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A novel signal-increased photoelectrochemical (PEC) biosensor for L-cysteine (L-Cys) was
proposed based on the Bi2MoO6–Bi2S3 heterostructure formed in situ on the indium–tin
oxide (ITO) electrode. To fabricate the PEC biosensor, Bi2MoO6 nanoparticles were
prepared by a hydrothermal method and coated on a bare ITO electrode. When L-Cys
existed, Bi2S3 was formed in situ on the interface of the Bi2MoO6/ITO electrode by a
chemical displacement reaction. Under the visible light irradiation, the Bi2MoO6–Bi2S3/ITO
electrode exhibited evident enhancement in photocurrent response compared with the
Bi2MoO6/ITO electrode, owing to the signal-increased sensing system and the excellent
property of the formed Bi2MoO6–Bi2S3 heterostructure such as the widened light
absorption range and efficient separation of photo-induced electron–hole pairs. Under
the optimal conditions, the sensor for L-Cys detection has a linear range from 5.0 × 10−11

to 1.0 × 10−4 mol L−1 and a detection limit of 5.0 × 10−12 mol L−1. The recoveries ranging
from 90.0% to 110.0% for determining L-Cys in human serum samples validated the
applicability of the biosensor. This strategy not only provides a method for L-Cys detection
but also broadens the application of the PEC bioanalysis based on in situ formation of
photoactive materials.

Keywords: photoelectrochemical sensor, Bi2MoO6–Bi2S3 heterostructure, L-cysteine, in situ formation reaction, ion
exchange reaction

INTRODUCTION

L-Cysteine (L-Cys), which is involved in the process of protein synthesis, affects the function of
protein and plays an important role in the life system (Palego et al., 2015). Its abnormal levels in
human serum are associated with lots of diseases, and thus it is considered a significant biomarker.
For instance, people with heart disease and liver injury often have low levels of L-Cys in their blood
(Wu et al., 2016), whereas people with Alzheimer’s disease and cancer often have high levels of L-Cys
(Li et al., 2014b; Huang et al., 2018). Therefore, monitoring the content of L-Cys in human body is
meaningful. Currently, some analytical methods such as high-performance liquid chromatography
(Deáková et al., 2015), mass spectrometry (Li et al., 2014a), fluorescence (Li et al., 2019), colorimetry
(Song et al., 2018), and photoelectrochemistry (PEC) (Peng et al., 2020) have been developed for
L-Cys detection.

PEC analysis, a fast, efficient, and low background analytical method, has attracted great attention
in recent years (Cao et al., 2021; Lv et al., 2021; Zhu et al., 2021). Until now, many sensing principles
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have been exploited and adopted for the PEC bioanalysis, such as
steric hindrance effect (Wang et al., 2019c; Meng et al., 2020),
electron donor/acceptor reaction (Li et al., 2017; Wang et al.,
2019b), exciton–plasmon interactions (Ma et al., 2016; Dong
et al., 2017), plasmon-enhanced effect (Li et al., 2016; Qiu et al.,
2018), and in situ growth reaction (Qiu and Tang, 2020). Of these,
the signaling mechanism based on the in situ growth reaction that
acts directly on the electrode is not only simple to operate but also
with a low background signal (Hou et al., 2016). For example, on
the basis of the reaction between L-Cys and copper compounds,
Zhu et al. (2017) constructed a PEC bioassay of L-Cys using a
CuO–Cu2O heterojunction as a photoactive material. By using
the reaction between Cu2+ and S2− from the WO3–Au–CdS
nanocomposite, Zhang et al. (2019) designed a PEC
immunoassay for the prostate-specific antigen. However, these
works have always quantified the targets based on the signal
decrease, which limits the sensitivity to some extent. By the
reaction between Ag+ and BiOI/Ni electrode, Yu et al. (2019a)
constructed a signal-increased biosensing system. In this system,
the AgI–Ag–BiOI Z-scheme heterojunction formed in situ greatly
enhanced the PEC response, achieving satisfied detection
sensitivity and stability. Considering the good performance
and the few reports of such strategy, exploiting the new in situ
growth reaction to construct signal-increased sensing systems
and extending their applications in PEC bioanalysis are urgent
and necessary.

Among various semiconductor materials, bismuth-based
semiconductors possess advantages of good biocompatibility
and highly visible light response (Chen et al., 2016; Zhou
et al., 2017; Yu et al., 2019b). Bi2MoO6, featuring non-toxic,
good stability, and adjustable morphology (Li et al., 2020), has
attracted wide attention. In addition, Bi2MoO6 has a layered
structure with a [Bi2O2]

2+ layer stuck between two MoO4
2− slabs,

which makes it have lots of active surfaces (Wu et al., 2018), while
the PEC performance of Bi2MoO6 leaves much to be desired due
to the rapid recombination between holes and electrons. In order
to restrain such recombination, constructing heterostructures is
one of the most effective strategies (Wang et al., 2019a; Liao et al.,
2021). As a method to form heterojunctions, ion exchange can be
excited by the differences in solubility of different substances and
helps maintain their original state to a large extent (Wang et al.,
2017). Intelligently, both Bi2MoO6 and Bi2S3 contain bismuth
element, and the solubility of Bi2S3 is far less than that of
Bi2MoO6. Based on this, whether the principle of the ion
exchange reaction can be used for in situ generation of
Bi2MoO6–Bi2S3 heterostructure and construction of a PEC
biosensor?

A signal-increased PEC biosensor for L-Cys detection was
proposed based on the in situ formation of a Bi2MoO6–Bi2S3
heterostructure on the indium–tin oxide (ITO) electrode. As
illustrated in Scheme 1, Bi2MoO6 nanoparticles were initially
coated on a bare ITO electrode. In the existence of L-Cys, Bi2S3
was generated in situ on the interface of Bi2MoO6/ITO by a
chemical displacement reaction between sulfur ions from L-Cys
and MoO6

6− from Bi2MoO6. The compact contact and the
matchable band-edge levels of Bi2MoO6 and Bi2S3 formed a
heterostructure, which broadens the light absorption range

and effectively restrains the electron–hole recombination,
producing an improved photocurrent response. The increased
concentrations of L-Cys could generate more amount of Bi2S3 on
the Bi2MoO6/ITO interface, thereby boosting the photocurrent
response. By this means, a signal-increased PEC system to
quantitatively detect L-Cys was established by measuring the
photocurrent change of the photoelectrode.

EXPERIMENTAL

Chemicals and Reagents
Bismuth nitrate (Bi(NO3)3·5H2O), ethylene glycol (EG), and
sodium molybdate (Na2MoO4·2H2O) were purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). L-Serine
(L-Ser), glycine (Gly), and L-tyrosine (L-Tyr) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (China). L-Cys and
glutathione (GSH) were obtained from Aladdin Reagent Inc.
(Shanghai, China). Ascorbic acid (AA), sodium sulfate
(Na2SO4), and sodium sulfite (Na2SO3) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (China). Phosphate buffer
solution of 0.01 M (PBS, pH 7.4) was prepared with
NaH2PO4.2H2O, K2HPO4.3H2O, and KCl. All chemical
reagents were of analytical grade, and all aqueous solutions
were prepared with ultrapure water (18.2 MΩ cm).

Apparatus
The PEC system consists of a CHI660E electrochemical
workstation (Shanghai Chenhua Apparatus Corporation,
China) and a PEAC 200A PEC reaction instrument (Tianjin
Aidahengsheng Science-Technology Development Co., Ltd.,
China). PEC experiments and linear sweep voltammetry (LSV)
curves were conducted on the PEC system using a three-electrode
system: an ITO electrode with a geometric area of 0.25 cm2 as the
working electrode, a saturated Ag/AgCl electrode as the reference
electrode, and a Pt wire as the counter electrode. The
electrochemical impedance spectra (EIS) were implemented on
a CHI660E electrochemical workstation in 5.0 mMK3 [Fe(CN)6]/
K4 [Fe(CN)6] solution containing 0.1 M KCl. The scanning
electron microscope (SEM) images were acquired from the
Hitachi S-4800 SEM (Tokyo, Japan). UV-visible diffuse
reflection spectra were recorded using a PerkinElmer Lambda
950 UV-visible spectrophotometer (United States). X-ray
photoelectron spectroscopy (XPS) images were recorded on a
K-Alpha X-ray photoelectron spectrometer (Thermo Fisher
Scientific Co., Waltham, MA, United States). Fourier
transform infrared (FT-IR) spectra were acquired from the
Bruker TENZOR 27 spectrophotometer (Bruker Optics,
Germany).

Synthesis of Bi2MoO6 Nanoparticles
Bi2MoO6 was synthesized by a hydrothermal method (Dai et al.,
2018). First, 0.4210 g of Na2MoO4·2H2O was dissolved in 5 ml of
EG under stirring for 0.5 h, and 1.6866 g of Bi(NO3)3·5H2O solution
was prepared in the same way. After mixing them together, 20 ml of
ethanol was added dropwise under stirring. Second, the resulted
solution was transferred into the Teflon-lined stainless steel
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autoclave, heated to 160°C for 12 h, and cooled to room
temperature. Finally, the resultant product collected by
centrifugation was washed three times with ethanol as well as
water, dried overnight at 80°C, and then annealed at 400°C for
3 h to obtain Bi2MoO6 nanoparticles.

Fabrication of the Photoelectrochemical
Biosensor
Bi2MoO6 suspension of 20 microliters with a concentration of
3 mg ml−1 was evenly dropped onto the cleaned ITO electrode
and dried at 60°C for 20 min. Afterward, 20 µL of L-Cys solution
was cast onto the surface of Bi2MoO6/ITO gently. After the
reaction at 37°C for 0.5 h, the electrode was washed with water
and then immersed in 0.01 M PBS (pH 7.4) containing 0.1 M AA
for PEC measurement.

RESULTS AND DISCUSSION

Material Characterization
The morphology of Bi2MoO6 was characterized using the SEM.
Figures 1A,B depicted that Bi2MoO6 possessed a nanosheet-
assembled spherical structure, and the diameters of the
microsphere were less than 3 µm. The stacked sheet structure
makes the material have a large specific surface area, which
benefits for the subsequent ion exchange reaction and the PEC

detection. After incubated with L-Cys, parts of nanosheets
granulated on the microsphere of Bi2MoO6 (Figure 1C),
indicating the interaction between Bi2MoO6 and L-Cys.
Additionally, the elemental mapping images in Supplementary
Figure S1 suggested that Bi, Mo, O, and S elements existed in the
material, indicating the reaction between Bi2MoO6 and L-Cys.

To characterize the chemical composition and chemical state
of Bi2MoO6 before and after reacting with L-Cys, XPS analysis
was performed. As shown in Figure 2A, the elements of Bi, Mo,
and O exist in Bi2MoO6 samples, whereas a new element of sulfur
appeared after the reaction between Bi2MoO6 and L-Cys. Peaks in
Bi 4f spectra in Figure 2B showed that two main peaks at 159.0
and 164.3 eV belong to Bi 4f5/2 and Bi 4f7/2 in Bi2MoO6 (Jia et al.,
2018), shifted to 159.3 and 164.6 eV after the chemical reaction.
This chemical shift originated from the formation of new bonds
between bismuth and sulfur which changed the original chemical
environment of bismuth atoms. The high-resolution XPS spectra
of Mo 3d, S 2p, and O 1s of Bi2MoO6 after reacting with L-Cys
were also conducted. The binding energy at 232.3, 235.4, 159.2,
164.4, and 531.1 eV pictured in Figures 2C–E were ascribed to
Mo 3d5/2, Mo 3d3/2, S 2p3/2, S 2p1/2, and O 1 s, respectively. The
result further witnessed the in situ formation of Bi2S3 on Bi2MoO6

(Li et al., 2020).
The optical property of Bi2MoO6 before and after reacting

with L-Cys was studied by FT-IR spectroscopy and UV-vis DRS.
As can be seen from Figure 3A, the characteristic peak at
712 cm−1 existed both in the FT-IR spectrum of Bi2MoO6 and

SCHEME 1 | Illustration of the proposed PEC sensor.

FIGURE 1 | SEM images of Bi2MoO6 (A,B) and Bi2MoO6 after reacting with L-Cys (C).
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that after reacting with L-Cys, attributing to the symmetrical
tensile vibration of the top oxygen atom of MoO6

6− (Zhang et al.,
2010; Li et al., 2014a; Tian et al., 2015). Compared with the FT-IR
spectrum of Bi2MoO6, a new peak at 842 cm−1 appeared in the
chart of Bi2MoO6 after the reaction with L-Cys. This new peak
corresponds to the stretching vibration of Bi–S, indicative of the
formation of Bi2S3 through the reaction between Bi2MoO6 and
L-Cys (Zhao et al., 2017). The UV-vis DRS in Figure 3B
suggested that the formation of Bi2MoO6–Bi2S3 widened the
absorption range of the light irradiation and thus is benefit for
the subsequent PEC analysis.

Condition Optimizations
As a photoactive material to construct the photoelectrode, the
concentration of Bi2MoO6 plays a crucial effect on the PEC
performance of the sensor. The photocurrent signal of the
Bi2MoO6/ITO electrode constructed with varied concentration
of Bi2MoO6 was recorded, and the photocurrent response

reached a maximum value when the concentration of Bi2MoO6

was 3 mgml−1 (Supplementary Figure S2). So, 3 mgml−1

Bi2MoO6 was used for the subsequent experiments. In addition,
the reaction time of Bi2MoO6 with L-Cys was optimized.
According to Supplementary Figure S3, the photocurrent
response gradually enhanced with the increase of reaction time,
but the signal tended to stabilize when the reaction time reached
30min. Therefore, 30 min was used as the reaction time.

Electrochemical and Photoelectrochemical
Characterizations
To explore the interfacial electrochemical behavior of the
biosensor, EIS analysis was conducted. As seen from
Figure 4A, the bared ITO electrode displayed a small
electron-transfer resistance (Ret), whereas the Bi2MoO6/ITO
electrode gave an increased Ret because the coating of the
semiconductor impedes the electron transfer. After Bi2MoO6/ITO

FIGURE 2 | XPS survey spectra of Bi2MoO6 before and after reacting with L-Cys (A); high-resolution XPS spectra of Bi 4f (B), Mo 3d (C), S 2p (D), and O 1s (E).

FIGURE 3 | FT-IR spectra of Bi2MoO6 and Bi2MoO6–Bi2S3 (A); UV-vis DRS of Bi2MoO6 and Bi2MoO6–Bi2S3 (B).
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was incubated with L-Cys, the Ret declined. This result may be
because the in situ formation of Bi2S3 on the interface of
Bi2MoO6/ITO improved the electrical conductivity of the
electrode. The photocurrent responses of the sensor at
different modification stages were also investigated. As
illustrated in Figure 4B, almost no PEC response was shown
on the bare ITO electrode, while an evident photocurrent
response was observed when Bi2MoO6 was immobilized on
the electrode. After reacting with L-Cys (10 μmol L−1), the
Bi2MoO6/ITO electrode gave a much stronger photocurrent
response. This is because the compact heterostructure formed
between Bi2S3 and Bi2MoO6 by in situ formation of Bi2S3 on
Bi2MoO6 and the matchable band-edge levels of Bi2MoO6 and
Bi2S3 could effectively accelerate the transfer of the photo-excited
charge carriers. The valence band (VB) and conduction band
(CB) energy levels of Bi2MoO6 and Bi2S3 were determined by the
electrochemical method (Supplementary Figure S4), and the
charge transfer in Bi2MoO6–Bi2S3 heterostructure is illustrated in
Scheme 2. Under the light irradiation, the photo-generated
electrons in the CB of Bi2S3 (−0.36 eV) easily transferred to
the CB of Bi2MoO6 (−0.17 eV), whereas the holes in the VB
of Bi2MoO6 (2.69 eV) moved to the VB of Bi2S3 (1.33 eV).

Analytical Performance
The PEC response of the Bi2MoO6/ITO electrode toward L-Cys
was explored. As depicted in Figure 5A, the photocurrent
intensity enhanced along with the increase in L-Cys
concentration. The reason of this variation trend may be that
more L-Cys increased the amount of Bi2S3 in situ formed on the
Bi2MoO6/ITO electrode, thus facilitating the charge transfer and
boosting the photocurrent enhancement. As demonstrated in
Figure 5B, the photocurrent intensity of the sensor showed a
linear relationship with the logarithm of L-Cys concentrations
when the concentrations varied in the range of 5.0 × 10−11–1.0 ×
10−4 mol L−1. The linear equation is I = 128.7 + 8.1 log CL-Cys (R

2

= 0.997). The limit of detection is 5.0 × 10−12 mol L−1. Compared
with some reported methods, this method demonstrates high
detection sensitivity and a wide linear range for L-Cys (Table 1).
The excellent performance of the sensor can be attributed to the
in situ formation of Bi2MoO6–Bi2S3 heterostructure, which
possesses an excellent photoelectric response under light
irradiation.

Selectivity, Reproducibility, and Stability
The selectivity of the sensor was evaluated by testing the PEC
response of Bi2MoO6/ITO toward Gly, L-Tyr, L-Lys, GSH, L-Ser,
SO3

2-, and SO4
2- and the mixture of the aforementioned

substances with L-Cys (all the aforementioned solutions have
a concentration of 5 μmol L−1). As pictured in Figure 6A, the
PEC responses of Bi2MoO6/ITO to Gly, L-Tyr, L-Lys, GSH, and
L-Ser showed no obvious change compared with the blank
solution, whereas the response of L-Cys as well as the mixture
of the aforementioned interferents with L-Cys exhibited an
obvious enhancement, thus demonstrating good selectivity.
The reproducibility of the sensor was studied by intra-assay
and inter-assay of 10 μmol L−1 L-Cys. The relative standard
deviations (RSDs) of intra-assay by using five Bi2MoO6/ITO
electrodes in the same batch and inter-assay of the electrodes
in different batches were 3.0 and 4.2%, respectively, indicating
good reproducibility of the sensor. In addition, the photocurrent
response of Bi2MoO6/ITO for 100 nmol L−1 L-Cys within 4 weeks
of storage was investigated to study the stability of the sensor. As
shown in Figure 6B, the photocurrents show negligible change
with RSDs less than 5.1%. The signal of this system for 15 cycles
was monitored. In Supplementary Figure S5, the photocurrent

FIGURE 4 | EIS (A) and photocurrent intensity (B) of bare ITO, Bi2MoO6/ITO, and Bi2MoO6/ITO after reacting with L-Cys.

SCHEME 2 | Charge transfer of Bi2MoO6–Bi2S3 under visible light
irradiation.
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was stable with a RSD of 3.2%. The data indicate the good stability
of the sensor.

Applications
To explore the practical application of the sensor, seven undiluted
human serum samples from Xinyang Central Hospital were
measured. As listed in Supplementary Table S1, compared with
the reference method (enzymatic cycling) used by the hospital, the
relative errors between the reference method and this method are
less than 6.1%, and the RSDs are nomore than 6.2%. In addition, the
standard addition test results suggest that the recoveries of L-Cys are

in the range of 90.0–110.0% with RSDs less than 6.8%, as shown in
Supplementary Table S2. The aforementioned results show that this
method has good accuracy and feasibility.

CONCLUSION

In summary, a facile and signal-increased PEC sensor for L-Cys
detection was developed based on the in situ formation of
Bi2MoO6–Bi2S3 heterostructure. In virtue of the chemical
reaction between L-Cys and Bi2MoO6, Bi2S3 was formed in situ

FIGURE 5 | Photocurrent responses of Bi2MoO6/ITO corresponding to L-Cys with varied concentrations (A); relationship between photocurrent changes and
L-Cys concentrations (B); insert of part B, calibration curve between photocurrents and the logarithm of the L-Cys concentrations.

TABLE 1 | Comparison between this method and the reported methods for L-Cys detection.

Method Material Linear
range (mol L−1)

LOD (mol L−1) Reference

Amperometry Y2O3NPs/N-rGO 1.3 × 10−6–7.2 × 10−4 8.0 × 10−7 Yang et al. (2016)
Fluorescence Carbon dots 0.0–3.0 × 10−5 3.4 × 10−10 Zong et al. (2014)
Colorimetry CuNPs 0.0–2.5 × 10−5 1.0 × 10−7 Ahmed et al. (2016)
Electrochemiluminescence PtNPs–RubRMs 1.0 × 10−9–5.0 × 10−4 3.3 × 10−10 Wu et al. (2019)
Ratiometric absorption AuNPs–CS/PLNPs-IBA 1.0 × 10−8–5.5 × 10−6 2.2 × 10−9 Li et al. (2018)
Chronoamperometry PB–AuNPs–Pd 3.0 × 10−7–4.0 × 10−4 1.8 × 10−7 Pandey et al. (2012)
Cyclic voltammetry PPy/GQDs@PB 2.0 × 10−7–1.0 × 10−3 1.50 × 10−7 Wang et al. (2016)
PEC Cu2SnS3@SnS2 1.0 × 10−10–3.0 × 10−4 6.8 × 10−11 Wang et al. (2020)

1.0 × 10−8–1.0 × 10−4 8.5 × 10−9

PEC Bi2MoO6 5.0 × 10−11–1.0 × 10−4 5.0 × 10−12 This work

FIGURE 6 | Selectivity (A) and stability (B) of the PEC sensor.
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on the surface of Bi2MoO6, and the signal-increased sensing system
endowed the sensor with high sensitivity. The Bi2MoO6–Bi2S3
heterostructure showed effective photoelectric conversion
efficiency and thus demonstrated sensitive photocurrent
response under light irradiation. Thanks to the fine
performance of the Bi2MoO6–Bi2S3 heterostructure, the sensor
for L-Cys achieved excellent performance in sensitivity, selectivity,
and stability. The proposed method based on the in situ growth
reaction not only proposes a new strategy for L-Cys detection but
also opens up a new perspective for PEC bioanalysis.
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