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Abstract
Aim: Despite the large literature documenting the negative effects of invasive 
grasses, we lack an understanding of the drivers of their habitat suitability, especially 
for shade-tolerant species that do not respond positively to canopy disturbance. We 
aimed to understand the environmental niche and potential spatial distribution of a 
relatively new invasive species, wavyleaf basketgrass (Oplismenus undulatifolius (Ard.) 
Roem. & Schult, WLBG) by leveraging data available at two different spatial scales.
Location: Mid-Atlantic region of the United States.
Methods: Maximum entropy modeling (Maxent) was used to predict the habitat suit-
ability of WLBG at the regional scale and the landscape scale. Following variable 
evaluation, model calibration, and model evaluation, final models were created using 
1,000 replicates and projected to each study area.
Results: At the regional scale, our best models show that suitability for WLBG was 
driven by relatively high annual mean temperatures, low temperature seasonality and 
monthly range, low slope, and high cumulative Normalized Difference Vegetation 
Index (NDVI). At the landscape scale, suitability was highest near roads and streams, 
far from trails, at low elevations, in sandy, moist soil, and in areas with high NDVI.
Main Conclusions: We found that invasion potential of this relatively new invader ap-
pears high in productive, mesic habitats at low slope and elevations. At the regional 
scale, our model predicted areas of suitable habitat far outside areas where WLBG 
has been reported, including large portions of Virginia and West Virginia, suggests 
serious potential for spread. However, large portions of this area carry a high ex-
trapolation risk and should therefore be interpreted with caution. In contrast, at the 
landscape level, the suitability of WLBG is largely restricted to areas near current 
presence points, suggesting that the expansion risk of this species within Shenandoah 
National Park is somewhat limited.
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1  | INTRODUC TION

Drivers of invasive plant species establishment have been a cen-
tral topic in ecology for several decades. The importance of this 
topic is relevant not only for monitoring and management, but also 
vital to our basic understanding of invasive plants and their niches. 
Much of the research in this field has focused on local-scale deter-
minants of species or community characteristics, such as propa-
gule pressure, species traits, resource availability, and disturbance 
(Burke & Grime, 1996; Davis, Grime, & Thompson, 2000; Eschtruth 
& Battles,  2009; Fridley et  al.,  2007; Luken,  2003; Meekins & 
McCarthy, 2001). At the landscape scale, however, there has been 
limited progress in determining characteristics associated with in-
creased susceptibility of communities and ecosystems to invasions 
(Hayes & Barry, 2008; Williamson & Fitter, 1996).

In some cases, the size of a species' geographical range size and 
its native climate can predict invasiveness (Hayes & Barry,  2008; 
Williamson & Fitter, 1996). However, it is unclear which specific en-
vironmental tolerances at the landscape scale determine invasive es-
tablishment. By focusing on a single species or plant functional type, 
we can begin to refine our understanding.

Invasive grass species have caused some of the most destruc-
tive and widespread invasions globally (Barden, 1987; Brewer, 2011; 
D'Antonio & Vitousek, 1992; D'Antonio, Hughes, Mack, Hitchcock, 
& Vitousek,  1998; Pysek,  1998; Williams & Baruch,  2000; White, 
Campbell, & Kemp, 1997) but we lack a clear understanding of the 
landscape variables that contribute to their potential distribution 
and the likelihood that areas will serve as suitable habitat. Even 
less is known regarding the suitability of shade-tolerant grass spe-
cies, as most studies on invasive plants focus on species that re-
spond positively to disturbance (Martin, Canham, & Marks, 2009). 
Understanding these landscape variables will not only aid in deter-
mining the factors associated with invasion, but also in predicting 
potential spread and sites for detection and eradication (Beauchamp 
et al., 2013; Brown, Spector, & Wu, 2008; Guisan & Thuiller, 2005; 
Jarnevich & Reynolds, 2011; Lemke, Hulme, Brown, & Tadesse, 2011; 
Liang, Clark, Kong, Rieske, & Fei, 2014; Yang, Kushwaha, Saran, Xu, & 
Roy, 2013). From a management perspective, effective early predic-
tion and rapid response can mean the difference between effective 
eradication and the tedious, long-term management of a harmful 
invader (Jarnevich, Holcombe, Barnett, Stohlgren, & Kartesz, 2010; 
Rejmánek, 2000). In addition, monitoring areas of high invasion risk 
can increase the probability of detection (Lodge et al., 2006).

Ecological niche models (ENMs), also known as species distri-
bution models (SDMs) or habitat suitability models, are a widely 
used method to describe the potential extent of invasive species 
spread, highlight priority locations for future surveying, and over-
come sparse presence and absence data (Beauchamp et  al.,  2013; 
Jarnevich & Reynolds, 2011; Lemke et al., 2011; Liang et al., 2014; 
Padalia, Srivastava, & Kushwaha, 2014). They can be used to esti-
mate current ranges, expected habitat suitability of an expand-
ing species, change in suitability over time, and to estimate niches 
(Warren & Seifert, 2011).

Despite the popularity of using ENMs for predicting invasive 
species’ future distributions, extrapolating presence to a new geo-
graphical range introduces many challenges. First, modeled climate 
niches of invasive plant species may shift when they are intro-
duced to new continents, with many niches shown to expand in 
size (Atwater, Ervine, & Barney, 2018). Lack of niche conservatism 
might be the result of changed biotic interactions, such as a release 
from predators or competitors (Keane & Crawley, 2002), niche evo-
lution (Jiménez-Valverde & Lobert, 2011), or acclimation to new en-
vironments (Duncan, Cassey, & Blackburn, 2009; Pearman, Guisan, 
Broennimann, & Randin, 2008). Second, transferring ENMs to dif-
ferent climate scenarios or new ranges can result in problematic ex-
trapolations and must be handled with great care (Elith et al., 2011; 
Ervin & Holly, 2011; Warren & Seifert, 2011). Models created within 
the geographic range of presence localities, therefore, are more reli-
able because correlations between environmental variables tend to 
be consistent in that range (Elith & Leathwick,  2009). In addition, 
the use of background samples for pseudo-absences in the invaded 
range is problematic because the species may still be expanding 
in extent (Rodda, Jarnevich, & Reed, 2011). Many studies have at-
tempted to address some of these challenges by restricting the area 
from which background points can be selected and from the use of 
expert opinion (Elith, Kearney, & Phillips, 2010; Mainali et al., 2015; 
Murray et al., 2009; Padalia et al., 2014). Despite these limitations, 
ENMs remain one of the only tools available to overcome sparse 
data, understand drivers of invasion, and make predictions regard-
ing potential invasive ranges from a landscape perspective (Elith 
et al., 2006; Jarnevich & Reynolds, 2011; Lemke et al., 2011).

To date, there are very few ENMs for shade-tolerant grass spe-
cies, and these studies reveal that a wide variety of environmental 
variables might drive the distributions of these species. These varied 
results may stem from variation in species' niches or the variation 
in techniques and environmental variables being used. Both Bush 
(2015) and Lopez-Alvarez et al. (2015) revealed that annual precip-
itation was an influential variable in their models. Lopez-Alvarez 
et al. also reported that temperature seasonality and mean diurnal 
range were highly contributing variables, while Bush found that 
maximum yearly temperature was the highest contributing variable 
and Beauchamp et al.  (2013) found that annual mean temperature 
was a highly contributing variable. Elevation contributed highly to 
ENMs by Beauchamp et al. (2013) and Bush (2015), while distance to 
hydrologic features also contributed highly to Bush's (2015) ENM. In 
Beauchamp et al.'s model, soil classification was the highest contrib-
uting variable, while Ervin and Holly (2011) found that canopy cover, 
silt content, and cation exchange capacity were the highest contrib-
uting variables in their model of the invasive cogongrass.

Wavyleaf basketgrass (Oplismenus undulatifolius (Ard.) Roem. 
& Schult) (WLBG) is a relatively new invasive grass species native 
to Europe and Asia that was introduced to the United States in 
1996 near Baltimore, Maryland (Beauchamp et al., 2013; Peterson 
et al., 1999) (Figure 1). There is a growing concern for the potential 
negative effects this species may have on eastern forests. Many have 
observed its invasion into shaded, undisturbed understories and its 
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potential for both long-distance dispersal due to its sticky spike-
lets and extensive short-distance dispersal via stolons (Beauchamp 
et  al.,  2013; Scholz,  1981). The USDA's weed risk assessment has 
classified this species as high risk in terms of establishment, spread, 
and impact potential, but this includes a high level of uncertainty 
(USDA, 2012).

Beauchamp et  al.  (2013) evaluated WLBG's habitat suitabil-
ity with Maxent and found that suitable habitat was concentrated 
around known invasion sites. They also found that 1% of their study 
area (77,000 ha) was predicted as highly suitable. Their best model 
for predicting WLBG suitable habitat contained all 24 of their envi-
ronmental variables, but annual mean temperature, elevation, and 
soil classification were the top contributing variables.

Despite the valuable insights gained from Beauchamp et al.'s 
model, new insights into the suitable habitat of WLBG can be gained 
with the addition of new data and modeling techniques. The num-
ber of WLBG presence points has more than quadrupled since 2013 
(2,364 vs. 505) (EDDMapS, 2019), which suggests that the variety 
of environments that have been invaded has increased, leading to 
more insightful predictions about the factors influencing WLBG 
invasion. In addition, techniques such as multiple model replicates 
(Jarnevich & Reynolds, 2011; Liang et al., 2014; Phillips, Anderson, & 
Schapire, 2006), restricting the area from which background points 
can be selected (Elith et  al.,  2010; Jarnevich & Reynolds,  2011; 
Mainali et al., 2015; Vanderwal, Shoo, Graham, & Williams, 2009), 
reducing model dimensionality by dropping correlated variables 
(Cobos, Peterson, Barve, & Osorio-olvera, 2019; Elith et al., 2010; 
Lemke et al., 2011; López-Alvarez et al., 2015), the use of AIC for 
model evaluation (Warren & Seifert, 2011), and investigating com-
binations of regularization parameters, feature classes, and sets of 
predictors (Cobos et  al.,  2019; Peterson, Cobos, & Jim,  2018) can 
greatly aid in model fitting and evaluation.

We were also interested in investigating WLBG habitat suitabil-
ity on more than one spatial scale. The dominant methodology for 
ENMs relies largely on climatic variables (Elith et al., 2010; López-
Alvarez et al., 2015; Phillips et al., 2006), but at finer spatial scales 
these climatic predictors may not be informative or cannot be used 
due to their coarse spatial resolution. Predictors such as soil pH, 
soil texture, and elevation may, therefore, reveal patterns regarding 
suitability that cannot be gleaned from climatic variables alone. In 
addition, land managers wishing to better understand whether they 
can expect a species invasion would benefit from research regarding 
what factors are important at finer spatial scales. Therefore, we in-
vestigated potential environmental predictors at both a regional and 
landscape scale with the goal of better understanding the contribu-
tion of a variety of predictors across scales.

Given how little is known about invasions by shade-tolerant 
grasses, our primary objective of this study was to start building a 
consensus on the habitat suitability of shade-tolerant grass species 

F I G U R E  1   Image of Oplismenus undulatifolius (wavyleaf 
basketgrass, WLBG). Photograph by Anna Bowen

F I G U R E  2   WLBG presence points 
(404 points) used for maximum entropy 
modeling at the regional scale (a) and at 
the landscape scale (82 points) in SHEN (b)
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using WLBG as a study species. While suitability might increase 
closer to rights of way for many invaders due to increased levels of 
disturbance (Mortensen, Rauschert, Nord, & Jones, 2009), in con-
trast, shade-tolerant grasses may rely more heavily on forest cover 
or soil characteristics. Our second objective was to compare and 
contrast drivers that are important at different spatial scales. Last, 
we also compare our results to those of Beauchamp et al. (2013) in 
order to help determine whether an increased number of presence 
points alter the habitat suitability of WLBG. Our overall goals for 
this study are to update the geographic distribution and help predict 
areas of future invasion with a comprehensive data set and analysis.

2  | METHODS

2.1 | Regional-scale model

To create a maximum entropy model (Maxent) for WLBG at the re-
gional scale, we first selected a study area that included Delaware, 
District of Columbia, Maryland, New Jersey, Pennsylvania, Virginia, 
and West Virginia (Figure  2a). These states were chosen because 
WLBG either occurs in that state or a directly adjacent state 
(EDDMapS, 2019).

We compiled 2,364 WLBG presence points from three sources: 
a 2016 survey for WLBG in Shenandoah national park (Bowen 
and Stevens, unpub. data), previously discovered presence points 
from Shenandoah park staff (J. Hughes, pers. communication), 
and from the early detection and distribution mapping system 
(EDDMapS, 2019). To reduce the amount of overfitting around spa-
tially autocorrelated points, we spatially filtered these points down 
to one point per 250 m2 cell (Beauchamp et al., 2013; Jarnevich & 
Reynolds, 2011; Mainali et al., 2015), which resulted in 404 points 
total (Figure  2a). The minimum, maximum, and mean distance be-
tween all points was 250 m, 368,037 m, and 1,800 m, respectively.

Thirty-eight environmental layers were obtained for predictors 
in Maxent and were clipped to the study area at 250 m2 resolution 
(Table S1). Predictors included climate variables from BIOCLIM v. 2 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), phenological vari-
ables (U.S. Geological Survey,  2016), topographical variables (U.S. 
Geological Survey,  2013), distance to roads (USDA NRCS,  2016), 
distance to streams (USDA NRCS,  2016), and soil variables (Soil 
Survey Staff,  2018) (Table  S1). Pairwise Pearson's correlations for 
predictor values across the entire study area were used to deter-
mine collinearity between all variables (r ≥ .8 or r ≤ −.8) (Jarnevich & 
Reynolds, 2011; Lemke et al., 2011). Half of these 38 variables were 
dropped due to collinearity, resulting in 19 variables. We chose to 
avoid categorical variables such as land cover and soil type in favor of 
continuous variables due to the tendency for Maxent to overempha-
size the importance of categorical variables (M. Cobos, pers. comm.).

These 19 variables were further investigated and reduced to 10 
variables to avoid potential overfitting and computational limitations 
(Cobos et al., 2019; Townsend Peterson, Papeş, & Eaton, 2007). This 
investigation was done by evaluating the output of a preliminary set 

of 70 candidate models and selecting the top predictors for use in final 
model calibration. This set of 70 candidate Maxent models contained 
all possible combinations of all 19 predictors, 14 regularization param-
eter values (0.1–1 at intervals of 0.1 and 2–5 at intervals of 1), and five 
feature classes (l, lq, lqp, lqpt, and lqpth, where l = linear, q = quadratic, 
p = product, t = threshold, and h = hinge), using the kuenm package in R 
(Cobos et al., 2019). The regularization parameter controls the intensity 
of the chosen feature class and can smooth these functions in order 
to prevent overfitting (Morales, Fernández, & Baca-González, 2017). 
Feature classes, on the other hand, allow mathematical transforma-
tions of the data in order for complex (or simple) relationships to be 
modeled (Morales et al., 2017). There have been several recent calls 
for investigating these parameter options, as default values may not 
always be appropriate and do not penalize model complexity (Cobos 
et al., 2019; Phillips & Dudík, 2007; Warren & Seifert, 2011).

Receiver operating characteristic (ROC) curves, which measure 
model performance, can become inflated with over-parameter-
ization (Elith et al., 2010; Vanderwal et al., 2009), so the following 
steps were taken both in preliminary and final model calibration to 
avoid ROC inflation. We restricted the area from which background 
points were selected using a buffer indicating how far WLBG could 
have reached if conditions were suitable (Elith et al., 2010) using the 
distance between the earliest record of WLBG (K. Kyde, pers. com-
munication) and the maximum distance from that record to another 
presence point. Background points (10,000) were then created 
within that buffer and used for model creation. 25% of presence 
points were set aside for model testing (Liang et al., 2014; Phillips 
et al., 2006). Model iterations, therefore, contained 303 training and 
101 testing points.

We evaluated the model performance of these 70 candidate 
models based on significance (partial ROC with 500 iterations and 
50% of data for bootstrapping), omission rates (E = 5%), and model 
complexity (AICc) (Cobos et al., 2019). We then used the jackknife 
output of the best model to select the top ten contributing variables, 
using the sum of the gain with only that variable and the largest gain 
lost without that variable. The final set of ten variables were as fol-
lows: annual mean temperature, temperature seasonality, tempera-
ture annual range, diurnal range, annual precipitation, precipitation 
seasonality, end of season time (EOST), time-integrated NDVI (TIN), 
elevation, and slope. Temperature seasonality represents the varia-
tion in temperature across the year (standard deviation * 100), while 
diurnal range is a measure of monthly temperature range (mean of 
monthly (max temp  −  min temp)). EOST is the ending time of the 
growing season (in day of the year), while TIN is the cumulative value 
of NDVI from the start to the end of the growing season (unitless—
based on accumulated NDVI units).

Using these 10 predictor variables, 70,910 candidate models were 
created, using all possible combinations of at least two of those ten 
variables (1,013 sets of variables), the 14 regularization parameters 
and 5 response feature classes as above, as well as the same back-
ground point selection and proportion of testing and training points.

Once the best model was selected using the same measures of 
performance as with preliminary model calibration (above), a final 
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model was created by transferring this best model to the full study 
area. We ran 1,000 replicates of this model by bootstrapping 50% 
of the testing data. We compared the response curves for each of 
the following model outputs: free extrapolation, extrapolation with 
clamping, and no extrapolation (Cobos et al., 2019) and selected the 
model with the most realistic output curves, which was extrapola-
tion with clamping. Finally, these extrapolation risks were evaluated 
with the mobility-oriented parity (MOP) metric, which calculates 
multivariate distances between points in the projection and calibra-
tion regions (Owens et al., 2013). It is vital to understand extrapola-
tion risks when transferring a model to a new geographical area or to 
a new time period to avoid making overly strong conclusions regard-
ing predicted suitable areas (Owens et al., 2013). Extrapolation may 
occur in a variety of ways. Strict extrapolation occurs when values 
within the study area are outside the range of those within the back-
ground training area, while multivariate or combinational extrapola-
tion occurs when values may be within the same range but represent 
new combinations of predictors (Owens et al., 2013).

Four maps were created with the results of final model cre-
ation: a map of mean predicted suitable habitat between the 1,000 
replicates, a binary map showing predicted suitable and unsuit-
able habitat using the maximum training sensitivity plus specificity 
threshold calculated by Maxent (mean threshold value across the 
1,000 runs) (Lemke et al., 2011; Liang et al., 2014), a map of stan-
dard deviation between predictions from these replicates (Jarnevich 
& Reynolds, 2011), and a map of extrapolation risk. In addition, the 
area of suitable habitat (prediction ≥ 0.224 via the maximum training 
sensitivity plus specificity threshold) and highly suitable habitat (pre-
diction ≥ 0.5) (Beauchamp et al., 2013) was calculated using the mean 
model and the latter was compared to the area found in Beauchamp 
et al.'s (2013) model within an estimate of their study area.

2.2 | Landscape-scale model

Shenandoah National Park (SHEN) was used as a case study for a 
landscape-scale model of habitat suitability for WLBG. Not only 
does SHEN occupy a large elevational range and a variety of for-
est habitats, the staff at this park have had an active interest in 
the spread of WLBG within the park since its discovery in 2005 
(J. Hughes, pers. comm.). Over 1,000 presence points have been 
recorded in SHEN, both from haphazard staff surveys and from a 
stratified survey throughout the park in 2016 (Bowen and Stevens, 
unpub. data, J. Hughes, pers. comm.).

As with the regional-scale model, presence points (1,579) were 
compiled and spatially filtered to one point per 30  m2 cell to avoid 
overfitting (475 points). However, initial runs of this model indicated 
that overfitting was likely to have occurred due to (a) the high con-
centration of higher prediction values immediately surrounding pres-
ence points and (b) the appearance of high spatial autocorrelation for 
presence points despite the filtering process. Therefore, points were 
further filtered to one point per 250 m2 cell as with the regional model, 
this time using the exact location of each point rather than the centroid 

of the 250 m2 cell. This filtering reduced the number of points to 82 and 
reduced clustering (Figure 2b). The minimum, maximum, and mean dis-
tance between all points was 38 m, 78,021 m, and 274 m, respectively.

Twelve environmental layers were obtained and clipped to the 
study area at a 30 m2 resolution (Table S1), where they were then 
investigated for collinearity and contribution using the methods de-
scribed above. Several of these layers were also used in the region-
al-scale model, but climate and phenology layers were not used due 
to their low spatial resolution. Distance to trails (SHEN park staff) 
and NDVI (Richardson et al., 2017) were added as new layers for this 
model. Pairwise Pearson's correlations for these 12 predictors were 
calculated as with the regional-scale model, and one variable was 
removed (soil silt content) as it was correlated with soil sand content 
(r > .70). Using a preliminary set of 70 candidate models as with the 
regional model and these 11 environmental variables, the jackknife 
of the best model was used to identify the top ten contributing vari-
ables. One variable (soil clay content) contributed very little to the 
model and was removed. Background point selection was not re-
stricted as it was with the regional-scale model as our interest was 
not with extrapolation to the region but with WLBG suitability in 
SHEN. The final set of ten variables were distance to roads, distance 
to trails, distance to streams, elevation, slope, aspect, soil ph, soil 
sand content, soil available water storage, and NDVI.

Candidate models were then created as with the regional-scale 
model by using these ten predictor variables and the same combi-
nations of regularization parameters and feature classes (70,910 
candidate models). 25% of points were restricted for testing (20 
points), leaving 62 points for model training. Model evaluation was 
performed as above, using partial ROC, omission rates, and AICc.

A final model with 1,000 replicates was created as with the re-
gional-scale model, from which mean suitability, suitable versus un-
suitable (prediction ≥ 0.188 via the maximum training sensitivity plus 
specificity threshold and 0.50, respectively), and standard deviation 
maps were created. The area of suitable and highly suitable habitat 
was also calculated for SHEN.

All final maps were created in ArcMap version 10.4.1 (ESRI, 2016). 
All analyses including Maxent were done in R version 3.5.2 (R Core 
Team, 2018) using packages factoextra (Kassambara & Mundt, 2017), 
kuenm (Cobos et al., 2019), rattle (Williams, 2011), raster (Hijmans, 2017), 
and sp (Bivand, Pebesma, & Gomez-Rubio,  2013; Pebesma & 
Bivand, 2005). Candidate model creation and evaluation for the regional 
scale were run using the high-performance cluster at Miami University, 
and model creation and evaluation took 12 and 41 days, respectively.

3  | RESULTS

3.1 | Regional-scale model

Predicted suitable habitat for WLBG in the mid-Atlantic region ex-
panded far beyond presence points, with high predicted suitability 
in southwest Virginia and southern West Virginia (Figure  3a,c). A 
portion of the highly suitable areas in southwestern Virginia also 
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fell within the area of high extrapolation risk according to our mo-
bility-oriented parity (MOP) analysis results (Figure 4) and had high 
standard deviations (Figure 3e), indicating lower confidence in those 
predicted areas. However, the majority of the study area did not 
have a substantial extrapolation risk. The calculated area of suitable 
habitat was 14.92% of the study area, while the area of highly suit-
able habitat was 7.25% of the study area. Within Beauchamp et al.'s 
(2013) study area, highly suitable habitat in our model occupied 
258,035.81 ha (3.23%).

Of 70,910 candidate models with 10 or fewer predictors, the major-
ity were both statistically significant and met the omission rate criteria 
(Table 1). The best model had five of the original 10 predictors: annual 
mean temperature, temperature seasonality, slope, diurnal range, and 
time-integrated NDVI (TIN). The following variables were therefore not 
included in the best model: annual precipitation, elevation, end of season 
time (EOST), precipitation seasonality, and temperature annual range.

The top contributing environmental variables to the final model 
were annual mean temperature (30.05%  ±  1.45 SD across rep-
licates) and temperature seasonality (24.84%  ±  1.60), while the 
variables with the lowest contribution were slope (17.03% ± 1.21), 
diurnal range (16.10%  ±  1.06), and time-integrated NDVI (TIN) 
(11.98% ± 1.76) (Figure 5a).

The best model showed complex relationships between pre-
dicted habitat suitability (logistic output) and the top five predictors 
(Figure 6). For climate variables, suitability was highest with annual 
mean temperatures near 12–13°C, low temperature seasonality 
(800–820), while the relationship with diurnal range showed high 
suitability between 8.5 and 10.0 with an additional peak at 13.5. 
Slope showed that suitability was highest near 2 degrees with de-
creasing values at increasing slopes, while time-integrated NDVI 
(TIN) had high suitability above values of 50, indicating areas with a 
high level of cumulative NDVI.

F I G U R E  3   Maxent map results across 
1,000 iterations for the regional-scale 
model (a, c, e) and the landscape-scale 
model in SHEN (b, d, f), including mean 
Maxent maps where warmer colors 
show more suitable predicted habitat (a, 
b), binary maps of suitable habitat and 
unsuitable habitat (c, d), and standard 
deviation maps across 1,000 model 
replicates (e, f)
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3.2 | Landscape-scale model

Predicted suitable habitat for WLBG in Shenandoah National Park 
was largely concentrated near existing presence points but extended 
beyond presence points in a few regions in the park, particularly in 
the central region (Figure 3b,d). Many areas with predicted suitable 

habitat, however, also had high standard deviations across models 
(Figure 3f). The calculated area of suitable habitat was 6.75% of the 
study area, while the area of highly suitable habitat was 1.05% of 
the study area.

As with the regional model, the majority of candidate models 
were both statistically significant and met the omission rate criteria 
(Table 1). The best model had seven of the original ten predictors: 
distance to roads, distance to trails, available water storage (aws), 
elevation, distance to streams, soil sand content, and NDVI. The 
variables slope, aspect, and soil pH were therefore not included in 
the best model.

The top contributing environmental variables to the final 
model were distance to roads (34.45% ± 4.26 SD), distance to trails 
(19.12% ± 4.29), soil available water storage (15.83% ± 6.00), and 
elevation 14.12% ± 3.55) (Figure 5). The variables with the lowest 
contribution were distance to streams (8.85% ± 3.38), soil sand con-
tent (4.13% ± 2.07), and NDVI (3.52% ± 1.98) (Figure 5b).

Habitat suitability in SHEN showed mostly monotonic relation-
ships with our seven predictor variables (Figure 7). Suitability tended 
to increase strongly closer to streams and roads but had the opposite 
trend with distance from trails, where suitability was highest at dis-
tances in excess of 4,000 m from trails. Suitability was also higher in 
areas with sandy soil, with soils of at least 70% sand having the high-
est suitability. Suitability also increased with available water storage 
(aws) and NDVI, with the highest suitability in areas with at least 
4.0 cm of water storage and at least 0.90 NDVI. Suitability tended 
to be higher at low elevations (200–400 m) and showed moderate 
suitability at higher elevations (1,500–2,000 m), but this included a 
higher degree of variation between replicates.

4  | DISCUSSION

Our results are fairly consistent with other ENMs of shade-toler-
ant grasses, suggesting a growing consensus regarding the most 
important drivers for these types of invaders. First, we found that 
annual mean temperature, diurnal range, and temperature sea-
sonality were also important predictors in studies by Bush (2015), 
Beauchamp et al. (2013), and Lopez-Alvarez et al. (2015). In addi-
tion, Beauchamp et al.'s range of 10.8–14.2°C for highly suitable 
area was similar to our result, where highest predicted presence 
was between 12 and 13°C. Second, while annual precipitation 
(Bush,  2015; Lopez-Alvarez et  al.,  2015) was not present in the 
best model in this study, it was included in two of our top models 
at the regional scale. Third, we found elevation was included in 
our top landscape-scale model as in Beauchamp et al. (2013) and 
Bush (2015), with low elevation being indicative of higher pre-
dicted presence in all cases. Fourth, we found some similarities 
between other studies with regard to soil variables. Specifically, 
we also found a positive relationship between presence and soil 
water availability (Ervin & Holly,  2011). However, we also note 
that Bush (2015) found a negative relationship with this variable 
beyond 3.5 cm of water storage. In addition, while it was not in 

F I G U R E  4   Mobility-oriented parity (MOP) analysis results for 
extrapolation risk. Black areas (value of zero) indicate areas of strict 
extrapolation, while all other areas indicate the similarity between 
the projection and calibration regions. Lighter areas indicate a 
higher similarity between regions

TA B L E  1   Calibration results and statistics for regional- and 
landscape-scale candidate models and best models used for final 
model creation

Regional scale
Landscape 
scale

Candidate models 70,910 70,910

Statistically significant models 68,854 70,113

Models meeting omission 
criteria

43,445 55,828

Models meeting AICc criteria 1 1

Statistically significant models 
meeting omission rate criteria

43,201 55,825

Predictors in best model 5 7

Regularization parameter in 
best model

0.6 0.9

Feature classes in best model lqpth lqpt

Parameters in best model 95 28

Mean AUC ratio in best model 1.644 1.638

Omission rate of best model 0.05 0.05

AICc value of best model 9,917.93 1,886.55
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our top model, pH was an important variable for many of our top 
models, as in Bush (2015). With regard to sand content, we found 
a decidedly positive relationship with sand content, while Ervin 
and Holly (2011) found inconsistent relationships between their 
different models. Fifth, our strong, negative relationship between 
predicted presence and distance to streams was also very similar 
to Bush (2015) for Japanese stilt grass. Finally, we found NDVI 
to be an important predictor at both scales, which supports the 
observation that WLBG is found in shaded forests (Beauchamp 
et  al.,  2013). Both Beauchamp et  al.  (2013) and Ervin and Holly 
(2011) found that NDVI or canopy cover were important predic-
tors in their invasive grass ENMs. However, while we found that 
predicted presence was highest at NDVI values exceeding 0.5, 
Ervin and Holly showed a strong decline with NDVI exceeding 0.8. 
It is reassuring that even though most of these studies either in-
cluded very few environmental variables or did not investigate the 
relationships between predicted presence with each variable, our 
more comprehensive approach is broadly consistent with previous 
studies and further refines predictions for future work.

Interestingly, while our regional-scale model predicted a 
much-expanded spread of WLBG into the region, our landscape-scale 
model did not predict a wide expansion of WLBG within Shenandoah 
National Park. We found that much of southwestern Virginia and 
southern West Virginia may be highly suitable for WLBG, in addition 
to some areas in New Jersey at the regional scale. However, these 
areas also had higher standard deviation values across model repli-
cates, and parts of southwestern Virginia have extrapolation risks 
and thus must be interpreted with caution. It is important to note 
that our result is likely an underestimation of WLBG’s suitable hab-
itat, as it is unlikely that this species is at equilibrium with its new 
environment as evidenced by its ongoing expansion into the region. 
At the landscape level in Shenandoah National Park, suitable habitat 
was largely concentrated near presence points. Standard deviation 
among replicates also appeared to be highest near areas of predicted 
suitability, softening the conclusion that WLBG will spread to neigh-
boring states. In addition, the area of suitable and highly suitable 
habitat in the park was relatively small (6.75% and 1.05%, respec-
tively). This constrained range may correspond to limited potentially 

suitable sites within the park or the possibility that we did not suc-
cessfully prevent overfitting via spatial autocorrelation. Overfitting 
may also have occurred in our regional model as well, but the clear 
lack of concentrated predicted suitability near presence points does 
not reveal whether this was the case or not. However, it should be 
noted that while WLBG has been observed in the park since 2005 
(Jake Hughes, pers. comm.), this species may be far from equilibrium 
in this area as it does not occupy many sites across the park, suggest-
ing that this model is likely underestimating suitable habitat.

The predictors selected for final model creation differed be-
tween the regional and landscape scales. Five of the original 38 
predictors were selected in our final regional model: annual mean 
temperature, temperature seasonality, slope, diurnal range, and 
time-integrated NDVI (TIN). Model evaluation selected a final land-
scape model with seven of the top ten predictors: distance to roads, 
distance to trails, available water storage (aws), elevation, distance 
to streams, soil sand content, and NDVI. While climate and phenol-
ogy predictors were not used for model calibration at the landscape 
scale, it is curious that slope was determined to be important at the 
regional but not the landscape scale, while elevation held the oppo-
site trend. To determine the strength of the finding that these vari-
ables alone were the most important for predicting WLBG habitat 
suitability, we also investigated the sets of predictors for the second 
to tenth best models for each spatial scale (Tables S2 and S3). The 
top four models had the same set of predictors as the top model at 
the regional scale, suggesting that the importance of these five pre-
dictors is robust. All top 10 regional models included time-integrated 
NDVI and slope, and all five predictors were included in at least one 
of the top models (results not shown). At the landscape scale, we 
found that all seven selected predictors except for NDVI were in-
cluded as predictors in all top ten models, once again indicating the 
strength of these predictors.

The importance of our final predictors and their relationships with 
predicted presence indicate the specific habitat characteristics that 
would be most suitable for WLBG. Regional scale results indicate that 
areas with high suitability for WLBG have relatively high temperatures, 
low temperature seasonality and monthly range (diurnal range), low 
slope, and high NDVI over the growing season. At the landscape scale, 

F I G U R E  5   Percent contribution of variables used for final models, listed in order of mean percent contribution (± standard deviation) 
calculated across 1,000 model replicates for regional-scale model (a) and landscape-scale model (b). TIN = time-integrated NDVI (Normalized 
Difference Vegetation Index) aka cumulative NDVI over the growing season, AWS = available water storage to 25 cm
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suitability is predicted to be highest near roads and streams, far from 
trails, at low elevations, in sandy, moist soil, and in areas with high NDVI. 
Beauchamp et al. (2013) reported that WLBG habitat suitability was high 
in areas with annual mean temperatures between 10.8 and 14.2°C and 
elevation between 15 and 193 m. We found that high WLBG suitabil-
ity was associated with a very similar annual mean temperature range, 
while elevation seemed to have a more subdued effect, yet suitability 
was highest at the lowest elevations. There is a large literature citing 
the importance of rights of way (roads and trails) to invasive plant dis-
tributions (Christen & Matlack, 2009; Mortensen et al., 2009; Pauchard 
& Alaback,  2004). The results from our landscape-scale model show 

that WLBG suitability was high near roads but far from trails. These 
two predictors, despite their high contribution to the model, should be 
interpreted with caution. All presence points in SHEN were relatively 
close to roads due to the nature of data collection within the park. In 
addition, the distance from one right of way feature does not indicate 
the distance from the other. In other words, a presence point may be far 
from a trail but close to a road. While distance to roads as a predictor 
supports the hypothesis that plant invaders establish in disturbed areas, 
distance to trails had the opposite prediction and supports the observa-
tion that WLBG establishes within the forest interior and thus far from 
human-disturbed right of ways.

F I G U R E  6   Response curves between Maxent suitability predictions (y-axes) and predictors (x-axes) in final models for regional-scale 
model in order of decreasing variable importance. Red lines indicate means across the 1,000 replicates, with blue areas indicating ±1 
standard deviation from that mean
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F I G U R E  7   Response curves between Maxent suitability predictions (y-axes) and predictors (x-axes) in final models for landscape-scale 
model in order of decreasing variable importance. Red lines indicate means across the 1,000 replicates, with blue areas indicating ±1 
standard deviation from that mean. NDVI was scaled by 0–100 rather than 0–1 for computational ease
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This regional suitability model shows a higher suitability for 
WLBG in the region compared to Beauchamp et al.'s model (2013) 
but a more restricted result than the map created by the USDA 
(2012). While Beauchamp et al. found that only 1% of their study 
area was highly suitable (77,000  ha), our model predicted that 
3.23% (258,036 ha) of this same area was highly suitable, which is 
over three times larger. The inclusion of 137 more presence points, 
possibly from a greater variety of site conditions, has likely allowed 
for a broader area to be deemed suitable, which is a cause for con-
cern from a management perspective. However, a direct comparison 
cannot be made as our modeling approach was quite different from 
Beauchamp et al. despite using the same software (Maxent). Our re-
sults are also in contrast with those produced by the USDA's 2012 
weed risk assessment suitability model, which uses plant hardiness, 
precipitation, and Köppen–Geiger climate classes from where the 
species occurs elsewhere in the world. Their model predicted that 
at the continental scale, approximately 30% of the United States is 
suitable habitat for WLBG (USDA, 2012). Therefore, while the pre-
dictions of our model suggest an expansion of WLBG's range in the 
eastern United States, the predicted area is much smaller than that 
predicted by the USDA. However, the USDA model did not include a 
multitude of other factors that may affect the presence of this spe-
cies, such as topography. In addition, there is evidence that invasive 
plants can occupy niches in their introduced range that differ from 
those in their native ranges (Broennimann et al., 2004), highlighting 
the importance of utilizing presence points in the introduced range 
for ENMs for invasive species.

Several voices in the field of ecological niche modeling have 
increasingly called for incorporating model complexity and cali-
bration that is often lacking in ENM studies (Cobos et  al.,  2019; 
Peterson et al., 2018; Warren & Seifert, 2011). In particular, identi-
fying possible combinations of parameters for model selection can 
produce better fits to the data (Cobos et al., 2019; Spear, 1997) and 
can significantly affect performance (Warren & Seifert, 2011). We 
found support for these claims in this study, where statistical sig-
nificance, AUC ratios, and omission rates differed widely between 
calibrated models (data not shown). In addition, our top ten mod-
els had regularization parameters ranging from 0.4 to 3.0 at the 
regional scale and 0.6 to 2.0 at the landscape scale. With regard 
to feature classes, all top ten models at the regional scale used 
lqpth or lqpt functions while the landscape models used lqp or lqpt 
functions. Therefore, while the Maxent graphical user interface 
automatically selects a regularization parameter (1.0) and feature 
classes (Phillips et al. 2006), these selections may not generate the 
best model.

Ecological niche models such as these can provide researchers 
and land managers with tools to study and respond to rapidly invad-
ing species such as WLBG. While ENM models such as Maxent have 
drawbacks, such as the difficulty in utilizing biological variables and 
transferring to new regions or times (Jarnevich & Reynolds, 2011; 
Warren & Seifert, 2011), these models have proven to be both in-
sightful and high performing at landscape and regional scales (Elith 

et al., 2010; Jarnevich & Reynolds, 2011; Lemke et al., 2011; Liang 
et al., 2014). In addition, ENMs can reveal predictors associated with 
invasion that may not be visible at the local scale, such as the impor-
tance of climatic variables in this model. These results will be able 
to facilitate more effective monitoring and management at both the 
landscape and regional scales.
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