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Extracellular vesicles (EVs) represent an emerging mechanism of cell–cell communication 
in the cardiovascular system. Recent data suggest that EVs are produced and taken up 
by multiple cardiovascular cell types, influencing target cells through signaling or transfer 
of cargo (including proteins, lipids, messenger RNA, and non-coding RNA). The con-
centration and contents of circulating EVs are altered in several diseases and represent 
explicit signatures of cellular activation, making them of particular interest as circulating 
biomarkers. EVs also actively contribute to the progression of various cardiovascular 
diseases, including diabetes-related vascular disease. Understanding the relationships 
between circulating EVs, diabetes, and cardiovascular disease is of importance as 
diabetic patients are at elevated risk for developing several debilitating cardiovascular 
pathologies, including diabetic cardiomyopathy (DCM), a disease that remains an 
enigma at the molecular level. Enhancing and exploiting our understanding of EV biology 
could facilitate the development of effective non-invasive diagnostics, prognostics, and 
therapeutics. This review will focus on EV biology in diabetic cardiovascular diseases, 
including atherosclerosis and DCM. We will review EV biogenesis and functional proper-
ties, as well as provide insight into their emerging role in cell–cell communication. Finally, 
we will address the utility of EVs as clinical biomarkers and outline their impact as a 
biomedical tool in the development of therapeutics.
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iNTRODUCTiON

The prevalence of diabetes mellitus (DM), especially type 2 DM (T2DM), is steadily increasing and 
is predicted to rise substantially over the next decade (1, 2). Mortality rates of individuals with 
T2DM are consistently elevated, with an overall excess risk of death from any cause of ~27% (3). 
There is abundant epidemiological and mechanistic evidence underscoring the role of T2DM as an 
independent risk factor for accelerated cardiovascular disease (4, 5). Individuals with T2DM are at 
high risk for developing several cardiovascular disorders, including coronary heart disease, stroke, 
peripheral arterial disease, and diabetic cardiomyopathy (DCM) (6). Much of the vascular burden 
associated with T2DM is caused by the chronic, injurious effects of hyperglycemia on the micro- and 

Abbreviations: CM, cardiomyocytes; DCM, diabetic cardiomyopathy; DM, diabetes mellitus; ECs, endothelial cells; EVs, 
extracellular vesicles; mRNA, messenger ribonucleic acid; MVs, microvesicles; MVBs, multivesicular bodies; T2DM, type 2 
diabetes mellitus.
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TAble 1 | Common classifications of extracellular vesicles (EVs).

Characteristics evs

exosomes Microvesicles Apoptotic bodies

Biogenesis Sorted as intraluminal vesicles in multivesicular endosomes and secreted after the 
fusion of multivesicular bodies with the plasma membrane

Fission and outward budding 
from the plasma membrane 
directly into the extracellular 
environment

Generated through apoptotic 
fragmentation and blebbing

Size 30–100 nm 100–1,000 nm 1–5 µm

Markers Tetraspanins (CD9, CD63, CD81), heat shock proteins (HSPA8, HSP70, HSP90), Annexin A2, Enolase 1, Flotilin-1, 
and TSG101

TSP, 3Cb

Cargo DNA, RNA (messenger RNA, miRNA, lncRNA), Proteins (cytokines), Lipids
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macro-vasculature [see Ref. (7) for a comprehensive review]. 
Indeed, many of the earliest pathological responses to hyper-
glycemia are manifested in the vascular endothelial cells (ECs) 
that interface with elevated blood glucose levels. Traditionally, 
the activation of pathological inflammatory processes through 
both paracrine and endocrine cellular communication has served 
as the centerpiece for the purported development of diabetic 
cardiovascular pathologies (8). However, a third mechanism of 
intercellular communication, involving the intercellular transfer 
of extracellular vesicles (EVs), is emerging as an important 
mediator. Much remains to be explored regarding the contribu-
tion of these EV pathways to cardiovascular complications in 
T2DM patients.

eXTRACellUlAR veSiCleS

Nomenclature and biogenesis
Extracellular vesicles are a heterogeneous population of small 
cell-secreted phospholipid bilayer-bound structures naturally 
released into the extracellular space. Secretion of EVs appears 
to be conserved across species, as they have been identified in 
fundamentally all eukaryotes and many prokaryotes (9). Using 
current conventions, EVs are classified into three major subtypes 
based on biogenic, morphological, and biochemical properties: 
exosomes, microvesicles (MVs), and apoptotic bodies (Table 1). 
Characterization and classification of this heterogeneous popula-
tion of membrane vesicles has been challenging and the source of 
heated debate, but based on current evidence, a working basis for 
a consensus has recently been reached (10). Garnering focused 
attention have been exosomes, which are the smallest subgroup 
of EVs at approximately 30–100 nm in diameter. Exosomes are 
generated within the endosomal system, initially forming as 
intraluminal vesicles inside multivesicular bodies (MVBs) in 
the endosomal compartment during the maturation of early 
into late endosomes (Figure 1) (11). The formation of MVBs has 
been shown to be mediated by the endosomal sorting complex 
required for transport (ESCRT) machinery, which sequesters 
ubiquitinated transmembrane proteins and drives intraluminal 
membrane budding (12, 13). However, ESCRT-independent 
exosome biogenesis pathways have been suggested, primarily 
via tetraspanin-dependent mechanisms (14, 15). MVBs have a 

bipartite fate; either degradation through fusion with lysosomes 
or exocytosis as exosomes after fusion with the plasma membrane. 
The release of exosomes into the extracellular milieu appears to be 
facilitated, in part, by SNARES and Rab proteins (16).

Microvesicles (also known as microparticles or ectosomes) 
tend to be larger in size, approximately 100–1,000 nm in diam-
eter, and arise in a biogenically distinct fashion. They are formed 
by the outward budding and scission of extracellular membrane 
(Figure 1) (17). The release of vesicles is preceded by the budding 
of cytoplasmic protrusions, which detach through the fission 
of their stalk. It is thought that dynamic interactions between 
cholesterol-rich microdomains regulated by animophospholipid 
translocases initiates formation, followed closely by vesicle 
budding induced by translocation of phosphatidylserine to the 
outer-membrane leaflet and contraction of cytoskeletal structures 
by actin-myosin interactions (18, 19).

Apoptotic bodies are the largest subtype of EVs, encompassing 
a wide size range of approximately 1–5 µm in diameter. Unlike 
exosomes and MVs, which are generated in both physiological 
and pathological conditions, apoptotic bodies are only generated 
by plasma membrane blebbing of apoptotic cells (20). While 
commonly regarded as purely cellular debris, in the emerging 
context of EV cellular communication, apoptotic bodies represent 
a potentially untapped source of biologically useful information; 
having various cargoes, including organelles, packed tightly 
within their structures (21).

Function
Extracellular vesicles are secreted from most cell types and 
are able to elicit diverse responses in recipient cell types. This 
is accomplished by engagement of EV surface proteins with 
receptors on recipient cells or through internalization of EVs 
into recipient cells, thereby transporting EV cargo into the 
cell. Uptake mechanisms include endocytosis, fusion with the 
recipient cell’s membrane or uptake via binding of EV surface 
proteins such as tetraspanins to the target cell’s membrane  
(22, 23). The notion that exosomes and MVs act as effectors of 
cellular communication is founded on ample data showing that 
they can transport bioactive molecules to target cells—either 
locally, or systemically by entering biological fluids—and transfer 
select cargo to affect molecular pathways and the behavior of 
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FigURe 1 | Extracellular vesicle (EV) biogenesis and secretion. Schematic representation of the origin and release of EVs by eukaryotic cells. Exosomes are formed 
as intraluminal vesicles by budding into early endosomes. MVBs typically have two fates; fusion with lysosomes or fusion with the plasma membrane, which allows 
the release of their content into the extracellular milieu. Microvesicles arise as a result of outward budding and fission of the plasma membrane mediated by 
phospholipid redistribution and cytoskeletal protein contraction. The largest EVs, apoptotic bodies, are formed during programmed cell death mediated in part by 
actin-myosin mediated membrane blebbing. EVs have numerous markers ranging from proteins, to lipids, to nucleic acids. MVB, multivesicular body.

3

Gustafson et al. EVs in Diabetic Cardiovascular Pathology

Frontiers in Cardiovascular Medicine | www.frontiersin.org November 2017 | Volume 4 | Article 71

recipient cells (24–26). Cargo can include genetic material such 
as DNA, messenger RNA, non-coding RNA (e.g., miRNA), as 
well as proteins, carbohydrates, lipids, and in unique circum-
stances, organelles such as mitochondria. Regarding cell–cell 
communication, while many avenues of effector action have been 
described, EV-associated miRNAs have received the most thor-
ough examination. They serve as potent biomolecules that direct 
multiple cellular processes via negative regulation of target genes 
at the posttranscriptional level (27). Distinctive surface markers 
including cellular receptors and transmembrane proteins on both 
exosomes and MPs appear to provide a means of increasing cellular 
interaction specificity. In vitro findings have also shown distinct 
cargo, including genetic material, proteins, and other molecules, 
in exosomes and MPs, and correspondingly discrete functions  
(28, 29). Finally, although less well studied than exosomes and MPs, 
apoptotic bodies have been suggested to harbor functional capa-
bilities, in particular, carrying miRNAs known to direct vascular  
protection (30).

ev enrichment
Although there is an intense focus on the biogenesis, cargo, 
and subsequent function of EVs and their heterogeneous 

subpopulations, many efforts are stifled by limitations imposed 
by current isolation and characterization methodologies. 
There are many strategies available for the enrichment of EVs, 
the most popular being ultracentrifugation, size exclusion 
chromatography, and commercially available EV precipitation 
kits. Ultracentrifugation is the gold standard for EV isolation, 
being used in more than 50% of reports (31, 32). Differential 
ultracentrifugation employs a series of centrifugation cycles 
with varying centrifugal force and duration, escalating from 
400 to 100,000  g, leading to the preferential isolation of EV 
subtypes that have unique densities; apoptotic bodies (2,000 g), 
MVs (10,000–20,000 g), and exosomes (≥100,000 g) (33–36). 
Although standard ultracentrifugation offers a relatively pure 
sample, it can also precipitate large proteins not associated with 
EVs. High centrifugal forces can also be potentially damaging 
to EVs. These protocols are also particularly time intensive, 
require expensive equipment, and are difficult to implement 
with small amounts of starting material (33). More recently, 
contamination by protein and particle aggregates has been 
partially addressed through the adoption of density gradient 
centrifugation, which utilizes density gradients to separate 
specific EV populations (32).
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Other techniques have been developed to better meet time, 
sample quantity, and equipment sensitive situations. In particular, 
many commercial kits offer comparatively rapid precipitation of 
EVs through the incorporation of polymers such as polyethylene 
glycol (37). However, preparations from commercial kits have been 
shown to have low purity and potentially impaired functionally due 
to co-precipitation of non-vesicular contaminants such as lipopro-
teins and polymer material (38). As a result, commercial kits may be 
more suited for high-throughput EV cargo characterization, such as 
miRNA profiling. Size-based EV isolation techniques, such as filtra-
tion and size exclusion chromatography, are also available (39, 40). 
Such methodologies offer several advantages, including moderately 
rapid isolation, ease of use, reduced contaminant concentrations, 
and maintenance of functionality. Size-exclusion chromatography 
is particularly advantageous as it uses gravity, resulting in the pres-
ervation of EV structure, integrity, and biological activity. However, 
the extended isolation time represents a significant drawback for 
clinical studies, especially if high throughput sample processing is 
required (37).

Immunoaffinity (IA) purification is the least prevalent method 
of EV isolation, typically involving magnetic microbeads coated 
with an antibody that recognizes surface markers on the EV 
surface. While in principle IA represents a specific means for the 
identification and isolation of specific EVs, the lack of established 
and well-characterized EV markers limits its validity and utility. 
This method is additionally limited by the physical surface area 
of EVs available for binding. While potentially resulting in lower 
yields with higher purity, it may, however, result in concentration 
underestimations and false negative results (32, 37). While all the 
aforementioned techniques can be utilized to isolate EVs from cul-
ture media as well as biofluids, considerable care and caution should 
be exercised during optimization to ensure efficient enrichment. 
The lack of standardized isolation and characterization techniques 
has hindered advancement of the field. This is particularly evident 
when technique-to-technique comparisons are conducted, during 
which significantly different particle concentrations, character-
istics, and functions can arise from biologically similar samples. 
Indeed, recent studies have suggested caution in the interpretation 
of EV investigations due to the likelihood of confounding factors, 
including co-purification of protein and lipid complexes (41, 42).

evs iN DiAbeTiC AND 
ATHeROSCleROTiC PATHOlOgieS

Obstructive atherosclerotic diseases—disorders leading to the 
narrowing of the arterial lumen through the formation of athero-
sclerotic plaques—are thought to be central to the development of 
diabetic macrovascular complications (43). Metabolic dysfunc-
tion in individuals with T2DM has been shown to exacerbate 
and accelerate the pathological mechanisms underlying the 
development of atherosclerotic disease (44) (Figure  2). This is 
rooted in non-resolving proinflammatory pathogenic activa-
tion of the vascular endothelium; leading to platelet activation 
and adhesion, as well as the recruitment and trans-endothelial 
migration of circulating monocytes and neutrophils, which drive 
plaque expansion (45).

Endothelial cell (EC)-derived EVs have been described 
as important markers and mediators of vascular dysfunc-
tion. While patients with various types of vascular diseases 
have increases in levels of circulating EC-derived EVs, this is 
particularly evident in patients with both atherosclerosis and 
T2DM, who display markedly increased levels of circulating 
EC-derived EVs (46, 47). EVs appear to actively participate 
in the pathological progression of atherogenesis; from ath-
erosclerotic lesion initiation to progression (48). For example, 
increased circulating levels of EC-derived EVs in T2DM appear 
to be associated with increased vascular dysfunction and are 
an independent risk factor for decreased arterial elasticity; a 
known change during atherogenesis (49). The decrease in arte-
rial elasticity and successive development of high shear-stresses 
within the vasculature may further modulate EV function. In 
particular, platelet-derived EVs under high shear-stress condi-
tions were shown to induce IL-8, IL-1β, and IL-6 production in 
ECs, which could indicate participation in vascular damage and 
atherosclerosis (50). Traditionally, the inflammatory response 
is mediated by the activation of the vascular endothelium and 
subsequent attraction of inflammatory cells, stimulation of the 
coagulation and complement systems, and increases in vascular 
permeability (51). Monocyte recruitment from the bloodstream 
represents one of the earliest processes of atherosclerotic plaque 
formation. While EVs isolated from healthy mouse plasma or 
endothelium can suppress monocyte activation, several experi-
ments have shown that EVs isolated from activated ECs, plate-
lets, or from atherosclerotic plaque, can promote the adhesion 
of monocytes to the endothelium by increasing the expression 
of adhesion molecules on both ECs and monocytes (52–54). Of 
note, Rautou et al. demonstrated that EVs isolated from symp-
tomatic atherosclerotic plaques were more potent at promoting 
endothelial intercellular adhesion molecule 1-dependent mono-
cyte adhesion and transendothelial migration than EVs from 
asymptomatic plaques (53). In addition, long-term feeding of 
high-fat diet to rats resulted in increased numbers of circulating 
EVs that were associated with an increased potential to induce 
pro-inflammatory reactive oxygen species and vascular cell 
adhesion molecule 1 expression in rat ECs in vitro (55). Similar 
observations have been made in the setting of hyperglycemia, 
where high-glucose conditions increased NADPH oxidase 
activity in endothelium-derived EVs, subsequently amplifying 
endothelial activation (56).

It is well established that phenotypic switching of smooth 
muscle cells has an important role in the progression of vascular 
diseases such as atherosclerosis (57). In the early stages of athero-
genesis, smooth muscle cells acquire a synthetic phenotype and 
migrate from the media to the intima, subsequently proliferating 
and contributing to plaque development. Interestingly, platelet-
derived EVs have been shown to actively induce vascular smooth 
muscle mitogenesis (58), while transfer of EVs from ECs to 
smooth muscle cells has been shown to either inhibit (59) or 
promote smooth muscle cell proliferation (60). In later stages 
of atherogenesis, microcalcification of vulnerable plaques can 
contribute to plaque destabilization and rupture (61). It is now 
evident that EVs play an active role in both the initiation and 
progression of calcification (62, 63). For example, New et  al. 
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FigURe 2 | Extracellular vesicle (EV) effects on atherogenesis. Schematic representation of the potential proatherogenic and antiatherogenic effects of EVs, focusing mainly 
on the role of EVs in inflammation, thrombosis, and endothelial function. Vesicles of endothelial origin in the presence of hyperglycemia might stimulate pro-inflammatory and 
pro-proliferative smooth muscle cell phenotype switching. EVs stimulated by atherosclerotic plaque niche might stimulate or decrease vascular inflammation depending on 
their cargo proteins and noncoding RNAs. The presence of the miRNAs, miR-150, and miR-126, in endothelial vesicles is important in autoregulation of migration, while 
miR-150 is important in maintaining vascular smooth muscle cell differentiation. Vesicles of platelet origin promote endothelial and monocyte inflammation via interleukin 
(IL)-dependent mechanisms, and together with monocyte-derived vesicles, promote thrombosis by upregulating adhesion molecules. EVs released by monocytes 
contribute to endothelial inflammation by increasing leukocyte adhesion and activating the IL-6 pathway in endothelial cells. SMC, smooth muscle cell; interleukin-6, IL-6; 
interleukin-8, IL-8; interleukin-1, IL-1; intercellular adhesion molecule 1, ICAM-1; vascular cell adhesion molecule 1, VCAM-1.
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provide clear support for the role of macrophage-derived EVs in 
the nucleation of microcalcifications (62).

Taken together, these results strongly suggest that EVs 
produced during the pathogenesis of diabetes and atheroscle-
rosis not only promote the development of pro-inflammatory 
vascular conditions but also encourage the development of early 
atherosclerotic lesion development by promoting monocyte 
adhesion and infiltration to the sub-endothelial space, as well 
as through their ability to stimulate smooth muscle cell migra-
tion and proliferation and their role in instigating calcification. 
These findings provide unique insights into the pathogenesis 
and perhaps accelerated presentation of diabetes-associated 
atherogenesis.

Although there appears to be a strong relationship between 
EVs and atherogenesis, the exact functional interplay has yet 
to be fully explored. EV-associated miRNAs have received 
particular attention as they can be efficiently isolated from 
liquid biopsies and have substantial functional implications 
(64). Collectively, miRNAs have been shown to modulate 
vascular inflammatory, calcification, and thrombus forma-
tion pathways related to diabetes and atherosclerosis (65, 66). 
Jansen et al. described the differential regulation and selective 

packaging of miRNAs during T2DM pathology when com-
pared to non-diabetic controls (67). Additionally, large-scale 
miRNA profiling of plasma EVs from patients with T2DM has 
revealed significant dysregulation of miRNAs, independent 
of body mass index, age, or sex (67). In-depth mechanistic 
studies have validated some functional roles of EV-associated 
miRNA dysregulation. Wu et  al., in particular, found that 
the miRNA-126/VEGFR2 pathway was downregulated in 
untreated T2DM, potentially governing vascular integrity 
(68). Additionally, EC-EV transfer of miRNA-126 has been 
shown to be abrogated in high glucose settings, highlighting 
the importance of EV cargo maintenance in physiology (69). 
Karolina et al. has highlighted the promise of utilizing specific 
dysregulations in EV-associated miRNA cargo clinically by 
assessing the circulating EV-associated miRNA profiles of 219 
participants with either metabolic syndrome, T2D, hypercho-
lesterolemia, or hypertension, showing that each disorder had 
its own specific EV miRNA profile (70). While results of many 
studies, including the aforementioned one, have highlighted 
the unique dysregulation of EV-associated miRNA during the 
development of vascular disorders such as atherosclerosis, 
their utility as clinical biomarkers remain unfulfilled. This is in 
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TAble 2 | Extracellular vesicle-derived miRNA regulation of the diabetic heart 
promotes the development of diabetic cardiomyopathies.

miRNA Source/recipient Target/process

miRNA-1/
miRNA-133A

Cardiomyocytes (CMs) Independent predictors of myocardial 
steatosis (85)

miRNA-320 CMs/endothelial cells 
(ECs)

Impairs angiogenesis by targeting 
IGF1, Hsp20, and Ets2 (86)

miRNA-503 ECs/pericytes Impairs migration and proliferation 
following its transfer to vascular 
pericytes (87)

miRNA-126 Endothelial progenitor 
cells

Alters EC repair processes; reduces 
VEGFR-2 expression (68)

miRNA-21* Cardiac fibroblasts/CMs Promotes cardiac hypertrophy by 
targeting Sorbin and SH3-domain-
containing protein 2 and PDLIM5 (88)
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part a result of the complex and often multifactorial function 
of EVs, limiting our ability to efficiently delineate miRNAs 
directly associated with early disease processes.

evs iN DiAbeTiC CARDiAC PATHOlOgY

Prolonged asymptomatic, yet progressive, phases of DCM 
make diagnosis of this condition particularly challenging (71). 
DCM is a complex condition and is defined as the presence of 
left ventricular (LV) dysfunction in individuals with T2DM in 
the absence of arterial hypertension, coronary artery disease, or 
evidence of other structural cardiac disease (71). While T2DM 
is a well-known risk factor for atherosclerotic disease, its role in 
development of DCM is less established. Epidemiological evi-
dence suggests a high prevalence (30–40%) of cardiomyopathy in 
individuals with T2DM (72–75). Perhaps unsurprisingly, several 
signaling pathways (including inflammation, oxidative stress, 
and endothelial dysfunction) that are dysregulated under diabetic 
conditions and contribute to atherosclerotic disease also appear 
to enhance myocardial dysfunction (i.e., DCM) and accelerate 
heart failure (76–78). Clinically, DCM begins by presenting itself 
as early stage DCM, characterized by an abnormal myocardial 
energy metabolism, systolic, or diastolic dysfunction (i.e., impair-
ment of the contraction of relaxation of the heart, respectively) 
and reduced LV strain (defined as regional deformation, or 
lengthening, shortening and thickening of the LV) (79). Over 
time, the progression of DCM can lead to overt heart failure, 
associated with cardiomyocyte hypertrophy, myocardial fibrosis, 
and ultimately cardiomyocyte death (80). This vulnerability to 
DCM may in part be due to the convergence of multiple risk 
factors, such as chronic hyperglycemia, resulting in detrimental 
effects on various cell types within the heart (81).

Recent attention has been focused on understanding the 
mechanisms of communication between the diverse cell-types 
in the heart, particularly, as it relates to disease pathogenesis 
(Table 2). These cells include cardiomyocytes (CMs), accounting 
for 25–35% of all cells in the heart (82), ECs (comprising 60% of 
the non-myocyte cells cardiac tissue cells), smooth muscle cells, 
hematopoietic-derived cells, and fibroblast cells (83). Each of these 
cell types play an important role in healthy and diseased cardiac 

function as they can contribute to the processes of ventricular 
hypertrophy, steatosis, fibrosis, and impaired angiogenesis, all 
of which can lead to diabetic cardiac complications, including 
cardiomyopathy (81). Extensive cross-talk occurs among these 
cells, and emerging evidence has implicated EVs in this commu-
nication (84). That being said, the link between EVs produced 
under T2DM conditions and increases in cardiac oxidative stress, 
cardiac inflammation, myocardial fibrosis, and other aspects of 
the pathogenesis of cardiomyopathy, has not been extensively 
studied to date, and remains an area ripe for future studies.

The main function of CMs is to generate contractile force in the 
heart, and although not considered to be a secretory cell, they can 
secrete cytokines, chemokines, and various factors such as ANP, 
and BNP as well as EVs (84). CM-derived EVs have been impli-
cated in diabetic cardiomyocyte steatosis (85). Accumulation of 
lipids in the myocardium has been associated with non-ischemic 
cardiomyopathy (including DCM) and LV hypertrophy. Elevated 
levels of miR-1 and miR-133a were observed in EVs derived from 
lipid-loaded HL-1 CMs; levels were also increased in the serum of 
mice fed a high fat diet, and in the circulation of diabetic patients 
with myocardial steatosis (85). Unfortunately, no mechanism for 
miR-1/miR-133a function in steatosis was described, but being 
identified as independent predictors makes them important bio-
markers. Recently, CM-derived EVs were shown to communicate 
with the endothelium, and it was demonstrated that this cross-
talk is altered in the setting of diabetes; contributing to dysfunc-
tional angiogenesis in DCM (86). While cardiomyocyte-derived 
EVs isolated from wild-type mice promoted angiogenesis, EVs 
isolated from diabetic rats exerted antiangiogenic effects; this was 
attributed to higher levels of antiangiogenic miR-320, and lower 
levels of angiogenic miR-126 (86).

Endothelial cells play a critical role in facilitating myocardial 
contraction and CM survival (89). Microvascular rarefaction is a 
major manifestation of diabetes-mediated ischemic cardiovascu-
lar disease, resulting from endothelial cell death and insufficient 
myocardial angiogenesis (90). Early in diabetes, high blood 
glucose leads to endothelial dysfunction, which can promote 
microvascular rarefaction over time (91). Several miRNA-based 
mechanisms have been proposed to explain vascular dysfunction 
in diabetes. For example, when exposed to elevated glucose con-
centrations, the levels of miR-503 in the endothelium increase, 
inhibiting EC proliferation and angiogenesis by targeting CCNE1 
and Cdc25A (92). Moreover, transfer of miRNA-503 from 
EC-derived EVs impaired pericyte migration and proliferation, 
thereby decreasing angiogenesis and modulating vessel perme-
ability by interfering with the production of VEGFA and EFNB2 
(87). In healthy conditions, ECs release EVs that contain miR-10a, 
which can be transferred to monocytes, where it represses several 
components of the NF-κB signaling pathway to dampen their 
inflammatory activation (54). These EVs additionally contain 
high levels of miR-126, which can promote vascular endothelial 
repair through the targeting of SPRED-1 (69), a negative regulator 
of the VEGF signaling pathway (93, 94). However, in pathologi-
cal hyperglycemic conditions, miR-126 expression is reduced in 
EC-EVs, impairing EC repair due to a lack of SPRED-1 targeting 
(69). Another group revealed reduced miR-126 expression in cir-
culating EVs and endothelial progenitor cell-derived-EVs from 
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patients with uncontrolled diabetes (68). Furthermore, exposing 
endothelial progenitor cells to these EVs downregulated VEGFR2 
decreased migration ability, and increased apoptosis and ROS 
production (68).

Cardiac fibroblasts are involved in the fibrotic response that 
accompanies DCM. The differentiation of fibroblasts to myofi-
broblasts, together with their proliferation and production of 
extracellular matrix, contributes to the increased stiffness of the 
myocardium that promotes diastolic dysfunction (95). In neona-
tal rat cell culture, paracrine factors from cardiac fibroblasts elicit 
detrimental changes in CM electrophysiology that resemble those 
seen in cardiac pathologies (96); however, the role of EVs was not 
assessed. Hyperglycemia contributes to diabetic cardiac fibrosis 
as it can promote proliferation, myofibroblast differentiation, 
and collagen synthesis by cardiac fibroblasts (97–99). A potential 
culprit for the observed effects is miR-21, which targets DUSP5, a 
negative regulator of p38 and JNK signaling (100). Cardiac fibro-
blasts also secrete EVs that target CMs and appear to be enriched 
in miRNA passenger strands, which are typically eliminated 
during miRNA biogenesis. Transfer of miR-21* from cardiac 
fibroblasts to CMs induced cardiac hypertrophy by downregulat-
ing Sorbin and SH3-domain-containing protein 2 and PDZ and 
LIM domain 5 (PDLIM5) (88). Inhibition of miRNA-21* in mice 
with angiotensin II-induced heart hypertrophy suppressed the 
observed cardiac pathology (88).

Secretion of cardiac EVs appears to be an intricately regulated 
process that can mediate both local and systemic effects. In vitro 
cellular stretch and in vivo pressure overload in a mouse model 
induced the release of EVs from CMs that were enriched with 
angiotensin type I receptor (AT1R) (101). This was associated 
with the transfer of active AT1R to various tissues including the 
mesenteric artery and skeletal muscle, which upon injection into 
AT1 knockout mice, affected peripheral vascular resistance and 
blood pressure (101). The full extent of EV-mediated cell–cell 
communication among the cells locally in the heart or distally 
in systemic circulation has not yet been explored, and whether 
circulating EVs can be taken up by CMs, pericytes, or fibroblasts 
in the heart is not known. Additionally, the impact of diabetes 
on this form of communication is just coming into view. From 
initial studies, it appears that EVs are major protagonists in elicit-
ing cardiovascular dysfunction in diabetics. Further elucidation 
of these pathways and mechanisms may reveal novel biomarkers 
and potential therapeutic strategies.

DiAbeTiC CeRebROvASCUlAR  
CROSS TAlK

Cardiovascular dysfunction, especially overt heart failure, has 
been proposed as a major cause of cognitive dysfunction in the 
elderly; commonly referred to as “vascular dementia” (102). An 
increasing body of evidence suggests that even the relatively 
mild effects on cardiac output that are observed in DCM are 
independently associated with impairment in various cogni-
tive domains (103). Diabetes is associated with a breakdown 
in the blood brain barrier, a unique structure that protects the 
brain from detrimental systemic circulating factors (104). It 

is currently unclear whether cardiac output directly impacts 
cognitive function or whether both of these phenomena are 
driven by an independent factor. Based on the current body of 
evidence highlighting deleterious effects of inflammatory EVs 
on vascular ECs, it would seem conceivable to hypothesize that 
these effects on the brain and heart vasculature may be mediated 
by circulating EVs. Indeed, while still emerging, there is a body 
of evidence suggesting that EVs in diabetic microvascular set-
tings may increase blood–brain barrier permeability (105, 106). 
A recent study found that the anti-inflammatory miRNA, miR-
146a is decreased in the brains of diabetic mice, and that this 
is associated with accumulation of cellular prion protein (107). 
Interestingly, delivery of EC-derived exosomes loaded with 
miR-146a could decrease levels of cellular prion protein and 
could restore short-term memory (107). Additional research in 
this emerging area is clearly warranted and may shed light on 
the pathobiology of vascular dementia and its link to cardiac 
disease.

evs AS biOMARKeRS OF DiAbeTiC 
CARDiOvASCUlAR PATHOlOgieS

The paucity of effective diagnostic modalities and pharmaco-
logical interventions for DCM has fueled the search for novel 
circulating biomarkers that may be more reflective of disease 
status (108). Given their abundance in multiple bodily fluids 
and the modulation of the abundance, source, and contents 
(e.g., miRNAs) of EVs in response to pathological stimuli, EVs 
are attractive candidates as biomarkers (109). While numerous 
studies are underway to examine the utility of EVs as biomark-
ers (110–112), there has been a particularly intensive focus in 
oncological and neurological diseases. Understanding changes 
in EV contents will generate insight into potential disease 
mechanisms mediated by cell–cell communication that can be 
targeted therapeutically.

The complexity and chronic nature of cardiovascular patholo-
gies appear to have impeded the field’s ability to correlate disease 
states with unique EV changes, slowing their adoption into 
biomarker studies. Nonetheless, there is considerable excitement 
in utilizing EVs as a novel diagnostic tool due to their inherent 
ability to transport miRNAs. miR-146a, in particular, may play 
an important role in the pathogenesis of both atherosclerosis 
(54, 113, 114) as well as the development of cardiomyopathies 
(115, 116) through the regulation of inflammatory pathways. 
Interestingly, it appears that transfer of miR-146a between cells 
may play an important role. For example, transfer between ECs 
and CMs plays a role in peripartum cardiomyopathy, and block-
ing this communication reverses pathology (115). In addition, 
the demonstration that miRNA-containing EVs are released into 
circulation from cardiac cells highlights the need for additional 
investigation (117). Identification of the cellular source of these 
EV-derived miRNA, understanding the mechanisms of packaging  
and secretion, and characterizing their functional roles remain a 
matter of active investigation. Nonetheless, a detailed characteri-
zation of EVs released into the circulation by CMs has lagged and 
appears prime for fruitful investigation.
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THeRAPeUTiC POTeNTiAl OF evs

The involvement of EVs in the pathology of diabetic car-
diovascular pathologies serves as a strong impetus to develop 
EV-based therapeutics. The combination of innate biocompat-
ibility, low toxicity and immunogenicity, stability, and selective 
uptake make them an ideal delivery vehicle for therapeutics 
(118). Current therapeutic approaches aim to use EVs to deliver 
small RNAs in an attempt to reverse pathological miRNA-based 
communication with anti-miRNA oligonucleotides or to stimu-
late protective communication with synthetic miRNA mimics 
(119, 120). More specific delivery of anti-miRNAs or miRNA 
mimics to target cells is being achieved by engineering vesicles 
with cell-selective surface proteins (121), which should reduce 
off-target effects.

Many hurdles remain to be overcome before EV-based 
therapeutics might be used in the clinic to treat cardiovascular 
diseases. Nevertheless, the proven utility of using small RNAs 
in a cardioprotective manner in mouse and large animal models 
to prevent pathological changes such as fibrosis, cardiac hyper-
trophy and inflammation (122–124) highlights their potential 
as efficacious therapeutic targets. The ability to load EVs with 
particular cargo such as miRNAs, suggests the possibility of 
using EVs to deliver miRNA-based cardiovascular therapeutics. 
The field of miRNA-based therapeutics is advancing rapidly and 
over the last 10 years, research focused on circulating EVs, and 
the miRNA they contain, has revealed diverse and important 
roles (24). That being said, much still remains to be revealed 
regarding the role of EVs in cell–cell communication in health 
and diabetic cardiovascular disorders. Specifically, it may be 
advantageous to understand the effects of the chronic inflam-
matory environment in diabetes on the packaging and release 
of endothelial EVs and their subsequent interactions with CMs. 
Better understanding the role of endothelial-derived EVs may 
allow for in-depth probing of currently employed diabetes 
therapeutics such as sodium-glucose cotransporter-2 inhibi-
tors, which are believed to have cardioprotective benefits (125). 
Advancing our understanding of the role of EVs in cardiovascu-
lar disease will help identify the cellular source and destination 
of EVs, subsequently allowing for the exploration of specific cel-
lular interactions. Furthermore, improving our understanding 
of EV organ-tropism will aid in the targeting of specific tissues, 
improving the efficiency of miRNA-based therapies.

CONClUSiON

Extracellular vesicles in liquid biopsies, such as blood, urine, or 
saliva, as well as localized tissue EV content remain a relatively 
untapped source of detailed information for both basic researchers 
and clinicians alike. The innate ability of EVs to shield biologically 
complex information from degradation and sensitivity to minute 
changes in physiology highlight their potential as sensitive and 
specific biomarkers. Early studies into their biology suggest that 
they may be critical mediators of cardiovascular diseases such 
as atherosclerosis and DCM. There are a number of unexplored 

avenues particularly regarding the interactions between elevated 
glucose levels, endothelial EVs, and dysfunction in cardiac 
tissues. Understanding the potential roles of EVs in diabetes 
associated cardiac dysfunction will be critical in understanding 
the mechanisms of currently employed therapeutics and for the 
development of more efficacious agents. The largest roadblock in 
illuminating the roles of EVs in the cardiovascular field remains 
a thorough understanding of the vesicle population, which in suit 
relies heavily upon our ability to apply accurate vesicle isolation 
techniques. The development of a harmonized nomenclature 
for EVs will be essential for both meaningful dialog between 
researchers and ensuring reproducibility of results across labora-
tories (109). To better understand the role of EVs in multifactorial 
conditions such as diabetic pathologies, a number of gaps in fun-
damental knowledge should be addressed. The most pressing is 
to better understand the mechanisms of EV biogenesis, delivery, 
and degradation upon which a more normalized nomenclature 
can be developed. Building upon this, the development of accu-
rate in vivo vesicle tracking models will be essential in validating 
much of what is currently known for translation into the clinic. 
Finally, utilizing large clinical cohorts for the examination of vesi-
cle concentrations, populations, and cargo should be performed 
to examine vesicle heterogeneity in multiple patient populations. 
Although the precise physiological and pathological functions of 
EVs remain at a nascent stage of understanding, their obvious 
potential as biomarkers and vehicles for therapeutic intervention 
could transform our approach to understanding and treating 
diabetic cardiovascular pathologies.
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