

Negative 2 18 20
12 18 30

Concordance 93.3%
Sensitivity 83.3%
Specificity 100%

Of note, the degree of autofluorescence as well as the contrast of the microscopic
images obtained varied depending on the fluorophore applied. Thereby, the cyanine
fluorophore Cy3 provided clearer results with less autofluorescence compared with 6-
carboxyfluoresceine (6-FAM) (Figure 3).
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Figure 3. FISH staining results with and without counterstaining. Magnification 1000×. No size
band available, so the 5–8 µm size of the Pneumocystis cysts serves as a size standard. The figure
components (a–c) show the identical sample with (a) calcofluor fluorescent staining visualized in
blue, (b) P. jirovecii FISH staining with a fluorescein-labelled probe visualized in green and (c) an
overlay of both staining approaches in order to show the matching. (d) P. jirovecii FISH alone with a
probe labelled with the cyanine fluorophore Cy3 visualized in red. The figure components (e,f) show
the identical sample with (e) staining with the DNA stain DAPI visualized in blue and (f) P. jirovecii
FISH staining with a Cy3-labelled probe visualized in red. The corresponding position of P. jirovecii
DNA and P. jirovecii-specific FISH-staining of the cells’ cytoplasm suggest specific staining and not
mere autofluorescence. Of note, only cysts were seen.

4. Discussion

The study confirmed the suitability of fluorescence in situ hybridization (FISH) for the
identification of P. jirovecii both in paraffin-embedded tissue and in respiratory secretions as
a rapid, easy-to-perform, and cost-efficient diagnostic procedure for resource-limited tropi-
cal endemicity settings. With focus on both types of sample materials and the respective
applied reference methods, however, the results call for a more differentiated discussion.

Although the study successfully provided a proof-of-principle for the sensitive FISH-
based detection of P. jirovecii in lung tissue, the dissatisfying specificity of the assay with
paraffin-embedded tissue is bothersome and requires further interpretation. As known
from previous assessments, the distribution of Pneumocystis cells in different slices may
have been uneven as observed for other eucaryotic pathogens in tissue samples [40–42].
Second, various factors affect the visibility of target structures in histological slides [43].
Third, the diagnostic accuracy of Grocott’s staining for the identification of P. jirovecii is
imperfect as repeatedly shown [32,44–52]. In detail, both sensitivity and specificity of
Grocott’s staining for the diagnostic identification of P. jirovecii is very different from 100%.
In a veterinary medical study comparing conventional in situ hybridization (ISH) with
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Grocott’s staining in lung tissue specimens of pigs, Grocott’s staining had missed 12/32
(37.5%) Pneumocystis spp.-positive samples [53], challenging its suitability as a reference
standard or even a “gold standard”. For the latter, perfect diagnostic accuracy is assumed
by definition [54], a condition that can rarely be fulfilled by any diagnostic assay.

On the other hand, it remains uncertain whether sensitivity problems of Grocott’s
staining alone may have accounted for a FISH specificity of as low as 41% as compared with
the reference standard. Therefore, it is an undeniable limitation of the study that alternative
diagnostic approaches other than Grocott’s staining like antibody-staining [44,47] as well
as modern molecular approaches [55,56] or flow-cytometry from concomitantly taken
respiratory samples [57] were not applied to support the decision on the “true” P. jirovecii
infection state of each assessed sample, as specimens different from paraffin-embedded
tissues had not been taken during the autopsies. Unfortunately, the real-time PCR assay
for P. jirovecii, which was applied with the assessed respiratory secretions taken from other
patients in this study, was not evaluated with paraffin-embedded tissues. As formalin-fixed,
paraffin embedded tissues are, however, pretty tough challenges for pathogen-specific
nucleic acid amplification techniques due to nucleic acid alterations like, e.g., formalin-
induced deamination of cytosine to uracil, single strand breaks, etc. as extensively discussed
elsewhere [40,41,58–61], we abstained from applying the Sybr Green PCR approach with
such difficult specimens.

Autofluorescence, which is a considerable challenge for FISH with more complex sam-
ple matrices as summarized recently [14], may be an alternative explanation for the recorded
poor specificity. Admittedly, tissue specimens are pretty tough materials for FISH regarding
a variety of interfering factors affecting the diagnostic accuracy as detailed elsewhere [62].
To the authors’ experience, visualization of staining with the FITC/FAM (fluorescein isoth-
iocyanate/fluorescein amidite) dyes is particularly prone to autofluorescence, while this
phenomenon is less pronounced e.g., with cyanine dyes like the fluorophores Cy3 and
Cy5 which were applied with the paraffin-embedded tissues. Unfortunately, potentially
non-specific reactions in the tissue samples were observed in spite of the use of the Cy5
channel. As also experienced by the authors in previous attempts (unpublished data),
sample preparation with osmium tetroxide, which has even been discussed for use as a
weapon due to its very high toxicity [63], may reduce the autofluorescence phenomenon at
least in respiratory samples. This procedure, however, was not attempted with the tissue
samples, because the substance was considered as too toxic for use in diagnostic routine
settings. Further, nonsense probes like NON EUB338 [14,64] may be applied to at least
control autofluorescence in FISH, an approach which was not chosen in this study but
should be considered in case of diagnostic applications of the described FISH assay.

Interestingly, however, no non-specific P. jirovecii FISH signals were observed within
the respiratory samples, which were processed as suggested previously [65]. This ob-
servation does not exclude autofluorescence in the tissue samples by itself, as both the
procedures of the sample preparation as well as the sample types themselves were dif-
ferent, but further reduces its likeliness. So, the excellent specificity of P. jirovecii FISH in
respiratory specimens makes apparently reduced specificity of FISH in paraffin-embedded
tissue just due to insufficient sensitivity of Grocott’s staining even more likely.

Compared to in-house real-time PCR, sensitivity of P. jirovecii FISH from respiratory
secretions was slightly reduced. This is not surprising, as high sensitivity of the applied
in-house real-time PCR is known from a previous multicentric test comparison study [34],
while FISH has similar detection limits as other microscopical approaches [14]. Of note,
the very high concordance of real-time PCR and FISH results together with the low overall
sample count made a meaningful comparison of diagnostic accuracy in bronchoalveolar
lavage and sputum unfeasible. Unfortunately, Grocott’s staining from the respiratory sam-
ples had not been performed. Otherwise, differences in the sensitivity of Grocott’s staining
and of FISH for the detection of P. jirovecii in respiratory samples might have been assessed
in comparison to real-time PCR as well. Of note, however, previous assessments have even
suggested a potentially too high sensitivity of P. jirovecii-specific nucleic acid amplification
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assays from the clinical point of view, making the discrimination of clinically apparent
infection and harmless colonization challenging. In more detail, high rates of P. jirovecii
colonization are well known from autopsy materials from the lungs of deceased individuals
without P. jirovecii-associated pneumonia and even without signs of pulmonary inflamma-
tion [66–68], so the clinical interpretation of positive P. jirovecii PCR-results remains an issue
of ongoing academic debate [68,69] and should always consider other clinical, radiological,
and laboratory findings as well.

The study has a number of limitations. First of all, available tissue sample counts
for the assessment were limited due to the low frequency of fatal pneumocystosis in spite
of collecting tissue samples about several years. Second, the applied reference standard,
Grocott’s staining, is associated with limited sensitivity for the diagnosis of Pneumocystis
spp. in tissue as, e.g., suggested by a previous ISH-based evaluation with pig tissue [53], so
it cannot be excluded that the recorded limited specificity of P. jirovecii FISH with tissue
samples was at least partially due to sensitivity limitations of Grocott’s staining. On the
other hand, other specificity data on Pneumocystis-FISH do not exist. So, due to the lacking
application of another reference standard, the study results allow the demonstration of
the specificity of Pneumocystis FISH in comparison to Grocott’s staining only but they do
not allow a final evaluation of the true specificity of Pneumocystis FISH in tissue. Third,
additional diagnostic approaches to confirm or exclude the abundance of P. jirovecii within
the paraffin-embedded tissue samples were not conducted. Fourth, attempts to further
reduce potential autofluorescence within the samples applying toxic chemicals were not
performed the same as the control of autofluorescence by the application of nonsense
FISH probes. Fifth, different reference standards were applied for the assessment with
paraffin-embedded tissue and the assessment with respiratory secretions, making the re-
sults of both subgroup analyses within the study not directly comparable. Sixth, due to
funding constraints for the study, the real-time PCR assay had to be run as a less expensive
Sybr Green-based approach instead of using a hybridization probe like in its evaluation
study [34], so it can only be speculated whether its test characteristics were still the same
with this modification. Seventh, only very restricted clinical information was available to
our laboratory, making the interpretation regarding the individual etiological relevance
of detected P. jirovecii cysts and pathogen DNA challenging. A small range of measured
cycle threshold values of PCR-positive samples and lacking absolute quantification in
real-time PCR did not allow a quantification-based estimation of etiological relevance,
too. Eighth, only pneumocystosis patients with HIV/AIDS as underlying disease were
included, which limits the general interpretability of the diagnostic accuracy due to re-
ported differing pathogen loads in non-HIV-infected pneumocystosis patients [1,2]. Ninth,
resource limitations affecting the quality of the available microscopy and photography
equipment resulted in very limited quality of the photo documentation for this study. On
the other hand, the robust FISH approach allowed diagnostic interpretation in spite of
the use of simple microscopic equipment, which makes the assay suitable for application
in resource-limited tropical settings. Tenth, alternative innovative molecular diagnostic
approaches like the RNAscope technique were not included in the assessment, so broader
methodical evaluations should be considered for the future.

5. Conclusions

In conclusion and in spite of the mentioned limitations, high sensitivity of FISH
for the screening for P. jirovecii in lung tissue samples and quite acceptable sensitivity
in respiratory samples were demonstrated. The recorded dissatisfying specificity of the
FISH assay with tissue samples compared with Grocott’s staining, however, suggests
confirmatory testing in order to confirm or exclude pneumocystosis in case of positive FISH-
based screening results with such sample materials. For example, molecular assessments
from respiratory secretions may be considered. Excellent specificity of P. jirovecii-FISH
with respiratory samples, in contrast, makes the limited sensitivity of Grocott’s staining
compared to P. jirovecii FISH an alternative explanation for the seemingly poor specificity
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of the FISH assay with paraffin-embedded tissue samples. Future studies should focus
on the clinical interpretation of diagnostic P. jirovecii FISH and its positive and negative
predictive values for the discrimination of P. jirovecii-associated pneumonia in contrast to
harmless colonization of the airways with Pneumocystis spp. cells. This clinically important
topic was beyond the scope of the presented technical evaluation approach.
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