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Background. Tumor microenvironment (TME) is the crucial mediator of tumor progression, and the TME model based on
immune cell infiltration to characterize ovarian cancer is considered to be a promising strategy. Methods. Sample data of three
ovarian cancer cohorts were obtained from+e Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
+e scores of 22 kinds of immune cells were calculated based on CIBERSORT, and the TME clusters (TMECs) of ovarian cancer
was determined by ConsensusClusterPlus. Genomic subtype was identified by non-negative matrix factorization (NMF). A TME
scoring scheme was constructed using k-means algorithm and principal component analysis (PCA) to quantify the TME in-
filtration pattern of individuals. Results. Four TME subtypes of ovarian cancer samples were defined: TMEC1, TMEC2, TMEC3,
and TMEC4.+ere were also significant differences in overall survival (OS) among the four TMEC, and the OS of TMEC3 was the
longest. +e difference analysis of TMEC3 and the other three TMECs respectively identified the DEGs and took the intersection,
and 585 DEGs were obtained. Two genomic subtypes were identified by NMF based on the expression of 585 genes, which were
called GeneC1 and GeneC2.+e TME scoring scheme constructed by k-means and PCA algorithm was used to calculate the TME
score of ovarian cancer in TCGA. High-TME score was significantly correlated with shorter survival time, older age, lower
immunoactivated molecules, and immune checkpoint gene expression. Conclusions. +is study highlighted the complexity and
diversity of TME infiltration patterns in ovarian cancer and constructed a set of TME scoring scheme to reveal TME infiltration
patterns and provided new insights into the landscape of TME.

1. Introduction

Ovarian cancer is the fifth deadliest malignant tumor among
women, with more than 310,000 newly diagnosed cases and
more than 200,000 deaths each year [1]. Most ovarian tu-
mors originate from the epithelial surface of the ovary,
others come from germ cells or stromal cells. +e main
subtypes of epithelial carcinoma are serous carcinoma,
endometrioid carcinoma, mucinous carcinoma, clear cell
carcinoma, and undifferentiated carcinoma [2]. +e tumor
heterogeneity among these subtypes is very high, and the
etiology, molecular biology, treatment response, and many

other characteristics are different [3]. For the past few years,
tremendous efforts have been made to characterize these
subtypes and identify tumoral pathways and potential
biomarkers for therapeutic strategies [4]. Given that ovarian
cancer is among the first cancers with an established as-
sociation of immune cell infiltration [5]. It is considered
promising to classify ovarian cancer according to the
composition of infiltrating immune cells in tumor micro-
environment (TME). However, whether particular immune
cell types are associated with a greater or lesser risk of disease
progression or death and how these effects differ by ovarian
cancer subtype remain unclear [6]. To this end, several
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available software tools have been developed. +ese tools
characterize the composition of immune and nonimmune
stromal cells in large tumors from their entire transcriptome.
For example, the microenvironment cell population (MCP)-
counter tool provides a quantitative method for calculating
the abundance of eight immune cell groups and two stromal
cell groups to help depict the global image of tumor immune
infiltration [8]. Estimating the proportion of immune and
cancer cells (EPIC) estimates the ratio of immune cells to
cancer cells by combining the RNA-Seq spectra of all major
immune and other nonmalignant cell types established from
circulating cells and tumor infiltrating cells, as well as in-
formation on cell morphology and algorithm development
[9]. xCell is a method that integrates the advantages of gene
set enrichment with deconvolution approaches, which can
calculate 64 immune and stromal cell types [10]. CIBERSORT
is a deconvolution support vector regression algorithm that
calculates the proportion of 22 types of cells in TME, in-
cluding seven T-cell types, immature and memory B cells,
plasma cells, NK cells, and bone marrow subsets [11]. +ese
tools facilitate the study of immune cell infiltration in TME.

In this study, we classified ovarian cancer based on the
scores of 22 immune cells estimated by CIBERSORT, and
constructed a set of TME scoring scheme to define different
types of TME infiltration patterns. By comparing the dif-
ferences in prognosis and clinical and molecular charac-
teristics among different TME invasion patterns, we expect
to find some characteristics related to TME phenotype.

2. Materials and Methods

2.1. Collection and Preprocessing of RNA-Seq and Clinico-
pathological Data of Ovarian Cancer. TCGA was visited to
download RNA-seq data and clinical features of 379 ovarian
cancer samples. +e cancer tissue samples with complete
clinical annotations were retained and readcount was
converted into TPM through the annotated information of
gencode v22. Two ovarian cancer transcriptome datasets
GSE14764 (n� 79) and GSE26712 (n� 184) in MINiML
format were downloaded from gene expression omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). For the chip
probe, the bioconductor package [12] was used to map the
human gene SYMBOL.+e research shows the logic route of
the total research approach utilizing the form of the flow
chart (Figure S1).

2.2. Evaluationof ImmuneCell Infiltration inOvarianCancer.
+e leukocyte gene signature matrix (LM22) data of TCGA
and GEO were combined and the RNA-seq data of TPM
format were uploaded to CIBERSORT (https://cibersort.
stanford.edu/) portal network. With the expression values
of 547 genes representing different immune cell types as
a reference, the scores of 22 immune cells were analyzed and
the immune cell infiltration matrix was drawn.

2.3. Consensus Clustering Infiltrating Immune Cells.
ConsensusClusterPlus toolkit was used according to the
unsupervised cluster of the three combined ovarian cancer

cohorts [13]. +e toolkit used “Pam” method with the Eu-
clidean and Ward linkage methods to identify stable sub-
types 1000 times, and the resulting subtype was defined as
TMEC. +e final number of clusters was determined by the
area under the cumulative distribution function
(CDF) curve.

2.4. Non-negative Matrix Factorization Algorithm Based on
Differentially Expressed Genes among TME Subtypes.
Among the obtained TME subtypes, the differentially
expressed genes (DEGs) among TME clusters in TCGAwere
analyzed by DESeq2 and used in unsupervised clustering of
non-negative matrix factorization (NMF) to identify new
subtypes, which was defined as GeneC. +is process was
performed in the R package “NMF” [14], the standard
“brunet” was selected, and 50 iterations were performed.

2.5. Development of TME Scoring Scheme. +e genes related
to the prognosis of ovarian cancer were screened fromDEGs
among TME subtypes by univariate Cox regression analysis,
and their importance was evaluated by inputting them into R
package “randomForest”. +e mtry parameters (random
variables) of each segmentation were set to 1–101 and
ntree� 500, and the mtry value with the lowest error rate was
selected as the optimal mtry value of the random forest
algorithm. Furthermore, the above prognosis-related genes
were also clustered by k-means algorithm, and the obtained
category (Signature G) performed principal component
analysis (PCA) using R psych package for 100 iterations. +e
best principal component number (PCs) was obtained and
the score of each PC was calculated, and the PC1 score was
selected as the signature score. Each signature G was given
a regression coefficient β by multivariate Cox regression
analysis, and the established TME scoring scheme was as
follows: TME score� 􏽐PC1∗βi.

2.6.Analysis ofClinicalResults ofOvarianCancerAccording to
TME Scoring Scheme. +e TME score of each sample was
computed according to TME scoring scheme, and the
median value was used as the boundary between the high-
TME score group and the low-TME score group. +e
Kaplan-Meier curve was generated by R package “survival,”
and the survival differences between groups were compared
by log-rank test. TME score was used as an indicator to
assess differences in different clinical characteristics (age,
stage, and grade) within groups.

2.7. Analysis of ImmuneGene Expression andTumorGenomic
Variation. To study the relationship between different TME
scores and immune status, we compared the expression
trends of immunoactivated genes (CXCL10, CXCL9,
GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, TNF), immune
checkpoint genes (IDO1, CD274, HAVCR2, PDCD1,
CTLA4, LAG3, PDCD1LG2), and TGF/EMTpathway genes
(VIM, ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9,
TWIST1) on TMEC, GeneC, and TME scores. In addition,
the gene mutation spectrum of different patients was
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analyzed by “maftools,” and the genes with significant dif-
ference in mutation frequency between high-TME score
group and low-TME score group were identified by Fisher’s
test, and the standard was 0.05.

2.8. Statistical Analysis. All the statistical analyses were
completed in R. Two groups of continuous variables were
compared byWilcoxon test, and three groups andmore than
three groups of continuous variables were compared by
Kruskal-Wallis test. +e survival curve was drawn by
Kaplan-Meier method and the survival differences were
compared by log-rank test. P< 0.05 was defined as statis-
tically significant.

3. Results

3.1. �e Immune Cell Infiltration Pattern in Ovarian Cancer
TME. +e LM22 data of TCGA and GEO were combined,
and by calculating the correlation of 22 immune cells in the
sample, we found the clustering of three kinds of positive
correlation (Figure 1(a)). Univariate Cox regression analysis
confirmed the relationship between 22 immune cells of
ovarian cancer and the prognosis (Supplementary Table 1).
+e results showed that activated mast cells, resting CD4
memory T cells, and neutrophils were significantly corre-
lated with poor prognosis of ovarian cancer. M0 macro-
phages, gamma delta T cells, and M1 macrophages were
significantly correlated with good prognosis of ovarian
cancer (Figure 1(b)). To eliminate the heterogeneity between
datasets, we analyzed the relationship between 22 immune
cells and prognosis of ovarian cancer in TCGA and GEO
datasets, respectively. +e results showed that there were
similarities in the relationship between several immune cells
and prognosis in the two datasets, but there were also some
differences, for example, the HR of monocytes, eosinophils,
and activated NK cells was >1 in the TCGA dataset and <1 in
the GEO dataset. +e HR of resting cells, CD8 T cells, and
regulated T cells in TCGA dataset was <1 in TCGA dataset
and >1 in GEO dataset. One of the reasons for this may be
that GEO dataset is mainly composed of advanced and high-
level samples (Figures S2(a) and S2(b)).

To reveal the different patterns of immune cell in-
filtration, we clustered the combined ovarian cancer samples
based on LM22 scores and selected the optimal number of
clusters from k� 2–10. +e consensus matrix of k� 2–5 was
generated. +e area under the CDF curve did not increase
significantly with the increased k. +e best choice was to
divide the merged ovarian cancer samples into four clusters
(Figures S3(a)–S3(f )). +erefore, four subtypes of ovarian
cancer samples were defined: TMEC1 (n� 134), TMEC2
(n� 202), TMEC3 (n� 156), and TMEC4 (n� 118). +ere
was a high content of M0macrophages in TMEC1, andmore
activated dendritic cells and activated mast cells were
enriched in TMEC2. M1 macrophages and gamma delta
T cells, and activated memory CD4 T cells in TMEC3 had
higher scores, and the immune cell with the highest score in
TMEC4 was resting CD4 memory T cells (Figure 2(a)). +e
LM22 score difference analysis of four TMEC showed that

there were significant differences in the LM22 signature
score of 17 immune cells among the four TMEC
(Figure 2(b)). And there were significant differences in
overall survival (OS) among the four TMEC, and the OS of
TMEC3 was the longest (Figure 2(c)).

3.2. TwoGenomic SubtypesWere IdentifiedBased on theDEGs
among TMECs. To investigate the differences in gene ex-
pression patterns among different TMEC, we used DESeq2
to analyze the differential expression between the TMEC3
with the best survival results and the other three kinds of
TMECs. DEGs (585) were shared among the DEGs of
MEC3/TMEC1, TMEC3/TMEC2, and TMEC3/TMEC4
(Figure 3(a), Supplementary Table 2). NMF clustered the
ovarian cancer samples in TCGA according to the expres-
sion of 585 DEGs, and the minimum number of members of
each subclass was set to 10. According to the indicators such
as cophenetic, dispersion, and silhouette, the optimal
number of clusters was determined to be 2, which was called
GeneC1 and GeneC2, respectively (Figure 3(b), Figures S4
and S5). Survival analysis showed that GeneC1 was signif-
icantly related to longer survival time, and GeneC2 was
significantly related to poor prognosis (Figure 3(c)). By
comparing the scores of two kinds of GeneC on 22 kinds of
immune cells, we found that there was a complex re-
lationship between the GeneC with different prognosis and
their corresponding TME scores. For example, the GeneC1
with the best prognosis had significantly higher scores on
CD8 T cell, activated NK cells, and M1 macrophages, and
significantly lower scores on M0 macrophages, M2 mac-
rophages, and resting CD4 memory T cells relative to the
GeneC2 with poor prognosis (Figure 3(d)).

In addition, GO and KEGG enrichment analyses of
Signature G1 and Signature G4 indicated that Signature G1
was mainly involved in lipid metabolism regulation, in-
cluding regulation of phosphatidylinositol 3 kinase activity,
regulation of phospholipid metabolic process, regulation of
lipid kinase activity, regulation of lipid metabolic process,
phospholipid metabolic process, and cellular lipid catabolic
process. And Signature G1 was also linked to immune
pathways for cancer, such as +17 cell differentiation, +1
and +2 cell differentiation, and T-cell receptor signaling
pathway (Figure S6(a)). While Signature G4 mainly medi-
ates calcium (Ca2+) signal transduction, the related pathways
of enrichment were positive regulation of cAMP-mediated
signaling, positive regulation of release of sequestered cal-
cium ion into cytosol, positive regulation of calcium ion
transport into cytosol, positive regulation of calcium ion
transmembrane transport, etc. Signature G had also been
significantly associated with multiple diseases and viral
infections, such as Alzheimer’s disease, thyroid cancer,
Epstein−Barr virus infection, human immunodeficiency
virus 1 infection, and human cytomegalovirus infection
(Figure S6(b)).

3.3. Construction of TME Scoring Scheme. +e prognosis-
related genes of 585 DEGs were screened by univariate Cox
regression analysis, and 102 prognosis-related DEGs were
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Figure 1: Infiltration of 22 immune cells in combined ovarian cancer samples. (a) Correlation of 22 kinds of immune cells in combined
ovarian cancer samples (Pearson’s correlation analysis). (b) +e relationship between 22 immune cells and prognosis of ovarian cancer
calculated by univariate Cox regression analysis (univariate Cox analysis).
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Figure 2: Prognosis and immune cell infiltration of four kinds of TMEC. (a) Heatmap of 22 immune cell infiltration in four TMECs. (b)
LM22 signature score difference analysis of four TMEC (Kruskal-Wallis test). (c) Kaplan-Meier prognostic curve of four kinds of TMEC
(log-rank test).
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obtained. +e importance of 102 DEGs was assessed using
random forest. According to our set parameters and the plot
of the random forest, the ntree� 100 was selected
(Figure S7(a)). And each DEG was ranked according to its
importance (Figures S7(b) and S7(c)).+en, according to the
TPM expression levels of 102 genes, k-means algorithm was
used to classify these genes into four categories: Signature
G1–Signature G4 (Figure S8(a)), including 41, 36, 15, and 10
genes, respectively (Figure S8(b)). +rough PCA analysis
and multivariate Cox regression analysis, we got a TME
scoring scheme. Heatmap gave the expression patterns of
102 genes in different TME score, TMEC, and GeneC
(Figure 4(a)). +e TME score of the two GeneC samples was
calculated and sorted by TME scoring scheme. +e TME
score of GeneC2 with poor prognosis was significantly
higher than that of GeneC1 with good prognosis by ana-
lyzing the relationship between TME score and GeneC

(Figures 4(b) and 4(c)). +e prognostic performance of the
two TME score groups was significantly different according
to median of TME score, the survival advantage of the high-
TME score group was much worse than that of the low-TME
score group (Figure 4(d)).

3.4. Clinical and Mutation Characteristics of TME Score.
TCGA dataset provides mutation data and clinical in-
formation of ovarian cancer samples, including age, grade,
and stage. We analyzed the relationship between TME score
and these mutation and clinical features. +e box plots
showed that there was no significant correlation between
TME score and grade and stage (Figures 5(a) and 5(b)). TME
score was correlated with the age of ovarian cancer samples,
and TME score was significantly upregulated in patients
aged 50–60 years compared with patients under 50 years old

C3/C1 C3/C2

2268 304 640

585
1058 345

1969

C4/C3 total: 18515

(a)

Consensus matrix

1
0.8
0.6
0.4
0.2
0

(b)

0
0

1000 2000 3000
Time (days)

4000 5000

20

40

O
ve

ra
ll 

Su
rv

iv
al

 (%
)

60

80

100
Method Kaplan Meier

GeneC1 (N=139)
GeneC2 (N=209)

log rank p=0.00046

(c)

−3

−1.8

−0.6

0.6

LM
22

 si
gn

at
ur

e s
co

re
s

1.8

3

*** * * *** ** ***

***p<1e−5
**p<0.01
*p<0.05

Kruskal-Wallis TestGeneCluster
GeneC1
GeneC2

*** ** ***

Pl
as

m
a.c

el
ls

B.
ce

lls
.n

ai
ve

D
en

dr
iti

c.c
el

ls.
ac

tiv
at

ed

T.
ce

lls
.re

gu
lat

or
y.T

re
gs

.

T.
ce

lls
.C

D
8

T.
ce

lls
.C

D
4.

na
iv

e

B.
ce

lls
.m

em
or

y

M
ac

ro
ph

ag
es

.M
0

N
K.

ce
lls

.re
st

in
g

M
as

t.c
el

ls.
re

st
in

g

T.
ce

lls
.fo

lli
cu

la
r.h

elp
er

N
K.

ce
lls

.ac
tiv

at
ed

T.
ce

lls
.g

am
m

a.d
elt

a

M
ac

ro
ph

ag
es

.M
1

T.
ce

lls
.C

D
4.

m
em

or
y.a

ct
iv

at
ed

D
en

dr
iti

c.c
el

ls.
re

sti
ng

M
as

t.c
el

ls.
ac

tiv
at

ed

N
eu

tro
ph

ils

M
ac

ro
ph

ag
es

.M
2

Eo
sin

op
hi

ls 

T.
ce

lls
.C

D
4.

m
em

or
y.r

es
tin

g

M
on

oc
yt

es

(d)

Figure 3: Two genomic subtypes were identified based on the DEGs among TMECs. (a) +e intersection of DEGs in MEC3/TMEC1,
TMEC3/TMEC2, and TMEC3/TMEC4. (b)+e consensus matrix of NMF algorithm heatmap. (c) Survival difference between two kinds of
GeneCs (log-rank test). (d) +e scores of two kinds of GeneC on 22 immune cells (Kruskal-Wallis test).
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(Figure 5(c)). We screened a group of important genes
related to TME score. Fisher’s test was used to obtain 15
genes with significant differences in mutation frequency
(excluding intron and silent mutations) between high-TME
score and low-TME score.+e waterfall plot showed that the
mutation frequency of CACNA1D and BIRC6 in high-TME
score group was significantly higher than that in low-TME
score group, while BRCA1 gene showed the opposite trend
(Figure 5(d)).

3.5. Immune Gene Expression of TME Score. To study the
immune status of different TME score, we analyzed the
expression of immune-related genes, including immune
activation genes, immune checkpoint genes, and TGF/EMT
pathway genes under different TME score, different TMEC,

and different GeneC. All the immunoactivated genes de-
tected were differentially expressed in high-TME score
group and low-TME score group. +e expression of
CXCL10, CXCL9, GZMA, GZMB, PRF1, CD8A, and TNF in
the low-TME score group was significantly higher than that
in the high-TME score group with poor prognosis
(Figure S9). Although we only observed significant changes
in CXCL10 and CXCL9 in the heatmap (Figure 6(a)).
According to the generated heatmap, the expression of
immune checkpoint gene IDO1 decreased with the increase
of TME score (Figure 6(b)). Gene differential expression
analysis of immune checkpoints in high-TME score and
low-TME score groups showed that the expression levels of
all seven immune checkpoints in low-TME score group were
significantly higher than those in high-TME score group
(Figure S10). In addition, the genes VIM, ACTA2, COL4A1,
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TGFBR2, ZEB1, and SMAD9 and TWIST1 in TGF/EMT
pathway also showed significant differences in expression
between the two TME score groups (Figure S11). +is trend
was not evident in heatmap (Figure 6(c)).

4. Discussion

Ovarian cancer is a gynecological malignant tumor with
high mortality. One of the main characteristics that dis-
tinguishes this cancer from other solid tumors is the specific
TME in the ovary [15]. In the pathological process of ovarian
cancer, various types of immune cells infiltrate into TME,
which is related to the clinical outcome of ovarian cancer
[16]. Previous studies have shown that tumor immune in-
filtration in ovarian cancer is cohort and subtype dependent,
and activated CD4+T and CD8+T tumor infiltrating lym-
phocytes are associated with good OS of ovarian cancer [5].
A high number of M0 and M1 macrophages were strongly
associated with a better prognosis, and M2 macrophages led
to worse OS [17]. Treg cells inhibit tumor-specific T-cell
immunity and contribute to the growth of ovarian cancer
in vivo, which is associated with a higher risk of death and
reduced survival [18]. Activated mast cells and neutrophils
were negatively correlated with the prognosis of ovarian
cancer [19]. In fact, in recent years, several studies have
classified multiple subtypes of ovarian cancer based on
tumor immune cell infiltration [6, 20–22]. +e different
results obtained by these studies also remind us of the
heterogeneity and great variation of tumor immune in-
filtration patterns. In this study, we selected a total of three
ovarian cancer cohorts from TCGA and GEO, and com-
bined the data of all cohorts to identify several immune cells
related to the prognosis of ovarian cancer from 22 immune
cells in TME.+e score of immune cell infiltration in ovarian
cancer TME was evaluated by CIBERSORT tool. Four TME
subtypes of ovarian cancer samples were defined according
to the unsupervised clustering of immune cell infiltration
scores, and the main immune cells in each TME were de-
tected. +ere was a high content of M0 macrophages in
TMEC1, and more activated dendritic cells and activated
mast cells were enriched in TMEC2. M1 macrophages,
gamma delta T cells, and activated memory CD4 T cells in
TMEC3 had higher scores, and resting CD4 memory T cells
were the highest immune cells in TMEC4. M1 macrophages
have always been regarded as antitumor cells [23]. In many
studies, tumor infiltrating gamma delta T cells exhibited
immunosuppressive activity [24]. High expression of acti-
vated memory CD4 Tcells was associated with better clinical
prognosis in patients with bladder cancer [25]. +erefore, it
is not difficult to detect that TMEC3 has a good prognosis.

Furthermore, in this study, the difference analysis of
TMEC3 and the other three TMECs, respectively, identified
the DEGs and took the intersection, and 585 DEGs were
obtained. NMF based on 585 genes defined two genomic
subtypes with different OS and immune cell infiltration in
ovarian cancer samples. +erefore, distinct genomic sub-
types should be managed differently. Considering the het-
erogeneity of TME, we constructed a TME scoring scheme to
quantify the TME infiltration pattern of individual ovarian

cancer patients. TME score was higher in GeneC2 with poor
prognosis than in GeneC1 with good prognosis. +e TME
score assessed by TME scoring scheme was related to the age
of individuals with ovarian cancer. Higher TME score was
also associated with higher frequency of CACNA1D and
BIRC6 mutation and lower frequency of BRCA1 mutation.
Mutations of CACNA1D and BIRC6 in ovarian cancer were
first reported in our study. +e mutation of BRCA1 in
ovarian cancer has been widely reported, and it is considered
to be an important marker of hereditary ovarian cancer
[26, 27].

In addition to cellular components, TME also includes
extracellular matrix and a variety of signal molecules, such as
chemokines and cytokines [28]. In our work, we evaluated
whether TME score can characterize TME status by cal-
culating the expression of several types of immune genes
under two TME phenotypes. As we speculated, the ex-
pression of cytotoxic genes and immune checkpoint genes
were significantly upregulated in low-TME score. In addi-
tion, most of the genes in TGF/EMT pathway also showed
significant differences in expression between the two TME
phenotypes.

In summary, based on the infiltration scores of 22 im-
mune cells, we evaluated the TME infiltration status of
ovarian cancer samples, and analyzed the complexity and
heterogeneity of individual ovarian cancer immune mi-
croenvironment with different TME infiltration states. +e
TME scoring scheme was constructed to quantify the TME
infiltration pattern of individual ovarian cancer, and the
complex correlation and synergistic effect between TME
score and prognosis, gene mutation, and immune gene
expression were clarified.
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under the CDF curve under different k values. Figure S4:+e
optimal number of clusters was determined according to
cophenetic, dispersion, evar, residuals, rss, silhouette and
sparseness. Figure S5: Consensus matrix heatmap with
clustering number 2–10 respectively. Figure S6: GO and
KEGG enrichment analysis for (A) Signature C1 and (B)
Signature C4. Figure S7: Importance evaluation of 102 DEGs
A: Random forest plot of ntree� 100. B: Distribution of 102
DEGs in GeneC. C: Order of importance of 102 DEGs.
Figure S8: K-means classification based on 102 genes. A: 102
DEGs were divided into 4 categories according to the TPM
expression level of 102 genes by k-means algorithm. B: +e
number of genes contained in each signature G1. Figure S9:
+e expression levels of immunoactivated genes in TMEC
group, GeneC group and TMEscore group, respectively.
Figure S10: +e expression levels of immune checkpoint
genes in TMEC group, GeneC group and TMEscore group,
respectively. Figure S11: +e expression levels difference of
genes in TGF/EMTpathway in TMEC group, GeneC group
and TME score group, respectively. (Supplementary
Materials)

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A Cancer
Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] S. Ghafouri-Fard, T. Khoshbakht, B. M. Hussen, M. Taheri,
and M. Samsami, “Emerging role of circular RNAs in the
pathogenesis of ovarian cancer,” Cancer Cell International,
vol. 22, no. 1, p. 172, 2022.

[3] C. Jin, M. Yuan, H. Bu, and C. Jin, “Antiangiogenic strategies
in epithelial ovarian cancer: mechanism, resistance, and
combination therapy,” Journal of Oncology, vol. 2022, Article
ID 4880355, 15 pages, 2022.

[4] M. Kossai, A. Leary, J. Y. Scoazec, and C. Genestie, “Ovarian
cancer: a heterogeneous disease,” Pathobiology, vol. 85, no. 1-
2, pp. 41–49, 2018.

[5] L. Yang, S. Wang, Q. Zhang et al., “Clinical significance of the
immune microenvironment in ovarian cancer patients,”
Molecular Omics, vol. 14, no. 5, pp. 341–351, 2018.

[6] R. Liu, R. Hu, Y. Zeng, W. Zhang, and H. H. Zhou, “Tumour
immune cell infiltration and survival after platinum-based
chemotherapy in high-grade serous ovarian cancer subtypes:
a gene expression-based computational study,” EBioMedicine,
vol. 51, 2020.

[7] X. Mao, J. Xu, W. Wang et al., “Crosstalk between cancer-
associated fibroblasts and immune cells in the tumor mi-
croenvironment: new findings and future perspectives,”
Molecular Cancer, vol. 20, no. 1, p. 131, 2021.

[8] E. Becht, N. A. Giraldo, L. Lacroix et al., “Estimating the
population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression,” Genome
Biology, vol. 17, no. 1, p. 218, 2016.

[9] J. Racle, K. de Jonge, P. Baumgaertner, D. E. Speiser, and
D. Gfeller, “Simultaneous enumeration of cancer and immune
cell types from bulk tumor gene expression data,” Elife, vol. 6,
p. e26476, 2017.

[10] D. Aran, Z. Hu, and A. J. Butte, “xCell: digitally portraying the
tissue cellular heterogeneity landscape,” Genome Biology,
vol. 18, no. 1, p. 220, 2017.

[11] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enu-
meration of cell subsets from tissue expression profiles,”
Nature Methods, vol. 12, no. 5, pp. 453–457, 2015.

[12] J. L. Sepulveda, “Using R and bioconductor in clinical ge-
nomics and transcriptomics,” Journal of Molecular Di-
agnostics, vol. 22, no. 1, pp. 3–20, 2020.

[13] M. D. Wilkerson and D. N. Hayes, “ConsensusClusterPlus:
a class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573, 2010.

[14] R. Gaujoux and C. Seoighe, “A flexible R package for non-
negative matrix factorization,” BMC Bioinformatics, vol. 11,
no. 1, p. 367, 2010.

[15] B. Zhang, F. Chen, Q. Xu et al., “Revisiting ovarian cancer
microenvironment: a friend or a foe?” Protein Cell, vol. 9,
no. 8, pp. 674–692, 2018.

[16] K. Odunsi, “Immunotherapy in ovarian cancer,” Annals of
Oncology, vol. 28, 2017.

[17] M. Nowak and M. Klink, “+e role of tumor-associated
macrophages in the progression and chemoresistance of
ovarian cancer,” Cells, vol. 9, no. 5, p. 1299, 2020.

[18] T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of
regulatory T cells in ovarian carcinoma fosters immune
privilege and predicts reduced survival,” Nature Medicine,
vol. 10, no. 9, pp. 942–949, 2004.

[19] Q. Tan, H. Liu, J. Xu, Y. Mo, and F. Dai, “Integrated analysis of
tumor-associated macrophage infiltration and prognosis in
ovarian cancer,” Aging (Albany NY), vol. 13, no. 19,
pp. 23210–23232, 2021.

[20] J. Liu, Y. Wang, S. Yuan, J. Wei, and J. Bai, “Construction of
an immune cell infiltration score to evaluate the prognosis and
therapeutic efficacy of ovarian cancer patients,” Frontiers in
Immunology, vol. 12, Article ID 751594, 2021.

[21] X. Li, W. Liang, H. Zhao et al., “Immune cell infiltration
landscape of ovarian cancer to identify prognosis and
immunotherapy-related genes to aid immunotherapy,”
Frontiers in Cell and Developmental Biology, vol. 9, Article ID
749157, 2021.

[22] S. Cong, Q. Guo, Y. Cheng et al., “Immune characterization of
ovarian cancer reveals new cell subtypes with different
prognoses, immune risks, and molecular mechanisms,”
Frontiers in Cell and Developmental Biology, vol. 8, Article ID
614139, 2020.

[23] A. J. Boutilier and S. F. Elsawa, “Macrophage polarization
states in the tumor microenvironment,” International Journal
of Molecular Sciences, vol. 22, no. 13, p. 6995, 2021.

[24] V. Lafont, F. Sanchez, E. Laprevotte et al., “Plasticity of cδ

T cells: impact on the anti-tumor response,” Frontiers in
Immunology, vol. 5, p. 622, 2014.

[25] W. Li, J. Zeng, B. Luo, Y. Mao, Y. Liang, and W. Zhao, “High
expression of activated CD4(+) memory T cells and CD8(+)
T cells and low expression of M0 macrophage are associated
with better clinical prognosis in bladder cancer patients,” Xi
Bao Yu Fen Zi Mian Yi Xue Za Zhi, vol. 36, no. 2, pp. 97–103,
2020.

[26] S. Zhang, R. Royer, S. Li et al., “Frequencies of BRCA1 and
BRCA2 mutations among 1, 342 unselected patients with
invasive ovarian cancer,”Gynecologic Oncology, vol. 121, no. 2,
pp. 353–357, 2011.

Journal of Oncology 9

https://downloads.hindawi.com/journals/jo/2022/7745675.f1.zip
https://downloads.hindawi.com/journals/jo/2022/7745675.f1.zip


[27] M. J. Casey, C. Bewtra, L. L. Hoehne, A. D. Tatpati,
H. T. Lynch, and P. Watson, “Histology of prophylactically
removed ovaries from BRCA1 and BRCA2 mutation carriers
compared with noncarriers in hereditary breast ovarian
cancer syndrome kindreds,” Gynecologic Oncology, vol. 78,
no. 3, pp. 278–287, 2000.

[28] N. M. Anderson and M. C. Simon, “+e tumor microenvi-
ronment,” Current Biology, vol. 30, no. 16, pp. R921–R925,
2020.

10 Journal of Oncology


