
REVIEW
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ABSTRACT
In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase
signaling in the formation and dissemination of a range of cancers. Recently next generation
sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects
of ablating genes encoding Rho GTPases and their regulators in mouse models, or through
pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute
an effective treatment. In this review we will explore the various ways in which Rho signaling can be
deregulated in human cancers.
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Introduction

Rho GTPases bind to a wide range of effector proteins
and play central roles in the regulation of the actin and
microtubule cytoskeletons and gene transcription.1

Through these effects, Rho family proteins influence
many normal cellular functions such as adhesion, polar-
ity, motility and invasion, as well as cell cycle progression
and survival.2,3 Rho, Rac and Cdc42 were initially charac-
terized as regulators of the actin cytoskeleton1 with a
typical pattern being Rho activation leading to the forma-
tion of contractile actin, Rac activation controlling periph-
eral actin structures such as lamellipodia and membrane
ruffles, and Cdc42 actin structures such as filopodia.1

However, it has long been clear that these proteins have
roles far beyond direct regulation of the actin cytoskele-
ton. For instance, Cdc42 is a master regulator of polarity
in organisms from yeast to mammals, while Rac regulates
phagocytosis in the immune system, including production
of reactive oxygen species.1,4 They are involved in many
essential physiological processes including embryonic
development, neuronal differentiation and neurite forma-
tion and maintenance of stem cells in the bone marrow,
skin and intestine.2,3,5 Conversely, deregulation of Rho
GTPases is linked to many of the “hallmarks of cancer,”
including oncogenic transformation, cell survival and
tumor metabolism as well as metastasis (reviewed in ref.
2). While some consequences of deregulated Rho family
signaling can be considered pro-tumorigenic, a number of

cellular processes stimulated by Rho family proteins—
such as the role of Rac1 in apoptosis and maintenance of
apicobasal polarity—can be considered to antagonize
tumor formation and progression.6 The anti-tumorigenic
effects of Rho family proteins must be sufficiently differ-
entiated from those pro-oncogenic functions to avoid
undermining the therapeutic benefits to be achieved by
pharmacologically antagonizing Rho GTPases.

The Rho GTPase cycle

Rho GTPases are molecular switches which cycle
between an inactive GDP-bound form and an active
GTP-bound form (see Fig. 1). The GTPase cycle is
largely regulated by guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins (GAPs). 7 GEFs
displace the GDP bound in the active site allowing GTP
binding. GTP binding alters the conformation of the
GTPase, allowing it to interact with downstream effector
molecules (Fig. 1).7 GEFs have also been thought to con-
tribute to signaling specificity through scaffolding
upstream and downstream interactors;8 this was recently
demonstrated with the GEFs Tiam1 and P-Rex1 driving
different behaviors via the same small GTPase, Rac1.9

Conversely, GAPs activate the weak intrinsic GTPase
activity of Rho proteins leading to the hydrolysis of
bound GTP, switching the GTPase to an inactive confor-
mation (Fig. 1).7 The abundance of GEFs (at least 80)
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and GAPs (over 70) indicates the importance of tightly
controlling Rho GTPase signaling.

Guanine nucleotide dissociation inhibitors (GDIs) are
a third class of regulators of Rho proteins. They sequester
inactive GTPases in the cytoplasm by masking their C-
terminal lipid moieties that mediate plasma membrane
localization, which can inhibit their activation7 (Fig. 1).
They can also protect GTPases from degradation10 and
also have more subtle effects, such as directing activation
of Rho GTPases to specific membrane compartments.11

Rho GTPases are also known to be modulated by a host
of post-translational modifications, including phosphor-
ylation, ubiquitylation, SUMOylation, ADP-ribosylation,
glycosylation, adenylation, and transglutamination/dea-
midation. Given the wide variety of these modifications,

detailed analysis is outside the scope of this review; for
more details see refs. 12-14.

At the simplest conceptual level, anything which
increases the abundance of the active form should
increase signaling, while anything decreasing the abun-
dance of the active state, or actively stabilizing the
inactive state, should decrease signaling. Disruption of
this balance—by direct activation of Rho GTPases or
indirectly through changes in regulators as described
above—is increasingly being linked to oncogenesis (see
Fig. 2). In this review we will focus on the variety of
ways in which Rho signaling has been shown to be dis-
rupted in cancer: alterations in protein levels of the
GTPases, disruption to regulators of GTPases, changes
in post-translational modifications of GTPases and

Figure 1. The Rho GTPase cycle GTPase regulation occurs in a number of distinct stages. Guanine nucleotide exchange factors (GEFs) are
able to bind to inactive GTPases, displacing the bound GDP, which is then replaced by GTP from the cytoplasm. In their active form Rho
GTPases bind to a wide variety of effectors, mediating a large number of cellular processes, including migration, cell-cell adhesion, tran-
scription and proliferation. GEFs also may act to direct signaling by scaffolding particular effectors. To end signaling, GTPase activating
proteins (GAPs) bind to the GTPase and enhance their weak intrinsic GTPase activity. Bound GTP is converted to GDP, changing the con-
formation of the GTPase and rendering it unable to bind effector proteins. Inactive GTPases are mainly found in the cytoplasm, where
they can be degraded, or stabilised by binding to Rho GDIs, which act as molecular chaperones and prevent activation by sequestering
the GTPases away from GEFs.
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finally we review the emerging literature on direct
mutation of GTPases.

Copy number alterations and misexpression of
Rho GTPases in cancer

Before the finding of direct mutations of Rho
GTPases, the main way they were thought to be mis-
regulated in cancer was through changes in expres-
sion levels (see Fig. 2). Increased expression of Rho
proteins is often associated with tumor formation,
growth and progression, an indication of a positive
contribution of increased Rho GTPase activity to
tumorigenesis.2 The interesting exception is RhoB
which, as discussed below, appears to more com-
monly play a tumor suppressor role, and is accord-
ingly found at reduced levels in tumor samples.

Rac1 has been found to be overexpressed in testicular,
breast and prostate cancer, as well as gastric and lung
cancers.15-19 In recent studies, its overexpression in gas-
tric cancer was correlated with the aggressiveness of the
tumors, greater invasion and lymph node metastasis, as
well as poor patient survival.19 Rac1 is also overexpressed
in acute myeloid leukemia cells, where it enhances

migration and cell growth, and is linked to
chemoresistance.20

Animal experiments support a requirement for Rac1
in tumor formation and growth in many different tumor
models. Mice with Rac1 deletion specifically from kerati-
nocytes are resistant to developing Ras-induced skin can-
cer21 while those with a Rac1 deletion in pancreatic
progenitor cells are protected from development of pan-
creatic ductal adenocarcinoma (PDAC).22 Rac1 is also
required for K-Ras-induced lung tumors in mice,23 and
cooperates with APC loss in a mouse model of colorectal
cancer, driving a stem-cell like signature in the develop-
ing cancer cells.24 Another recent study showed that
Rac1 affects stem cell behavior to drive oncogenic pro-
gression, by reducing the differentiation of tumor cells.25

A splice variant of Rac1, Rac1b, was found at elevated
levels in colon and breast tumors.26 Rac1b includes an
additional 14 amino acids compared with wild-type Rac1
and it is mainly found in its active GTP-bound state.
Rac1b has reduced affinity for GDIs, meaning it is not
sequestered in the cytoplasm, which could explain its
increased activity and ability for cellular transforma-
tion.27 Rac1b alone is insufficient to drive tumor forma-
tion in a non-small cell lung cancer mouse model, but it
enhances the activity of K-ras mutations.28 It is highly

Figure 2. Rho GTPase signaling can be deregulated in cancer by a wide range of mechanisms. (1) Evidence is emerging of many direct
mutations of GTPases, such as the Rac1 P29S mutation which is a novel driver in melanoma. (2) GEFs are found overexpressed in many
different cancer types, consistent with aberrant Rho GTPase signaling driving transformation and oncogenic progression. (3) Negative
regulators of Rho GTPases, such as Rho GAPs and Rho GDIs, have been shown to be tumour suppressors, and lost in human cancers.
(4) GTPases are often found to be overexpressed in human cancers, where they drive a variety of oncogenic processes. (5) Post-transla-
tional modifications of GTPases, such as changes in ubiquitylation or sumoylation, can alter their signaling. (6) The Rac1b splice form of
Rac1 is found in multiple cancers including breast, colon and lung.
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expressed in stages 1 and 2 of human lung adenocarci-
noma, making it a candidate target for preventing pro-
gression to more aggressive stages.29 Rac1b is also
overexpressed in papillary thyroid carcinoma (PTC),
where it is associated with the BRAF V600E mutations
and subsequently with poor clinical outcomes.30

Rac2, which shares a high degree of sequence conser-
vation with Rac1, is restricted to expression in the hae-
matapoetic cell lineage. Although no aberrations of Rac2
have been directly linked to oncogenesis, Rac2 is emerg-
ing as a therapeutic target, as abrogation of Rac2 signal-
ing slows the growth of AML and CML tumors
(reviewed in ref. 31). Rac3 activity was found to be
increased in highly proliferative breast cancer cell lines,
although this does not correspond to increases at the
protein level32 suggesting other mechanisms of
activation.

RhoA and RhoC have been found overexpressed in a
wide range of tumors, particularly those with epithelial
origins,2 and in some instances have been linked to onco-
genic progression, such as in testicular cancer15 and to
poor prognosis, such as in esophageal squamous cell car-
cinoma.33 In contrast to overexpression, loss or reduced
expression of RhoB was observed in lung cancer and
head and neck squamous cell carcinoma34,35 suggesting
that loss of function of RhoB can contribute to oncogenic
progression. However, in a contradictory finding, RhoB
is found overexpressed in breast cancer,16 which suggests
possible cell- or cancer-type specific roles for this
GTPase which may result from differential expression of
downstream effectors and/or upstream scaffolding pro-
teins, or the balance between other Rho GTPases.

Analysis of gene expression data from the SAGE
database reveals changes in Cdc42 levels in cancer tis-
sue, both increased and decreased, compared to nor-
mal tissue.36 Cdc42 is overexpressed in testicular and
breast cancer,15,16,37 in non-small cell lung cancer,38

and in colorectal adenocarcinoma and cutaneous mel-
anoma.39,40 Finally a less well-studied GTPase, Rnd3/
RhoE is downregulated in HCC (hepatocellular carci-
noma) and its downregulation is correlated with poor
prognosis and tumor progression,41,42 while it is upre-
gulated in gastric cancer cells under hypoxic condi-
tions promoting EMT,43 again highlighting the
signaling complexity of these GTPases and their
downstream targets.

The evidence for altered expression of the above men-
tioned GTPases is indicative of a role in tumor initiation
and/or progression. It should also be considered that
lack of data for some of the lesser-studied members of
the Rho GTPase family may in part be due to fewer
reagents being available with which to look for alterna-

tions in these proteins. More unbiased screening, and
particularly genome-level sequencing for activating
mutations (see below), may help to reverse some of this
historical bias.

Indirect regulation of Rho GTPases in cancer

Modulation of Rho family regulators

An alternative mechanism by which many tumors upre-
gulate Rho GTPase signaling is by changing the levels or
activities of GTPase regulators, including GEFs, GAPs
and Rho GDIs (Fig. 2).44,45 While the general trend is
toward overexpression of GEFs, and reduced expression
of GAPs and GDIs (indicative of a positive contribution
of Rho GTPase signaling to tumorigenesis) the detailed
picture emerging is of much more complex regulation,
seemingly dependent on tumor type and level of
progression.

The GEFs Ect2, MyoGEF, P-Rex1, Tiam1, LARG,
Dock180, Vav1, Vav2, Vav3 and b-PIX are overex-
pressed in a variety of human tumors.46 Ect2, which has
activity for multiple members of the Rho GTPase family
including RhoA, Rac1 and Cdc42, has been recognized
as an oncogene in human cancer since 2010, being aber-
rantly overexpressed and mislocalised in various types of
tumors.47 Activation of MyoGEF—a RhoA and RhoC
GEF—regulates the invasion of breast cancer cells.48

Overexpression of the Rac1 GEF P-Rex1 promotes
metastasis of prostate cancer49 and mutations have been
identified in PREX2 (a Rac GEF) in melanoma.50 Tiam1,
another Rac1 GEF, was initially identified as being
important for invasion in T-cell lymphoma.51 Tiam1 dis-
plays high levels of expression in breast cancer where it
is associated with grade and metastatic potential52 and is
a marker for poor prognosis.53 Overexpression of Tiam1
has also been observed in prostate cancer.17 Further-
more, overexpression of Tiam1 in lung adenocarcinomas
as well as in squamous-cell carcinoma of the head and
neck (SCCHN) is associated with disease progression
and poor patient survival.54 In lung cancer, levels of
Tiam1 inversely correlate with expression of the E3 ubiq-
uitin ligase HUWE1, which degrades Tiam1 specifically
from cell-cell adhesions, indicating that localized regula-
tion of GEF abundance may play a role in cancer.55 The
Tiam1 ortholog STEF/Tiam2 was found to promote pro-
liferation and invasion in liver cancer when overex-
pressed, and is therefore implicated in the pathogenesis
of HCC.56 b-PIX has also been found overexpressed in
many breast cancers.57 The haematopoietic specific GEF
Vav1 is ectopically expressed in pancreatic adenocarci-
noma with a positive correlation to reduced patient
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survival58 and its presence in a subset of neuroblastoma
tumors indicates its involvement in the tumorigenesis
process.59 Moreover, high levels of expression of Vav1
are a marker for poor prognosis in breast cancer.53 The
Vav1 orthologues Vav2 and Vav3 have also been shown
to be deregulated in human tumors. Vav3 is overex-
pressed in gastric cancer60 as well as in prostate cancer
where a novel nuclear function was found to be responsi-
ble for its role in malignant progression.61 Moreover,
both Vav2 and Vav3 regulate a lung-metastasis specific
transcriptome that leads to breast cancer progression.62

Finally, the bipartite Rac1 GEF composed of Dock180
and ELMO1 is overexpressed in malignant gliomas,
where it contributes to invasion,63 whereas LARG (leuke-
mia-associated Rho GEF) is found fused with the MLL
locus in acute myeloid leukemia (AML)64 leading to
aberrant expression. While not exhaustive, this list is
highly indicative of an oncogenic function for upregu-
lated Rho GTPase signaling.

This data from human tumors is supported by evi-
dence from transgenic mouse models highlighting the
importance of a number of GEFs in oncogenic progres-
sion. Tiam1 has been shown to be important for
Ras-mediated skin65 and intestinal tumorigenesis.66

Interestingly, Tiam1 deficient mice develop fewer
tumors, but those which do grow are more invasive, sug-
gesting both positive and negative roles for Tiam1 in
oncogenesis. Loss of P-Rex1 leads to a reduction in the
invasive potential of melanoma cells in a mouse model
of the disease, consistent with work in vitro showing that
P-Rex1 can regulate invasion.67 P-Rex2 is also frequently
mutated in melanoma, and a truncating mutant, E824�,
has recently been shown to cooperates with NRAS to
accelerate melanoma development in a mouse model.68

Mice deficient for the Rac1/Cdc42 GEFs Asef1 and
Asef2, which are downstream of APC and are overex-
pressed in colorectal tumors, show reduced spontaneous
formation of intestinal adenomas.69 Mice transplanted
with leukemic B-cell progenitors expressing the p190-
BCR-ABL transgene develop tumors at high frequency;
however if these cells are deficient for Vav3 then tumor
formation is significantly decreased, and survival time
increased.70 Both Vav2 and Vav3 are required for initia-
tion and promotion of skin tumorigenesis.71

The GAP DLC1 (deleted in liver cancer) is a tumor
suppressor frequently downregulated in many cancer
types either by deletion or epigenetic silencing. Loss of
DLC1 leads to an activation of RhoA, and cooperates
with oncogenic Myc in a mouse model of liver cancer.72

DLC2 was also found downregulated in hepatocellular
carcinoma,73 and more recently was shown to be
required to regulate Cdc42 activity for faithful chromo-
some segregation during mitosis.74 P190RhoGAP is

another RhoGAP thought to act as a tumor suppressor;
it is frequently deleted in gliomas, and its overexpression
is able to suppress tumor formation in a mouse model of
the disease.75 However not all GAPs are found downre-
gulated in human tumors; ARHGAP8 is found overex-
pressed in colon cancer.76

The picture for Rho GDIs is relatively complex, possi-
bly due to their ability to target multiple Rho GTPases
and their roles in regulating Rho GTPase activity, stabil-
ity and trafficking.11 For instance, Rho GDI1 is found
downregulated in some breast cancer studies,77 but over-
expressed in others.78 Downregulation of Rho GDI2 in
bladder cancer is associated with decreased patient sur-
vival79 whereas overexpression in pancreatic cancer is
associated with invasion. 80

Post-translational modifications

As discussed earlier, Rho GTPases are regulated by a
whole host of post-translational modifications, many of
which are now being linked to inappropriate Rho
GTPase function in human cancers and a few of which
we will discuss here as illustrative examples. Ubiquityla-
tion of Rac1, RhoA and Cdc42 can be deregulated in can-
cer cell lines, a fact that could indicate a link between
Rho GTPase protein ubiquitylation and cancer.14 For
instance, the E3 ligase SMURF1 targets RhoA for degra-
dation at the leading edge of migrating cells, affecting
tumor cell migration.81 PIAS3 SUMOylates Rac1 stabi-
lizing the active form of the protein following HGF stim-
ulation and therefore promoting cell migration and
invasion, suggesting a possible role in cancer progres-
sion.13 Conversely, Rac1 can be ubiquitylated by the E3
ligase HACE1, resulting in its proteasomal degradation,
reducing Rac1 mediated migration.82 Ubiquitylation of
RhoA has also been reported to be impaired following
FBXL19 downregulation in lung cancer epithelial cells.83

FBXL19 ligase also ubiquitylates Rac1 and Rac3, with
degradation impairing esophageal cancer cell EMT.84

Finally, phosphorylation of Rho GTPases has also been
shown to regulate their transforming ability; for instance
phosphorylation of Cdc42 by the Src tyrosine kinase
modulates its interaction with Rho GDI which is neces-
sary for cellular transformation.85 These examples from
the literature demonstrate some of the great diversity of
mechanisms by which cancer cells can indirectly disrupt
upstream signals which lead to Rho GTPase activation.

Direct mutations of GTPases in human cancers

Early studies had identified mutations in RhoH such as
the rearrangement of RhoH/TTF gene and the mutation
of the 50-UTR of RhoH gene in some haematopoietic
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malignancies.86,87 However, mutations within Rho
GTPases, except for RhoH, were believed to be rare in
cancer until recently. This led to the speculation that
Rho GTPases were not direct drivers of oncogenic pro-
gression, but merely downstream players in a disease
more directly modulated by upstream signaling path-
ways. With the development of faster and cheaper deep
sequencing technology this idea has been challenged, as
Rho GTPases have now been found mutated in a wide
variety of cancer types (see Table 1).88 In particular, the
discovery of a recurrent Rac1 mutation in melanoma has
significantly altered the perception of the role of Rho
GTPases as drivers of oncogenic progression. For this
review, we gathered data on published mutations in the
Rho GTPases Rac1, Rac2, Rac3, Cdc42, RhoA, RhoB,
RhoC, RhoH and RhoT1 using the cBio portal (http://
www.cbioportal.org/), a database that collects cancer
genomics data sets from tumor samples across cancer
studies,89,90 and IntOGen (https://www.intogen.org/
search), which assesses mutational data across multiple
tumor types to identify potential driver mutations.91

Both databases are user-friendly, regularly updated, and
include additional information such as expression levels,
amplifications and deletions (see Table 1). While any
table of this kind becomes quickly outdated, it nonethe-
less serves to highlight the remarkable impact of
sequencing technology on the discovery of mutations in
human cancers in recent years, as well as the range of
cancer types harboring mutations in Rho GTPases. The
following section will focus on the emerging literature
around these newly-identified mutations and other iden-
tified deregulations of Rho GTPases in human cancers.

Rac1 mutations

One early study aiming to detect Rac1 mutations in
human brain tumors identified deletions, frame shift and
point mutations in 12 out of 45 samples from human
patients with brain tumors,92 suggestive of a role for
Rac1 in brain tumor development. Now, next generation
sequencing has identified a number of cancer-associated
mutations along the length of the Rac1 protein, with
Rac1 being identified as a driver mutation in head and
neck squamous cell carcinoma and cutaneous melanoma
(see Table). Among these, P29 is a hot-spot for Rac1
mutation. It was first identified by 2 groups in 2012.93,94

Whole-exome sequencing was performed in melanoma
samples and 5% of them were found to harbour missense
mutations in the Rac1 gene, making Rac1 the third most
highly mutated gene in melanoma (after BRaf and
NRas).93 The functional effect of the P29S recurrent
mutation is to induce a ‘fast cycling’ form of Rac1, as
opposed to the more common gain-of-function

mutations used in a laboratory setting which are mod-
eled on activating Ras mutations found at high frequency
in human cancers. These mutations, found at G12 and
Q61, block GTPase activity and so trap the GTPase in its
active, GTP-bound form. In contrast, the P29 residue lies
in a hydrophobic pocket in the switch I region of the
Rac1 GDP-bound form, and the substitution of the pro-
line residue for a serine enhances the exchange of GDP
for GTP,95 while still maintaining the ability to hydrolyse
GTP back to GDP. Overall this enhances the interaction
of Rac1 with effectors, such as the Pak family of kinases.
P29S is therefore considered a gain-of-function mutation
that likely promotes oncogenic events during melanoma
through mechanisms thought to include altered cell pro-
liferation, adhesion, migration and invasion.93 Expres-
sion of the mutant form of Rac1 in melanocytes leads to
enhanced cell proliferation and migration,94 and the
Rac1 P29S mutant form is able to transform mouse
fibroblasts and immortalised breast epithelial MCF10A
cells.96 Subsequently 2 other fast-cycling mutants of
Rac1 have been identified, N92I and C157Y.96 The ability
to cycle from the off-state to the on-state may render
these fast-cycling mutants more efficient at driving trans-
formation than the constitutively active mutants, possi-
bly because they more closely mimic normal signaling by
being able to associate and dissociate from effectors, or
potentially by still associating with GEFs acting also as
scaffolding proteins. Rac1 N92I was able to efficiently
transform mouse fibroblasts and MCF10A cells, whereas
the C157Y mutation was less effective.96 Interestingly,
Rac1 P29S (which has also been found as a somatic
mutation in a breast cancer cell line) transformed
MCF10A cells more efficiently than fibroblasts, whereas
the opposite was true for the Rac1 N92I mutation
(known as a somatic mutation in a fibrosarcoma cell
line),96 suggesting that there are further subtleties to the
effects of these different activating mutations still to be
uncovered.

A serious clinical problem in the treatment of mela-
noma is the swift development of resistance to the front
line treatments of RAF and MEK inhibition. A 2014
study revealed that Rac1 P29S expression in melanoma
cell lines and in mouse tumor models conferred resis-
tance to RAF and MEK inhibitors97 with overexpression
of Rac1 P29S decreasing apoptosis after RAF and MEK
inhibitor treatment. A further clinical study suggested
the potential of Rac1 P29S as a predictive biomarker for
resistance to therapy in melanoma patients under treat-
ment with these inhibitors.98 Further histological and
clinical evidence showed that this hot spot mutation may
be responsible for the early metastatic progression of
BRAF mutant and BRAF wild-type melanoma.99 A more
recent biological insight into the P29S mutation showed
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increased expression of PD-L1 in Rac1 P29S melanoma
patients compared to Rac1 wild type or other Rac1
mutants.100 PD-L1 is a suppressor of the immune system
thus its upregulation may allow cancers to evade the host
immune system and therefore oncogenic Rac1 P29S may
promote the reduction of anti-tumor immune response.
As PD-L1 is a candidate biomarker for increased benefit
from treatment with anti-PD1 or anti-PD-L1 antibodies,
this finding could also have implications in the clinic.

Rac2 and Rac3 mutations

In the 2012 study conducted by Hodis et al., a homolog to
the Rac1 P29 residue was found to be mutated in Rac2,
substituting Proline (P) with Leucine (L) (P29L muta-
tion).93 Two Rac2 mutations - P29L and P29Q – similar
to the P29S mutation, were confirmed as transforming
mutations of Rac2.96 Additional mutations have since
been identified in Rac2 (see Table 1) and among these the
R102Q was found as a hot spot mutation. Mutations in
the Rac3 gene have been identified from a range of can-
cers, including melanoma, stomach and prostate, but
none has yet been studied functionally. Rac2-KO and
Rac3-KO mice showed slightly increased survival in a
CML and ALL background, respectively,101,102 suggesting
a possible oncogenic role for these genes; further experi-
mentation will be required to determine the functional
significance of these cancer-associated mutations.

RhoA mutations

As with Rac1, no mutations in RhoA had been detected
in human cancers until very recently. RhoA mutations
were identified by several groups in 2014,103 with an
IntOGen search indicating a driver role for RhoA in
stomach adenocarcinoma (see Table 1), as well as a gen-
eral pan-cancer driver role. RhoA mutations have been
identified in 25% of diffuse-type gastric carcinoma cases
studied.104 Recurrent mutations were R5Q, G17E and
Y42C. Expression of both RhoA G17E and Y42C were
able to rescue growth defects of SW948 colon cancer
cells grown in 3D culture following knockdown of
endogenous RhoA in contrast to re-expression of wild-
type RhoA which was unable to rescue.104 Several
groups have found frequent RhoA mutations, specifi-
cally the G17V mutation, in angioimmunoblastic T cell
lymphoma and peripheral T cell lymphomas.105-107

Interestingly this mutation appears to act similarly to
well-characterized dominant negative mutations of
RhoA, rather than as an activating mutation. Expression
of this mutant form of RhoA increases proliferation in
Jurkat cells, an effect also observed with expression of
dominant negative RhoA. This fits well with work

showing that inactivation of RhoA promotes tumor for-
mation in colorectal cancer models.108 Silencing of
RhoA in colon cancer cell lines promoted proliferation,
largely through activation of the Wnt/b-catenin path-
way and subsequent upregulation of Myc signaling, and
this led to increased metastasis. In a mouse model of
colorectal cancer, metastatic sites were found to have
lower RhoA signaling than the primary tumors, and
this held for samples from human tumors as well.108

Another example of inactivating RhoA mutations are
those found recurrently in Burkitt Lymphoma, the most
common type of childhood B-cell lymphoma. Translo-
cations of the MYC locus leading to deregulated Myc
signaling are necessary but not sufficient to drive dis-
ease progression, and both whole genome studies109

and exome sequencing110 identified RhoA mutations as
additional drivers of the disease. 8.5% of cases had
RhoA mutations, and molecular modeling of these
mutations suggested that they would reduce RhoA
activity, or reduce binding to RhoA effectors.110

Another study conducted with gastric adenocarcinoma
samples103 added a number of additional mutations
including Y34C, F39C, E40K, N41K, Y42S/C/I, L57V,
D59Y, T60K, A61D and G62R/E (and see Table 1). These
were accumulated in regions that participate in the interac-
tion of RhoA protein with effector molecules; for instance
mutations at Y42 reduce downstream activation of PKN
but not mDia or ROCK1.111 This indicates that distinct
mutants may have different alterations in effector binding/
activation with some of them leading to reduced interac-
tion of RhoA with specific effector proteins. Depending on
the target affected, this altered RhoA activity could account
for the increased cell spread and the absence of cell cohe-
sion observed in this kind of tumors. These studies suggest
either that wild-type RhoA, in the cells of origin for these
cancer types, is acting in a tumor suppressive capacity, or
that inactivation of RhoA in some way leads to hyperacti-
vation of an oncogenic pathway. C3 toxin-mediated inacti-
vation of RhoA, B and C causes the development of
aggressive malignant thymic lymphomas in mice.112 Such
findings support a tumor suppressor role for these mem-
bers of the Rho family. It will require further experiments
to reconcile data from these mutational studies with earlier
work showing that overexpression of RhoA promotes
tumorigenesis. This could be due to differences in the
expression of downstream effectors in different tissue
types, or different requirements for RhoA throughout the
life-cycle of a tumor.

RhoB, RhoC and RhoT1 mutations

RhoB has been found to be mutated in 5% of bladder
cancer cases from a sample of 131 high grade tumors not
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treated with chemotherapy (with more than 200 addi-
tional samples still to be sequenced at the time of writ-
ing) making it one of 9 genes mutated in this disease.113

Our cBio search for published RhoB mutations (see
Table 1) indicates that P75S/T/L is a hot spot mutation,
though it has not yet been studied functionally. In a
model of Ras-driven skin cancer, Liu and colleagues
showed that the RhoB-null mice had increased skin
tumors compared to the heterozygote mice and that
RhoB-deficient MEFs transformed with E1A and Ras
showed greater resistance to DNA-damage induced apo-
ptosis,114 which suggests that, if functional, these might
be inactivating mutations.

Two other family members, RhoC and RhoT1, pres-
ent a number of published mutations in cancer samples
and cell lines, with the S73 residue a hotspot in RhoC,
while mutations in RhoT1 include a P30L mutation,
which by homology may have similar effects to the Rac1
P29S mutation. Deletion of RhoC from mice has been
observed to reduce the frequency and growth of
tumors,115 which might suggest that activating mutations
might promote tumor formation, but further analysis of
mutations in these family members is required to deter-
mine their functional relevance.

Cdc42 mutations

The classical activating mutation G12D (equivalent to
the G12V activation mutation of Ras) has been found in
Cdc42 in melanoma cells in the same study which identi-
fied the Rac1 P29S mutation,93 although this mutation
was present in only a single patient sample, and has not
been functionally characterized. Table lists 14 different
published mutations in Cdc42, although no function has
yet been ascribed to them. However, given the evidence
for a role for Cdc42 in cellular transformation,36 we con-
clude that it is highly likely that at least some of these
mutations will be functionally active. It is also possible
that some of these may be inactivating mutations, as in
vivo evidence, such as deletion of Cdc42 from hepato-
cytes which lead to spontaneous tumor formation,116

suggests that Cdc42 might also play a role as a tumor
suppressor.

Pharmacological inhibition of Rho GTPases

Given the long-standing in vitro and in vivo data show-
ing Rho protein involvement in malignant transforma-
tion, observed changes in Rho protein expression levels
or changes in their regulators and post-translational
modifications, and now direct mutation of Rho GTPases,
in human cancers, targeting Rho protein signaling is an
increasingly attractive target for new cancer therapeutics.

Small molecule inhibitors of many Rho proteins are cur-
rently being developed and tested.

Two different small molecule inhibitors of Rac are
currently in use, utilizing 2 different strategies for inhibi-
tion. NSC23766 works by inhibiting the interaction
between Rac1 and its GEF Tiam1, reducing the activa-
tion of Rac1.117 EHT 1864 is a pan-Rac inhibitor which
directly targets the Rac GTPase itself, by displacing GTP
from the active site.118

NSC23766 can halt the proliferation, anchorage-
independent growth and invasion of prostate cancer
cells.117 Rac1 inhibition can additionally reduce
growth of non-small-cell lung cancer tumors in a
mouse model that present resistance to (EGFR)-tyro-
sine kinase inhibitors such as gefitinib, making it
attractive as a potential combination therapy to help
circumvent the resistance mechanisms.119 Moreover,
Rac1 inhibition impedes the growth, invasion and
metastasis of gastric tumors.19 However, while both
these inhibitors do indeed target Rac activity, they
also have significant off-target effects, as demon-
strated by assays using wild-type and Rac1-deficient
mouse platelets.120 This emphasizes the need to
develop better versions of these drugs, or find other
ways of targeting Rac, and other small GTPases. One
approach is to use in silico screening to predict
potential binding partners which might block
GTPase-GEF interactions.121 It is worth noting that
this strategy of targeting the interaction between
GEFs and GTPases is predicated on the function of
the GEFs regulating tumorigenesis via their ability to
activate the GTPases. However, this is not always
the case. For instance, the activation of the PI3K/Akt
pathway by the GEF P-Rex2 does not depend on the
GEF activity of the protein.122 Also, a recent paper
from our lab demonstrates that different GEFs can
have differential effects on cell behavior, despite acti-
vating the same GTPase to similar levels,9 most
likely by scaffolding different downstream effectors
of the GTPase; therefore it will be important to tar-
get the correct GEF-GTPase activity for the specific
cancer type.

Given that Rac1 and Cdc42 are highly expressed
and active in ovarian cancer,123 inhibitors of these
2 GTPases have been tested in immortalized and pri-
mary human ovarian cancer cells.124 The R enantiomer
of ketorolac, (ketorolac is given as an anti-inflamma-
tory drug), can inhibit Rac1 and Cdc42 and was shown
to improve patient outcomes in treatment for ovarian
cancer.124 Another Rac1 and Cdc42 dual-inhibitor,
AZA1, identified from a screen of molecules based on
modifying the structure of NSC23766, has been used
in in vitro studies to target prostate cancer cells.125
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This synthetic compound reduced cancer cell migra-
tion and proliferation and succeeded in increasing the
survival of xenograft mouse models of prostate cancer
by targeting Rac1 and Cdc42 but not RhoA.125

An additional 3 inhibitors of Cdc42 have been devel-
oped. Secramine has been identified as a small molecule
inhibitor that perturbs Cdc42 activity in a RhoGDI1-
dependent manner,126 although is likely to affect other
GTPases in the same manner. ZCL278 is a small mole-
cule inhibitor of Cdc42, designed to block the interaction
of Cdc42 with the GEF Intersectin. It is thought to dis-
rupt both GEF interactions and GTP binding127 and was
shown to inhibit actin-based motility and migration in a
metastatic prostate cancer cell line.127 Finally, AZA197,
another recently developed Cdc42 inhibitor which
appears not to inhibit Rac1 activity has shown some effi-
cacy in reducing tumor size in a xenograft model of
colon cancer.128

Reducing signaling through the Rho pathway is often
achieved by targeting the Rho target ROCK.129 The
ROCK inhibitor Y-27632 retards migration of human
prostate cancer cells in mice130 and blocks the invasive
activity of cultured rat hepatoma cells.131 Moreover, inhib-
iting the Rho/ROCK signaling pathway in NSCLC using
the ROCK inhibitor fasudil, when combined with inhibi-
tion of the proteasome, effectively reduced the viability of
mutant K-Ras cells compared with wild-type cells.132

It is likely that further structural modification of these
compounds, or further high-throughput compound-
screening, will lead to more specific inhibitors, and that
as we further our understanding of both normal and
abnormal Rho GTPase signaling we will be better placed
to deploy them therapeutically.

Conclusion

In conclusion, Rho GTPase signaling is frequently seen
to be modified in human cancers through a variety of
mechanisms, and work is continuing to understand the
consequences of this aberrant signaling. Understanding
the wider landscape of Rho GTPase signaling in a tumor
type is likely to be important for making the correct, clin-
ically-relevant interventions. Modifications occur from
the level of mutation of the GTPases to under or overex-
pression of their regulating proteins, which both gener-
ates a highly complex signaling network that needs
further work to be untangled and also suggests many fer-
tile avenues for therapeutic intervention.
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