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Jumper enables discontinuous transcript assembly
in coronaviruses
Palash Sashittal 1, Chuanyi Zhang 2, Jian Peng 1,3 & Mohammed El-Kebir 1✉

Genes in SARS-CoV-2 and other viruses in the order of Nidovirales are expressed by a process

of discontinuous transcription which is distinct from alternative splicing in eukaryotes and is

mediated by the viral RNA-dependent RNA polymerase. Here, we introduce the DIS-

CONTINUOUS TRANSCRIPT ASSEMBLYproblem of finding transcripts and their abundances

given an alignment of paired-end short reads under a maximum likelihood model that

accounts for varying transcript lengths. We show, using simulations, that our method,

JUMPER, outperforms existing methods for classical transcript assembly. On short-read data

of SARS-CoV-1, SARS-CoV-2 and MERS-CoV samples, we find that JUMPER not only iden-

tifies canonical transcripts that are part of the reference transcriptome, but also predicts

expression of non-canonical transcripts that are supported by subsequent orthogonal ana-

lyses. Moreover, application of JUMPER on samples with and without treatment reveals viral

drug response at the transcript level. As such, JUMPER enables detailed analyses of Nido-

virales transcriptomes under varying conditions.
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Coronaviruses, and more generally viruses in the taxonomic
order of Nidovirales, are enveloped viruses containing a
positive-sense, single-stranded RNA genome that encodes

for non-structural proteins near the 5ʹ end as well as structural
and accessory proteins near the 3ʹ end1. Since the host ribosome
processes mRNA starting at the 5ʹ end, translation of the viral
genome only generates the non-structural proteins. Expression of
the remaining genes is achieved by discontinuous transcription
performed by the viral RNA-dependent RNA polymerase
(RdRp)2, a protein that is encoded in the non-structural part of
the viral genome. Specifically, RdRp can skip over contiguous
genomic regions, or segments, in the viral RNA template,
resulting in a repertoire of discontinuous transcripts that corre-
spond to distinct subsequences of segments ordered as in the
reference genome (Fig. 1a). Several recent studies have analyzed
SARS-CoV-2 sequencing samples, identifying split reads—i.e.
reads that span non-contiguous parts of the viral genome—that
provide evidence for canonical discontinuous transcription events
that produce an intact 3ʹ open reading frame as well as non-
canonical discontinuous transcription events whose role is
unclear3–5. However, to the best of our knowledge, no study has
attempted to assemble coronavirus transcriptomes, which could
provide important clues about the viral life cycle under various
conditions such as drug treatment.

Current methods for transcript assembly are mainly designed
for eukaryotes and fall under two broad categories: (i) reference-
based methods and (ii) de novo assembly methods. The main
distinction is that the former require the reference genome as
input while the latter have no such requirement. As such, de novo
assembly methods6–10 are useful when the reference genome is
unavailable or when the diversity of different species in the
sample is too large. On the other hand, reference-based
methods11–21 generally achieve higher accuracy as they use the
reference genome as a scaffold on which to align sequencing
reads. Typically, such methods construct a splice graph G—i.e. a
directed graph whose nodes correspond to contiguous genomic
regions and edges indicate splice junctions—and subsequently
aim to decompose the graph into paths that correspond to
transcripts. In addition to inferring transcripts T given an
alignment R, a subset of reference-based methods simultaneously

estimates their abundances c17,19. Alternatively, transcripts
abundances c may also be quantified using separate tools22,23. We
refer to Supplementary Note A.1 for a more detailed overview of
previous work.

There are important differences between transcription in
eukaryotes and coronaviruses. In eukaryotes, a gene may express
multiple transcripts that differ in their composition due to
alternative splicing, which is predominantly mediated by the
spliceosome and results in the generation of multiple mRNAs
with differentially joined or skipped exons (segments) from the
same gene. By contrast, transcripts in coronaviruses result from
discontinuous transcription, which is mediated by viral RdRp and
results in the removal of contiguous segments due to jumps of the
RdRp. There are two key differences between these two biological
processes. First, in discontinuous transcription, there is no shuf-
fling of segments and the ordering of the segments is maintained
in each transcript. Since exon shuffling in eukaryotes is rare
during alternative splicing, this constraint is commonly used in
existing transcript assembly methods as well11,12,19–21. Second,
the complete viral genome, without any jumps, is always part of
the transcriptome. Consequently, due to these two biological
constraints, an alignment R of coronavirus samples will yield a
splice graph G with additional constraints that current methods
do not leverage.

In this study, we introduce the DISCONTINUOUS TRAN-
SCRIPT ASSEMBLY (DTA) problem of finding discontinuous
transcripts T and their abundances c (Fig. 1a) given an alignment
R of paired-end reads (Fig. 1b). Underpinning our approach is
the concept of a segment graph (Fig. 1c), which is an acyclic splice
graph with a Hamiltonian path due to the aforementioned con-
straints. This enables us to characterize discontinuous transcripts
T as small subsets of non-overlapping edges in this graph. Our
method, JUMPER, uses this compact representation to solve the
DTA at scale via a progressive heuristic that incorporates a mixed
integer linear program. Using simulations, we show that JUMPER
outperforms SCALLOP11 and STRINGTIE12, existing methods
for reference-based transcript assembly in eukaryotes. In real
data3, we run JUMPER on paired-end short-read data of virus-
infected Vero cells and use long-read data of the same sample for
validation. We find that JUMPER not only identifies canonical

Fig. 1 Overview of Jumper. a Coronaviruses generate a set T of discontinuous transcripts with varying abundances (c) during infection. b Next-generation
sequencing will produce an alignmentR with two types of aligned reads: reads that map to a contiguous genomic region (black) and split reads that map to
distinct genomic regions (red). c From R we obtain the segment graph G, a directed acyclic graph with a unique Hamiltonian path. JUMPER solves the
DISCONTINUOUS TRANSCRIPT ASSEMBLYto infer T and c with maximum likelihood. While this figure shows single-end reads, our problem statement
and method make use of the additional information provided by paired-end reads.
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transcripts that are part of the reference transcriptome, but also
predicts expression of non-canonical transcripts that are well
supported by long-read data. Similarly, JUMPER identifies
canonical and non-canonical transcripts in SARS-CoV-1 and
MERS-CoV samples24. Finally, we demonstrate the use of JUM-
PER to study viral drug response at the transcript level by ana-
lyzing samples with and without treatment prior to infection25. In
summary, JUMPER enables detailed analyses of coronavirus
transcriptomes under varying conditions.

Results
Discontinuous Transcript Assembly problem. To formulate the
DISCONTINUOUS TRANSCRIPT ASSEMBLY problem, we
define discontinuous transcripts as sequences of segments whose
order matches the reference genome. More formally, we have the
following definition.

Definition 1. Given a reference genome, a discontinuous tran-
script T is a sequence v1,…, v∣T∣ of segments where (i) each seg-
ment corresponds to a contiguous region in the reference
genome, (ii) segment vi precedes segment vi+ 1 in the reference
genome for all i∈ {1,…, ∣T∣− 1}, (iii) segment v1 contains the 5ʹ
end of the reference genome and (iv) segment v∣T∣ contains the 3ʹ
end of the reference genome.

While the genomic transcript T0 matches the reference
genome2, subgenomic transcripts contain jumps and correspond
to subgenomic RNAs (sgRNAs)3. Discontinuous transcripts T ¼
fTig occur in abundances c= [ci] where ci ≥ 0 is the relative
abundance of transcript Ti such that ∑jT ji¼1 ci ¼ 1. In this work, we
focus on coronavirus sequencing samples obtained using Illumina
sequencing, where reads originate from the reference genome of
length L of about 10–30 Kbp and have a fixed length ℓ ranging
from 100 to 400 bp. We refer to Supplementary Note A.3 for a
discussion on why transcript assembly remains relevant for such
samples in light of the availability long-read sequencing samples.
For ease of exposition, we describe the formulation in the context
of single-end reads, but in practice we use the paired-end
information if it is available. We refer to Supplementary Note B.5
for details on the paired-end formulation.

As ℓ≪ L, the identity of the transcript of origin for a given read
is ambiguous. Therefore, we need to use computational methods
to reconstruct the transcripts and their abundances from the
sequencing reads. Specifically, given a coronavirus reference
genome of length L and reads of a fixed length ℓ, we use a splice-
aware aligner such as STAR26 to obtain an alignment R. This
alignment provides information about the abundance c and
composition of the underlying transcripts T in the following two
ways. First, the depth, or the number of reads along the genome is
informative for quantifying the abundance c of the transcripts.
Second, the composition of the transcripts T is embedded in split
reads, which are reads that align to multiple distinct regions in the
reference genome (Fig. 1b). Since the alignmentR is composed of
reads from discontinuous transcripts, the alignment satisfies the
following two properties. First, the genomic regions induced by
any read in R, including split reads, are ordered from the 5ʹ to 3ʹ
direction of the reference genome. Second, due to the presence of
the genomic transcript T0, every position in the reference genome
can be expected to be covered by a read.

To infer T and c from R, most reference-based transcript
assembly methods employ a splice graph11,12,18. Informally, the
nodes of this graph correspond to contiguous segments of the
genome (i.e. are not separated by any split read) and directed
edges correspond to pairs of segments that are spanned by the
same read. Due to the aforementioned properties of an alignment
R of reads from discontinuous transcripts, the edges of the
corresponding splice graph can be partitioned into two sets. First,

continuous edges correspond to edges between segments that are
adjacent in the reference genome. Conversely, due to the presence
of reads from the genomic transcript T0, every pair of adjacent
segments in the reference genome will be connected by a
continuous edge. Second, discontinuous edges connect non-
adjacent segments, which indicate the jumps made by the viral
RdRp during discontinuous transcription. Both types of directed
edges connect segments in the same as the reference genome.
Thus, the splice graph obtained fromR is a directed acyclic graph
(DAG) with a Hamiltonian path composed of the
continuous edges.

We now show an alternative, more efficient construction of the
same graph using only the split reads in an alignment R of reads
from discontinuous transcripts. Each split read r 2 R maps to
q ≥ 2 distinct regions in the reference genome. Each pair of
regions that are adjacent in the split read are separated by two
positions v, w (where w− v ≥ 2) in the reference genome called
junctions. Thus, each split read contributes 2q− 2 junctions. The
collective set of junctions contributed by all split reads in R in
combination with positions {1, L} induces a partition of the
reference genome into closed intervals [v−, v+] of junctions that
are consecutive in the reference genome (i.e. there exists no other
junction that occurs in between v− and v+). The resulting set of
segments equals the node set V of segment graph G (Fig. 2a). The
edge set E of segment graph G is composed of continuous edges
E→ and discontinuous edges E↷. Continuous edges E→ are
composed of ordered pairs (v= [v−, v+],w= [w−, w+]) of nodes
that correspond to segments that are adjacent in the reference
genome, i.e. where v+=w−. On the other hand, discontinuous
edges E↷ are composed of ordered pairs (v= [v−, v+],w= [w
−,w+]) of nodes that corresponds to segments that are adjacent
in at least one split read in R but not adjacent in the reference
genome (i.e. w−− v+ ≥ 2). Fig. 1c shows an example of a segment
graph.

Definition 2. Given an alignment R of reads from discontinuous
transcripts, the corresponding segment graph G= (V, E→ ∪ E↷) is
a directed graph whose node set V equals the set of segments
induced by the junctions of split reads in R and whose edge set
E= E→ ∪ E↷ is composed of edges (v= [v−, v+],w= [w−, w+])
that are either continuous, i.e. v+= w−, or discontinuous, i.e. w

Fig. 2 Schematic describing split reads and characteristic discontinuous
edges. a Split reads in an alignment R define a set of junctions, which in
turn define the segment graph G. b Each split read has characteristic
discontinuous edges indicating the set σ⊕ of discontinuous edges present in
the read as well as conflicting/overlapping discontinuous edges σ⊖. Here,
split read r (blue), has σ⊕(r)= {e3, e5} and σ⊖(r)= {e2, e4}. Note that e1 is
not included in σ⊖(r) as it does not overlap with π(r)= {e3, e5}.
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−− v+ ≥ 2 and there exists a split read where junctions v+ and w
− are adjacent.

Thus, by definition any segment graph will have a Hamiltonian
path induced by the continuous edges E→. Moreover, the segment
graph obtained from an alignment of reads from discontinuous
transcripts will be a DAG.

Observation 1. The segment graph G obtained from an align-
ment of reads from discontinuous transcripts is a directed acyclic
graph with a (unique) Hamiltonian path.

By the above observation, G has a unique source node s and
sink node t. Importantly, each transcript T 2 T that is
compatible with an alignment R corresponds to an s− t path
π(T) in G. Here, a path π is a subset of edges E that can be
ordered (v1,w1),…, (v∣π∣,w∣π∣) such that wi= vi+1 for all i∈ [∣π∣−
1]= {1,…, ∣π∣− 1}. While splice graphs of general alignments
are DAGs and typically have a unique source and sink node as
well, they do not necessarily contain a Hamiltonian path11,19,27,28.

Our goal is to find a set T of transcripts and their abundances c
that maximize the posterior probability

PrðT ; cjRÞ / PrðRjT ; cÞ PrðT ; cÞ:
Under an uninformative, flat prior PrðT ; cÞ, this is equivalent to
maximizing the probability PrðRjT ; cÞ. We use the segment
graph G to compute the probability PrðRjT ; cÞ of observing an
alignment R given transcripts T and abundances c. We follow
the same generative model which has been extensively used for
transcription quantification22,23,29. The notations used in this
paper best resemble the formulation described in ref. 28. Let R be
composed of reads {r1,…, rn} and the set T of transcripts be
{T1,…, Tk} with lengths L1,…, Lk and abundances c= [c1,…, ck].
In line with current literature, reads R are generated indepen-
dently from transcripts T with abundances c. Further, we must
marginalize over the set of transcripts T as the transcript of
origin of any given read is typically unknown, since ℓ≪ L.
Moreover, we assume that the fixed read length ℓ is much smaller
than the length Li of any transcript Ti. As such, we have that
PrðRjT ; cÞ equals

PrðRjT ; cÞ ¼
Yn

j¼1
PrðrjjT ; cÞ

¼
Yn

j¼1

1

∑k
b¼1 cbLb

∑
i:πðTiÞ�πðrjÞ

ci;

ð1Þ

where π(T)⊆ E is the s− t path corresponding to transcript T
and π(r)⊆ E is the path induced by the ordered sequence of
segments (or nodes of G) spanned by read r. By construction,
π(T)⊇ π(r) is a necessary condition for transcript T to be a
candidate transcript of origin of read r. Supplementary Note A.2
gives the derivation of the above equation (Eq. (1)). Our goal is to
find argmax T ;c PrðRjT ; cÞ, leading to the following problem.

Problem 1. (DISCONTINUOUS TRANSCRIPT ASSEM-
BLY(DTA)). Given alignment R and integer k, find dis-
continuous transcripts T ¼ fT1; ¼ ;Tkg and abundances
c= [c1,…, ck] such that (i) each transcript Ti 2 T is an s− t path
in segment graph G, and (ii) PrðRjT ; cÞ is maximum.

In practice, we set the value of k to a large number (e.g. k= 50)
and restrict the subsequent analyses to the set of transcripts
whose abundance exceeds a threshold value (e.g. ≥0.001). The
probability PðRjT ; cÞ, in Eq. (1), is expressed in terms of the
observed reads and their induced paths π(r)⊆ E(G) in the
segment graph G. In the ‘Methods’ section, we describe a more
concise way of expressing the probability PðRjT ; cÞ using the fact
that the segment graph G is a DAG with a unique Hamiltonian
path. This concise characterization enables us to design a

progressive heuristic that incorporates an efficient mixed linear
integer program (MILP) to solve the DTA problem (details are in
the ‘Methods’ section). Our resulting method, JUMPER, is
implemented in Python 3 using Gurobi30 (version 9.0.3) to
solve the MILP and pysam31 for reading and processing the
input BAM file. JUMPER is available at https://github.com/
elkebir-group/Jumper.

Experimental evaluation. We begin by establishing terminology
that will be used in the rest of the section. A discontinuous edge
(v= [v−, v+],w= [w−, w+]) is canonical provided its 5ʹ junction
v+ occurs in the transcription regulating leader sequence (TRS-
L), i.e. between positions 50 and 85, and the first occurrence of
‘AUG’ downstream of the 3ʹ junction w− position coincides with
the start codon of a known open reading frame (ORF), otherwise
the discontinuous edge is called non-canonical. Note that the
range 50−85 is chosen since it contains the TRS-L regions of the
SARS-CoV-132, SARS-CoV-23 and MERS-CoV32 genomes ana-
lyzed in this paper. In a similar vein, a transcript is canonical if it
contains at most one canonical and no non-canonical dis-
continuous edges, otherwise the transcript is non-canonical. We
ran all experiments on a server with two 2.6 GHz CPUs and
512 GB of RAM.

Simulations. We generated our simulation instances using a
segment graph G obtained from a short-read sample
(SRR11409417). Following Kim et al.3, we used fastp to trim
short reads (trimming parameter set to 10 nucleotides), which
were input to STAR run in two-pass mode yielding an alignment
R. Figure 3a shows the sashimi plot of the canonical and the non-
canonical discontinuous edges (mappings) supported by the reads
in the sample. From R, we obtained G by only including dis-
continuous edges supported by at least 20 reads. The segment
graph G has ∣V∣= 39 nodes and ∣E∣= 67 edges, which include
∣E↷∣= 29 discontinuous edges and ∣E→∣= 38 continuous edges.
The discontinuous edges are subdivided into 14 canonical dis-
continuous edges that produce a known ORF and 15 non-
canonical discontinuous edges. Next, we generated transcripts T
and their abundances c from G using the negative-sense dis-
continuous transcription model (described in Supplementary
Note C.1). Upon generating the transcripts, we simulated the
generation and sequencing of RNA-seq data, and aligned the
simulated reads using STAR26. We generated five independent
pairs ðT ; cÞ of transcripts and abundances (Fig. 3b). For each pair
ðT ; cÞ we generated five paired-end short-read sequencing
simulations using polyester33. Thus, in total we generated
5 × 5= 25 simulation instances.

We compare the performance of our method JUMPER with
two other reference-based transcript assembly methods, SCAL-
LOP and STRINGTIE. Note that our method, JUMPER, does not
use prior knowledge about the underlying negative-sense
discontinuous transcription model to infer the viral transcripts
from the simulated data. To avoid including false-positive
discontinuous edges, we set Λ= 100 so that JUMPER discards
discontinuous edges with fewer than 100 supporting reads. For
SCALLOP and STRINGTIE, we performed a sweep on their input
parameters and report the best results here. We begin by
comparing the transcripts predicted by the three methods to the
ground-truth transcripts. Specifically, a predicted transcript is
correct if there exists a transcript in the ground truth whose
junction positions match the predicted junctions positions within
a tolerance of ten nucleotides.

Figure 3c shows the F1 score (harmonic mean of recall and
precision) of the three methods for all the simulation instances,
showing that JUMPER achieves a higher F1 score (median of
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0.255 and range [0.176, 0.339]) compared to SCALLOP (median
of 0.062 and range [0.0145, 0.173]) and STRINGTIE (median of
0.019 and range [0.0114, 0.0412]). Supplementary Fig. 5 shows
that JUMPER’s improved performance holds for both the recall
and the precision with running times comparable to the
SCALLOP and STRINGTIE. To investigate the effect of threshold
parameter Λ on the performance of JUMPER, we ran our method
on the simulated instances with Λ∈ {10, 50, 100, 200}. Supple-
mentary Fig. 6 shows that JUMPER outperforms SCALLOP and
STRINGTIE for all values of Λ, although it incurs significantly
more runtime for Λ= 10.

To better understand the tradeoff between precision and recall,
we zoom in on five simulation instances with distinct pairs ðT ; cÞ.
Figure 3d shows the precision and recall achieved by each method
for each of these five simulation instances, demonstrating that
JUMPER consistently outperforms both SCALLOP and STRING-
TIE. On average, JUMPER recalls 5 times more transcripts than
SCALLOP and 11 times more transcripts than STRINGTIE while
also having higher precision in all simulated cases. Supplementary
Fig. 7 shows that all three methods produce similar precision and
recall values for different sequencing replicates of the same
simulated instance of ðT ; cÞ, demonstrating consistency in results.
Figure 3e shows the number of canonical and non-canonical
transcripts generated by the three methods that match the ground
truth for each simulated instance, with JUMPER consistently
recalling a larger number of ground-truth canonical and non-
canonical transcripts. To assess the accuracy of JUMPER’s

estimation of the abundances c, we computed the Pearson
correlation between the abundances of the correctly recalled
transcripts and their ground-truth abundances. We find that
JUMPER achieves a median Pearson correlation of 0.979, and
that the use of SALMON to re-estimate abundances improves the
median correlation to 0.985 (Supplementary Fig. 8).

In summary, we found that JUMPER correctly predicts higher
number of both canonical and non-canonical transcripts
compared to SCALLOP and STRINGTIE for all the simulated
instances (summarized in Supplementary Table 3). We observe
similar trends on simulated instances of a human gene (see
Supplementary Note C.4).

Viral transcript assembly in SARS-CoV-2-infected Vero cells.
Recently, Kim et al.3 explored the transcriptomic architecture of
SARS-CoV-2 by performing short-read as well as long-read
sequencing of Vero cells infected by the virus. The authors used
oligo(dT) amplification, which targets the poly(A) tail at the 3ʹ
end of messenger RNAs, thus limiting positional bias that would
occur when using SARS-CoV-2-specific primers34,35. Subse-
quently, the authors aligned the resulting reads using splice-aware
aligners, STAR26 for the short-read sample (median depth of
1763) and minimap236 for the long-read sample (median depth
of 6707 and mean length of 2875 bp). For both complementary
sequencing techniques, the authors observed split reads that were
indicative of canonical as well as non-canonical transcription
events. While this previous work quantified the fraction of split

Fig. 3 JUMPER consistently outperforms SCALLOP11 and STRINGTIE12 in reconstruction of viral transcripts from simulated SARS-CoV-2 sequencing
data. a Sashimi plot showing the canonical (black) and non-canonical (gray) discontinuous mappings supported by reads in short-read sample
SRR11409417. b Number of canonical and non-canonical transcripts for five simulation instances of ðT ; cÞ generated under the negative-sense
discontinuous transcription model. c F1 score of the three methods (JUMPER, SCALLOP, and STRINGTIE) for all the 5 × 5= 25 simulated instances (i.e. five
technical replicates for each of the five simulated transcriptomes) under the negative-sense discontinuous transcription model. Box plots show the median
and the interquartile range (IQR), and the whiskers denote the lowest and highest values within 1.5 times the IQR from the first and third quartiles,
respectively. d Precision and recall values of the three methods with one of sequencing experiment for each simulated instance of ðT ; cÞ under the
negative-sense discontinuous transcription model as input. e Total number of canonical and non-canonical transcripts recalled by the three methods for the
simulated instances shown in panel (d).
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reads supporting each discontinuous transcription event, it did
not attempt to assemble complete viral transcripts.

We used JUMPER to reconstruct the SARS-CoV-2 transcrip-
tome of the short-read sequencing sample using the BAM file
obtained by running Kim et al.’s pipeline3. This was followed by
running SALMON to identify precise transcript abundances. We
note that running SCALLOP on the short-read data resulted in
only a single, complete canonical transcript (corresponding to
‘N’) but required subsampling of the BAM file (to 20%) due to
memory constraints, whereas STRINGTIE produced two incom-
plete transcripts (‘ORF3a’ and a non-canonical transcript with
low support). On a segment graph with ∣V∣= 59 nodes and
∣E∣= 93 edges comprised of ∣E↷∣= 35 most abundant discontin-
uous edges, 18 of which canonical and 17 non-canonical (Fig. 4a),
JUMPER identified 33 transcripts, 17 of which have an
abundance of at least 0.001 as determined by SALMON (Fig. 4b).
A subset of eight transcripts are canonical, containing at most one
discontinuous edge with the 5ʹ junction in TRS-L and the first
ATG downstream of the 3ʹ junction coinciding with the start
codon of a known ORF. These canonical transcripts correspond
to ORF1ab, ORF3a, E, M, ORF7a, ORF7b, ORF8, N. In particular,
ORF1ab (abundance of 0.008) corresponds to the complete viral
genome, necessary for viral replication. Notably, ORF10 is the
only missing ORF in the identified transcriptome, which is in line
with previous studies3,5 that did not find evidence for active
transcription of ORF10.

As mentioned, JUMPER inferred nine non-canonical tran-
scripts, denoted as X, Xʹ, 1abʹ, Sʹ, 3aʹ, 6ʹ, Eʹ, 7b* and Nʹ. Among
these, transcripts 1abʹ, Sʹ, 3aʹ and 6ʹ encode for the 1ab
polypeptide, spike protein S, accessory protein 3a and accessory
protein 6, respectively. Transcripts X and Xʹ both contain the
discontinuous edge going from position 68 to 15774, with the
latter containing an additional discontinuous edge from position
26256 to 26284. The 5ʹ end of the common discontinuous edge
occurs within TRS-L, whereas the 3ʹ end occurs in the middle of
ORF1b but is out of frame with respect to the starting position of
ORF1b (13468). Specifically, the start codon ‘ATG’ downstream
of the 3ʹ end is located at position 15812 and occurs within nsp12
(RdRp) and the first stop codon is located at position 15896,
encoding for a peptide sequence of 28 amino acids. Interestingly,
when we examined the reference genome, we observed matching
sequences ‘GAACTTTAA’ near the 5ʹ and 3ʹ junctions of the
discontinuous edge common to X and Xʹ, possibly explaining why
the viral RdRp generated this jump (Supplementary Fig. 9a, b).
Strikingly, both matching sequences are conserved within the

Sarbecovirus subgenus but not in other subgenera of the
Betacoronavirus genus (Supplementary Fig. 9a, c). To further
corroborate this transcript, we examined short- and long-read
SARS-CoV-2 sequencing samples from the NCBI Sequence Read
Archive (SRA). Specifically, we looked for the presence of reads
potentially originating from transcript X focusing on high-quality
samples with 100 or more leader-spanning reads (reads whose 5ʹ
end maps to the TRS-L region). We say a read r supports a
transcript T if the discontinuous edges of r exactly match those of
T, i.e. π(r)⊆ π(T) and ∣σ⊕(r)∣= ∣σ(T)∣ (Supplementary Fig. 10).
We found ample support for transcript X in both short- and long-
read samples on SRA, with 100 out of 351 short-read samples and
81 out of 653 long-read samples having more than 0.1% of leader-
spanning reads supporting transcript X (Supplementary Fig. 11).
We note that although this discontinuous transcription event was
also observed in ref. 5, the authors found no evidence of this
transcript leading to a protein product in the ribo-seq data.
Further research into a potentially regulatory function of this
transcript is required.

As stated, the difference between transcripts X and Xʹ is that
the latter includes an additional discontinuous edge, correspond-
ing to a short jump of ~27 nucleotides between positions 26256
and 26284. This is an in-frame deletion inside ORF E, resulting in
the loss of nine amino acids that span the N-terminal domain
(four amino acids) and the transmembrane domain (five amino
acids) of the E protein37. A similar in-frame deletion of 24
nucleotides (from position 26259 to 26284) was observed by
Finkel et al.5 that resulted in the loss of a subset of eight out of the
nine amino acids in the deletion that we observed. Furthermore,
it is possible that this common deletion is being selected for
during passage in Vero E6 cells, which were used by both Kim
et al.3 and Finkel et al.5. Non-canonical transcripts Sʹ, 3aʹ and Eʹ
also contain the same discontinuous edge from position 26256 to
26284. While transcript Eʹ produces a version of protein E with
nine missing amino acids, transcripts Sʹ and 3aʹ produce complete
viral proteins S and 3a, respectively. Non-canonical transcript 6ʹ
differs from the canonical transcript 6, containing a jump from
position 27886 to 27909. This jump is downstream of ORF6 and
therefore does not disrupt the translation of accessory protein 6.
Similarly, transcript 1abʹ has a single jump from position 26779 to
26817, which is downstream of the ORF1ab gene and therefore
will yield the complete polypeptide 1ab. Transcript 7b*, on the
other hand, has a single discontinuous edge from position 71 to
27762. The start codon ‘ATG’ downstream of the 3ʹ end occurs at
position 27825, maintaining the frame of 7b, and thus leading to

Fig. 4 Using short-read data of SARS-CoV-2-infected Vero cells3, JUMPER identifies canonical and non-canonical transcripts that are well supported
by long-read sequences of the same sample. a The segment graph for the short-read data contains both canonical (above) and non-canonical (below)
edges. b JUMPER assembles eight canonical transcripts and nine non-canonical transcripts and estimates their abundances with zoomed-in view of the
non-canonical transcripts X, X', 1ab', S', 3a', E', 6', 7b*, and N'. c All non-canonical transcripts predicted by JUMPER are well supported by long-read data.
NGS next-generation sequencing, ONT Oxford Nanopore Technologies.
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an N-terminal truncation3 of 23 amino acids. Interestingly,
transcript 7b and transcript 7b* appear with similar abundances
in our solution. Finally, transcript Nʹ has one canonical
discontinuous edge from TRS-L (position 65) to the transcription
regulating body sequence (TRS-B) region corresponding to ORF
N (position 28255) and an additional jump from position 28525
to 28577, which leads to an in-frame deletion of 17 amino acids in
the N-terminal RNA-binding domain38,39 of ORF N. Thus, with
the exception of transcripts X and Xʹ, the non-canonical
transcripts identified by JUMPER either produce complete viral
proteins (1abʹ, Sʹ, 3aʹ, 6ʹ), contain in-frame deletions in the middle
of known proteins (Eʹ, Nʹ) or produce N-terminally truncated
proteins (7b*).

One of the major findings of the Kim et al. paper3 is that the
SARS-CoV-2 transcriptome is highly complex owing to numer-
ous non-canonical discontinuous transcription events. Strikingly,
our results show that these non-canonical transcription events do
not significantly change the resulting proteins. Indeed, we find
that four out of the nine non-canonical transcripts produce a
complete known viral protein and the total abundance of the
predicted transcripts that produce a complete known viral protein
is 0.968. Moreover, these predicted transcripts account for more
than 90% of the reads in the sample according to the estimates
provided by SALMON.

Typically, reads from short-read sequencing samples are not
long enough to contain more than one discontinuous edge. As a
result, short-read data can only provide direct evidence for
transcripts with closely spaced discontinuous edges. For instance,
we observed ample support (63485 short reads) for the predicted
non-canonical transcript Eʹ, which has two discontinuous edges
(69, 26237) and (26256, 26284), in short-read data due to the
close proximity of the two discontinuous edges (i.e. the
discontinuous edges are only 26256− 26237= 19 nucleotides
apart). The other non-canonical transcripts with multiple
discontinuous edges, i.e. Xʹ, Sʹ, 3aʹ, 6ʹ and Nʹ, have edges that
are too far apart to be spanned by a single short read. Using the
long-read sequencing data of this sample, we detected supporting
long reads that span the exact set of discontinuous edges of all 9
non-canonical transcripts (Fig. 4c). Moreover, we found support
for the canonical transcripts as well (Supplementary Fig. 12).
Thus, all transcripts identified by JUMPER from the short-read
data are supported by direct evidence in the long-read data.

In summary, using JUMPER, we reconstructed a detailed
picture of the transcriptome of a short-read sequencing sample of
Vero cells infected by SARS-CoV-2. While existing methods
failed to recall even the reference transcriptome, JUMPER
identified transcripts encoding for all known viral protein
products. In addition, our method predicted non-canonical
transcripts, whose presence we subsequently validated on a
long-read sequencing sample of cells from the same cell line.

Viral transcript assembly in SARS-CoV-2-infected A549 cells
with and without treatment. To demonstrate that JUMPER can
be used to understand the effect of drugs on the viral tran-
scriptome, we analyzed a recent dataset by Blanco et al.25 who
studied the host transcriptional response to SARS-CoV-2 and
other viral infections using various cell lines. We focused on A549
lung alveolar cell line samples that were sequenced after 24 h of
SARS-CoV-2 infection. There are a total of eight samples, four
technical replicates that were pre-treated with ruxolitinib for 1 h
before the infection and four technical replicates that were
untreated. Ruxolitinib is a JAK1 and 2 kinase inhibitor, which
blocks type-I interferon (IFN-I) signaling necessary to engage
cellular antiviral defenses40,41. Specifically, the four samples
without treatment are SRR11573904 (median depth of 86),

SRR11573905 (median depth of 85), SRR11573906 (median
depth of 89), and SRR11573907 (median depth of 89), and the
four samples treated with ruxolitinib are SRR11573924 (median
depth of 90), SRR11573925 (median depth of 91), SRR11573926
(median depth of 91), and SRR11573927 (median depth of 92).
We used fastp to trim the short reads (trimming parameter set
to 10 nucleotides) and we aligned the resulting reads using STAR
in two-pass mode. We ran JUMPER with the 35 most abundant
discontinuous edges in the segment graph. Similarly to the pre-
vious analysis, we restricted our attention to transcripts identified
by JUMPER that have more than 0.001 abundance as estimated
by SALMON23.

SCALLOP, run with default parameters (Supplementary
Note C.2), identified at most two transcripts for each sample
encoding for different variants of ORF N. JUMPER identified a
total of 47 transcripts across the eight samples, with 18 of these
transcripts present in both ruxolitinib treated and untreated
samples (Supplementary Fig. 13a, c). We observed that samples
with pre-treatment of ruxolitinib cumulatively have fewer
transcripts compared to the number of transcripts from samples
without any treatment (29 vs. 36 transcripts, Fig. 5a). Strikingly,
all the transcripts that are present in two or more samples were
also present across the two groups of samples (treated and
untreated). Focusing on the 18 common transcripts, Supplemen-
tary Fig. 11d shows the total number of samples that contain each
of these 18 transcripts. A subset of 13 out of these 18 transcripts
produce all known canonical viral proteins except 7b. Figure 5b
shows the abundance of the transcripts yielding functional
proteins in the samples along with ‘NC’ depicting the abundance
of transcripts producing either non-canonical or non-functional
viral proteins. The abundance of the canonical transcripts, except
1ab, is slightly higher in samples with treatment compared to the
samples without treatment. Consequentially, the abundance of
non-canonical transcripts is lower in samples with treatment
compared to samples without treatment.

There are five non-canonical transcripts, including ∇M, NC1,
and NC2, which do not encode for known SARS-CoV-2 proteins
but are explained by matching motifs near the 5ʹ and 3ʹ ends of
the non-canonical discontinuous edges, described in Supplemen-
tary Table 4, potentially mediating the jump made by the RdRp to
generate these transcripts. Specifically, while transcript ∇M
contains a canonical discontinuous edge from the leader to the
known TRS-B region of M, it also contains an out-of-frame
deletion such that the transcript yields a 116 amino acids long
protein which matches the M protein for the first 87 amino acids
(total length of protein M is 222 amino acids). Both transcripts
NC1 and NC2 contain only one jump with the 5ʹ end within
ORF1a. The 3ʹ end of the jump lies within ORF7b and ORF N for
transcript NC1 and transcript NC2, respectively. The remaining
two non-canonical transcripts, ΔS1 and ΔS2, have in-frame
deletions in the region that encodes for the spike protein.

ΔS1 contains an in-frame jump from position 23593 to 23630
resulting in a 12 amino-acid in-frame deletion, while ΔS2
contains a jump from position 23593 to 23615, which results in
a 7 amino-acid in-frame deletion in the spike protein (Fig. 5d).
Both these deletions overlap with the furin cleavage site (FCS),
highlighted in Fig. 5d, which has been the focus of several recent
studies4,42,43. The authors of ref. 4 deduced that the deletion of
the FCS enhances the ability of the virus to enter Vero cells and is
selected for during passage in Vero E6 cells, a cell line that lacks a
working type-I interferon response. The observation of ΔS1 and
ΔS2 in infected A549 cell samples can be explained by the fact
that Blanco et al.25 propagated SARS-CoV-2 in Vero E6 cells
prior to the infection of the A549 cells. Figure 5c shows that pre-
treatment with ruxolitinib leads to an increase in the abundance
of the three transcripts, S (median increase from 0.004 to 0.005),
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ΔS1 and ΔS2 (median increase from 0.0011 to 0.0012), with the
increase being most significant for ΔS1 (median increase from
0.008 to 0.012) with a p value of 0.015 with the Mann−Whitney
U test. This shows that the response of different transcripts of the
virus to treatment of drugs can differ significantly. In summary,
we find that JUMPER enables transcript-level analysis of the viral
response to drug treatments.

Viral transcript assembly in SARS-CoV-1- and MERS-CoV-
infected cells. To show the generalizability of our method, we
considered two other coronaviruses, SARS-CoV-1 and MERS-
CoV. We describe the results for two SARS-CoV-1-infected cell
samples here and the analysis of three MERS-CoV-infected cell
samples is described in Supplementary Note C.5.

We analyzed two published samples of human Calu-3 cells
infected with SARS-CoV-124, SRR1942956 and SRR1942957, with
a median depth of 21,358 and 20,991, respectively. These two
samples originate from the same SRA project (‘PRJNA279442’)
whose metadata states that both samples were sequenced 24 h
after infection. We used fastp to trim the short reads (trimming
parameter set to 10 nucleotides) and we aligned the resulting
reads using STAR in two-pass mode. We ran JUMPER with the
35 most abundant discontinuous edges in the segment graph. As
observed previously, SCALLOP only identified a single transcript
corresponding to ORF N in both the samples. By contrast,
JUMPER reconstructed 25 transcripts in sample SRR1942956 and
26 transcripts for sample SRR1942957. Similarly to the previous
analysis, we discuss the transcripts identified by JUMPER that
have more than 0.001 abundance as estimated by SALMON.
There are 13 such transcripts for sample SRR1942956 and
13 such transcripts for sample SRR1942957 (Fig. 6).

SARS-CoV-1 has a genome of length 29,751 bp, and consists of
13 ORFs (1ab, S, 3a, 3b, E, M, 6, 7a, 7b, 8a, 8b, N and 9b), two
more than SARS-CoV-2. For both samples, JUMPER identified

canonical transcripts corresponding to all the ORFs of SARS-
CoV-1 except ORF3b, ORF8b and ORF9b (Fig. 6). Notably,
ORF8b and ORF9b share transcription regulating body sequences
(TRS-B) with ORF8a and ORF N respectively44. More specifically,
ORF9b (from position 28130 to 28426) is nested within ORF N
(from position 28120 to 29388) with start codons only 10
nucleotides apart and consequently shares the same TRS-B as
ORF N. ORF8b (from position 27864 to 28118) intersects with
ORF8a (from 27779 to 27898) and previous studies have failed to
validate a TRS-B region for ORF8b44. One possible way that these
ORFs are translated is due to ribosome leaky scanning, which was
also hypothesized to lead to ORF7b translation in SARS-CoV-2 5.
This explains why JUMPER was unable to identify transcripts
that directly encode for 8b and 9b. Regarding ORF3b, JUMPER
did identify a canonical transcript corresponding to 3b in both
samples, but the SALMON estimated abundances (0.00044 for
SRR1942956 and 0.0005 for SRR1942957) for these transcripts
were below the cut-off value of 0.01. Finally, we note that the
relative abundances of the canonical transcripts are consistent for
the two samples (Fig. 6) and ranked in the same order
(Supplementary Fig. 14), with ORF7b being the least abundant
and ORF N having the largest abundance, in line with the
observations in SARS-CoV-2-infected cells described in the
previous sections.

Figure 6 shows the three non-canonical transcripts predicted
by JUMPER in the two SARS-CoV-1 samples, designated as 1abʹ,
Mʹ and N*. Since these non-canonical transcripts are in very low
abundance, we see some discrepancy in the prediction between
the two samples. The first non-canonical transcript 1abʹ with a
single short discontinuous edge from position 26131 to 26156 is
detected in both samples and has a very low abundance compared
to the canonical transcript 1ab (0.0133 for 1ab vs. 0.002 for 1abʹ
in SRR1942956, and 0.013 for 1ab vs. 0.0039 for 1abʹ in
SRR1942956). Since the discontinuous edge occurs downstream
of the stop codon of 1ab (position 21492), the 1abʹ transcript

Fig. 5 JUMPER enables analysis of drug response in SARS-CoV-2-infected cells25 at the transcript level. a A Venn diagram showing the number of
transcripts reconstructed from four samples with and four samples without treatment with ruxolitinib (i.e. two groups of four technical replicates).
Supplementary Fig. 13 shows the distribution of the 18 transcripts that are common between samples with and without treatment while Supplementary
Table 4 describes these transcripts. b Abundance of the transcripts yielding canonical proteins in the samples along with ‘NC’ depicting the abundance of
the non-canonical transcripts. c Abundance of the transcripts yielding the spike protein (S) and its variants ΔS1 and ΔS2 whose structure is described in
(d). Box plots show the median and the interquartile range (IQR), and the whiskers denote the lowest and highest values within 1.5 times the IQR from the
first and third quartiles, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26944-y

8 NATURE COMMUNICATIONS |         (2021) 12:6728 | https://doi.org/10.1038/s41467-021-26944-y | www.nature.com/naturecommunications

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942956
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942957
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942956
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942956
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942957
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1942956
www.nature.com/naturecommunications


encodes for the complete polypeptide 1ab. The second non-
canonical transcript Mʹ has two discontinuous edges: a canonical
discontinuous edge from TRS-L (position 65) to TRS-B of ORF M
(position 26351) and a non-canonical discontinuous edge from
29542 to 29661 in the 3ʹ untranslated region (UTR). As such, this
transcript encodes for the complete M protein. This transcript is
detected in SRR1942956 with a very low abundance of 0.001 and
is detected at an even lower abundance of 0.0008 in SRR1942957,
which is below the cut-off threshold of 0.001. The third non-
canonical transcript, denoted by N*, has a single discontinuous
edge from position 65 to 29003. While JUMPER and SALMON
detected this transcript only in sample SRR1942957 with a low
abundance of 0.003, we do observe 119 reads in SRR1942956
(compared to 151 reads in SRR1942957) that support this edge,
suggesting that N* might be present in the latter sample at too
small of an abundance to be detected. Transcript N* is interesting
because the first ‘ATG’ downstream of the 3ʹ end of its
discontinuous edge occurs at position 29071 maintaining the
frame of N (which starts at position 28120). Thus transcript N*
encodes for an N-terminally truncated version of protein N with
105 amino acids (while protein N is composed of 422 amino
acids) and only contains part of the C-terminal dimerization
domain38 of protein N. This is similar to transcript 7b* in the
SARS-CoV-2-infected Vero cell sample, which yields a
N-terminal truncated version of protein 7b. Detection of non-
canonical transcripts such as Eʹ and 7b* in SARS-CoV-2 and Nʹ
in SARS-CoV-1 suggests that generation of N-terminally
truncated proteins might be a common feature in coronaviruses.

In summary, JUMPER can used to to reconstruct the
transcriptome of all viruses in Nidovirales and lead to discovery
of novel viral transcripts and corresponding viral proteins. While
this section focused on SARS-CoV-1, we observed similar results
for MERS-CoV samples, where JUMPER reconstructed tran-
scripts corresponding to all the ORFs with well-supported TRS-B
sites along with consistent abundances across the three samples
(see Supplementary Note C.5).

Discussion
In this paper, we formulated the DISCONTINUOUS TRANSCRIPT
ASSEMBLY (DTA) problem of reconstructing viral transcripts from
short-read RNA-seq data of coronaviruses. The discontinuous tran-
scription process exhibited by the viral RNA-dependent RNA poly-
merase (RdRp) is distinct from alternative splicing observed in
eukaryotes. Our proposed method, JUMPER, is specifically designed
to reconstruct the viral transcripts generated by discontinuous tran-
scription and is therefore able to outperform existing transcript
assembly methods such as SCALLOP and STRINGTIE, as we have
shown in both simulated and real data.

For real-data analysis, we used publicly available short-read
and long-read sequencing data of the same sample of SARS-CoV-
2-infected Vero cells3. We performed transcript assembly using
the short-read sequencing data and used the long-read data for
validation. JUMPER was able to identify transcripts encoding for
all known viral proteins except ORF10, which has been shown to
have little support of active transcription in previous studies3,5.
Moreover, we predicted nine non-canonical transcripts that are
well supported by long-read sequencing data.

Furthermore, we demonstrated that JUMPER enables
transcript-level quantitative analysis of viral response to treat-
ment with drugs. More specifically, we analyzed eight samples of
A549 lung alveolar cells infected by SARS-CoV-2, four of which
were pre-treated with ruxolitinib for 1 h before infection25.
JUMPER identified one variant of the spike protein, with a 12
amino acid deletion overlapping with the furin cleavage site, that
showed statistically significant increase in expression in samples
that were pre-treated with ruxolitinib. We also showed the ver-
satility of JUMPER by considering two additional coronaviruses,
SARS-CoV-1 and MERS-CoV. For two samples of Calu-3 cells
infected by SARS-CoV-1 and three samples of Calu-3 cells
infected by MERS-CoV24, JUMPER reconstructed all the cano-
nical transcripts with distinct TRS-B regions and additionally
predicted the presence of non-canonical transcripts encoding for
either complete or truncated versions of known viral proteins.

Fig. 6 JUMPER identifies canonical and non-canonical transcripts that recur in two short-read sequencing samples of SARS-CoV-1-infected Calu-3
cells24. For both the samples, a SRR1942956 and b SRR1942957, we show the segment graph, with canonical (above) and non-canonical (below)
discontinuous edges. We also show the predicted transcripts and their abundances in the two samples with a zoomed-in view of the non-canonical
transcripts 1ab', M' and N*. UTR: untranslated region.
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There are several avenues for future work. First, JUMPER
currently is only applicable to data obtained using technologies
that limit positional bias such as oligo(dT) amplification, which
targets the poly(A) tail at the 3ʹ end of messenger RNAs. We plan
to extend our current model to account for positional and
sequencing biases in the data. Doing so will enable us to assemble
transcriptomes from sequencing samples that used SARS-CoV-2-
specific primers, which form the majority of currently available
data. Second, we currently make the assumption of a fixed read
length that is much smaller than the length of viral transcripts.
We will relax this assumption in order to support long-read
sequencing data that have variable read lengths, similar to pre-
vious methods such as Bayesembler16 and Scallop-LR45. Third,
we plan to study the effect of mutations (including single-
nucleotide variants as well as indels) on the transcriptome. Along
the same lines, there is evidence of within-host diversity in
COVID-19 patients46–51. It will be interesting to study whether
this diversity translates to distinct sets of transcripts and abun-
dances within the same host. Fourth, there are possibly multiple
optimal solutions to the DTA problem that present equally likely
viral transcripts with different relative abundances in the sample.
A useful direction of future work is to explore the space of
optimal solutions similar to the work done in ref. 28. Finally, the
approach presented in this paper can extended to the general
transcript assembly problem. Although JUMPER can be used for
transcript assembly of individual eukaryotic genes (see Supple-
mentary Note C.4), it does not currently support assembly across
multiple genes. The extension of the current approach can be
facilitated by using the topological ordering of the nodes in a
general splice graph that does not have a unique Hamiltonian
path, unlike the segment graph considered in the DTA problem.
We envision this will facilitate efficient use of combinatorial
optimization tools such as integer linear programming to tran-
script assembly problems.

Methods
Combinatorial characterization of solutions. Equation (1) defines the probability
PrðRjT ; cÞ in terms of the observed reads r and their induced paths π(r)⊆ E(G) in
the segment graph G. The authors in ref. 28 use this characterization of reads as
paths in a general splice graph to account for ambiguity in the transcript of origin
for the reads. For a general splice graph, such a characterization is required to
capture all the possible observed reads. However, in our setting, where the segment
graph G is a DAG with a unique Hamiltonian path, it is possible to describe each
read and each transcript uniquely in a more concise form. Each path in the seg-
ment graph is characterized by a set of non-overlapping discontinuous edges. To
describe this, we introduce the following definition.

Definition 3. Two edges (v= [v−, v+], w= [w−,w+]) and (x= [x−, x+], y= [y−, y
+]) of Goverlap if the open intervals (v+,w−) and (x+, y−) intersect, i.e.
ðvþ;w�Þ \ ðxþ; y�Þ≠ ;.

For any transcript T corresponding to an s− t path in G, for which we are only
given its discontinuous edges σ(T), the continuous edges of T are uniquely
determined by G and σ(T). That is, the continuous edges of T equal precisely the
subset of continuous edges E→ that do not overlap with any of the discontinuous
edges in σ(T). Conversely, given an s− t path π(T) of G the corresponding set of
discontinuous edges is given by σ(T)= π(T) ∩ E↷. Thus, we have the following
proposition with the proof in Supplementary Note B.1.

Proposition 1. There is a bijection between subsets of discontinuous edges that are
pairwise non-overlapping and s− t paths in G.

In a similar vein, rather than characterizing a read r by its induced path π(r)⊆ E
in the segment graph, we characterize a read r by a pair (σ⊕(r), σ⊖(r)) of
characteristic discontinuous edges. Here, σ⊕(r) is the set of discontinuous edges
that must be present in any transcript that could generate read r, i.e.
σ⊕(r)= π(r) ∩ E↷. Conversely, σ⊖(r) is the set of discontinuous edges that must be
absent in any transcript that could generate read r due to the unidirectional nature
of RdRp transcription. Thus, the set σ⊖(r) consists of discontinuous edges E↷⧹σ⊕
that overlap with an edge in π(r). Clearly, while σ�ðrÞ \ σ�ðrÞ ¼ ;, it need not hold
that σ⊕(r) ∪ σ⊖(r) equals E↷ (see Fig. 2b). Formally, we define (σ⊕(r), σ⊖(r)) as
follows.

Definition 4. The characteristic discontinuous edges of a read r are a pair (σ⊕(r), σ⊖(r))
where σ⊕(r) is the set of discontinuous edges present in read r, i.e. σ⊕(r)= π(r)∩ E↷,

and σ�i is the set of discontinuous edges (v= [v−, v+],w= [w−,w+])∈ E↷⧹σ⊕(r) that
overlaps with an edge (x= [x−, x+], y= [y−, y+]) in π(r).

We have the following result with the proof given in Supplementary Note B.1.

Proposition 2. Let G be a segment graph, T b e a transcript and r be a read. Then,
π(T) ⊇ π(r) if and only if σðTÞ � σ�ðrÞ and σðTÞ \ σ�ðrÞ ¼ ;.

Hence, we may rewrite the likelihood PrðRjT ; cÞ as
Yn

j¼1

1

∑k
b¼1 cbLb

∑
i2XðT ;σ�j ;σ

�
j Þ
ci: ð2Þ

where R ¼ fr1; ¼ ; rng, T ¼ fT1; ¼ ;Tkg, c= [c1,…, ck], and where
XðT ; σ�j ; σ

�
j Þ be the subset of indices i corresponding to transcripts Ti 2 T where

σðTiÞ � σ�j and σðTiÞ \ σ�j ¼ ;. Note that the only difference between Eq. (2) and
the formulation in Eq. (1) is the way that the candidate transcripts of origin for a
given read are described. In Eq. (1), they are described as paths in the segment
graph whereas in Eq. (2), they are described by sets of pairwise non-overlapping
discontinuous edges in the segment graph. This leads to the following theorem.

Theorem 1. For any alignment R, transcripts T and abundances c, Eqs. (1) and (2)
are identical.

Although we have described the formulation for single-end reads, this
characterization is applicable to paired-end and even synthetic long reads.
Moreover, our implementation provides support for both single-end and paired-
end read samples with a fixed read length. The above characterization using
discontinuous edges allows us to reduce the number of terms in the likelihood
function since multiple reads can be characterized by the same characteristic
discontinuous edges. We describe this in detail in the next section.

JUMPER: a progressive heuristic for the DTA problem. To solve the
DTA problem, we use the results of the previous section to write a more concise
form of the likelihood. Specifically, let S ¼ fðσ�1 ; σ�1 Þ; ¼ ; ðσ�m ; σ�mÞg be the set of
pairs of characteristic discontinuous edges generated by the reads in alignment R.
Let d= {d1,⋯ , dm}, where di is the number of reads that map to pair ðσ�i ; σ�i Þ 2 S.
Using that reads r with identical characteristic discontinuous edges (σ⊕(r), σ⊖(r))
have identical probabilities PrðrjT ; cÞ, we obtain the following mathematical pro-
gram for the log-likelihood log PrðRjT ; cÞ (see Supplementary Note A.2 for
derivation).

max
T ;c

∑
m

j¼1
djlog ∑

i2XðT ;σ�j ;σ
�
j Þ
ci � nlog ∑

k

b¼1
cbLb ð3Þ

s.t. πðTiÞ is an s� t path

in the segment graphG; 8i 2 ½k�; ð4Þ

∑
k

i¼1
ci ¼ 1; ð5Þ

ci ≥ 0; 8i 2 ½k�: ð6Þ
Observe that the first sum (over reads) is concave and the second sum (over

transcripts) is convex. Since we are maximizing, our objective function would
ideally be concave. In Supplementary Note B.1, we prove the following lemma,
which enables us to remove the second term using a scaling factor for the relative
abundances c that does not alter the solution space.

Lemma 1. Let D > 0 be a constant, ciðcÞ ¼ ciD=∑
k
j¼1 cjLj and ciðcÞ ¼ ci=∑

k
j¼1 cj for

all i∈ [k]. Then, ðT ; c ¼ ½c1ðcÞ; ¼ ; ckðcÞ�Þ is an optimal solution for (3)−(6) if and
only if ðT ; c ¼ ½c1ðcÞ; ¼ ; ckðcÞ�Þ is an optimal solution for

max
T ;c

∑
m

j¼1
djlog ∑

i2XðT ;σ�j ;σ
�
j Þ
ci ð7Þ

s:t: πðTiÞ is an s� t path

in the segment graphG; 8i 2 ½k�; ð8Þ

∑
k

i¼1
ciLi ¼ D; ð9Þ

ci ≥ 0; 8i 2 ½k�: ð10Þ
We formulate the mathematical program given in Lemma 1 as a mixed integer

linear program. More specifically, we encode (i) the composition of each transcript
Ti as a set σ(Ti) of non-overlapping discontinuous edges, (ii) the abundance ci and
length Li of each transcript Ti, (iii) the total abundance ∑i2XðT ;σ�j ;σ

�
j Þci of transcripts

supported by characteristic discontinuous edges ðσ�j ; σ�j Þ, and (iv) a piecewise
linear approximation of the log function using a user-specified number h of
breakpoints. We will describe (i) and (ii) in the following and refer to
Supplementary Note B.2 for (iii) and (iv).
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Transcript composition. We begin modeling (8), which states that each transcript Ti
must correspond to an s− t path in the segment graph G. Using Proposition 1, we
introduce binary variables x 2 f0; 1gjE↷ j ´ k to encode the presence of discontinuous
edges in each of the k s− t paths corresponding to the k transcripts in T . For any
discontinuous edge e= (v= [v−, v+], w= [w−,w+]), let I(e) denote the open
interval (v+,w−) between the two segments v and w. By Proposition 1, it must hold
that IðeÞ \ Iðe0Þ ¼ ; for any two distinct discontinuous edges e and e0 assigned to
the same transcript. To encode this, we impose

xe;i þ xe0 ;i ≤ 1; 8i 2 ½k�; e; e0 2 E↷

s.t. e≠ e0; IðeÞ \ Iðe0Þ≠ ;:
Transcript abundance and length. We introduce non-negative continuous variables
c= [c1,…, ck] that encode the abundance of the k transcripts. The scale of these
abundances depends on the choice of D. We choose D= ℓ* where ℓ* is the length
of the shortest s− t path in the segment graph G. Substituting D= ℓ* into (9)
yields ∑k

i¼1 ciLi ¼ ‘� .
Since ciLi ≤ ∑k

j¼1 cjLj ¼ ‘� and Li≥ ℓ*, we have that ci ≤ 1. To model the product
ciLi of the length Li of a transcript Ti and its abundance ci, we focus on individual
discontinuous edges e. For any discontinuous edge e= (v= [v−, v+],w= [w−,w+]), let
L(e)=w−− v+ be the length of the interval. Observe that

ciLi ¼ ciL� ci ∑
e2σðTiÞ

LðeÞ ¼ ciL� ∑
e2E↷

cixe;iLðeÞ:

We introduce continuous variables ze∈ [0, 1]k and encode the product
ze,i= cixe,i for all e∈ E↷ as

ze;i ≤ ci; 8i 2 ½k�;
ze;i ≤ xe;i; 8e 2 E↷; i 2 ½k�;
ze;i ≥ ci þ xe;i � 1; 8e 2 E↷; i 2 ½k�:

Therefore, we may represent ∑k
i¼1 ciLi ¼ ‘� as

∑
k

i¼1
ciL� ∑

k

i¼1
∑

e2E↷
ze;iLðeÞ ¼ ‘�: ð11Þ

The resulting formulation has O(∣E↷∣k+ ∣E↷∣m+mh) variables, where h is the
user-specified number of breakpoints used in the piecewise linear approximation of
the log function. This number includes ∣E↷∣k binary variables. The number of
constraints is O(k∣E∣2+ ∣E∣km).

Progressive heuristic. In practice, the number of discontinuous edges in the segment
graph is inflated due to ambiguity in the exact location at which the RdRp jumps as
well as sequencing and alignment errors. This leads to large number of binary
variables in our MILP (we have k ⋅ ∣E↷∣ binary variables) which can make the
MILP intractable. In order to approximately solve the problem with large values of
k, we implement a progressive heuristic. Our heuristic takes as input the alignment
R and an integer k, which is the maximum number of transcripts in the solution.
At each iteration p ≤ k, we are given a set T of p− 1 previously computed tran-
scripts and seek a new transcript T 0 by solving the MILP (see Supplementary
Note B.3 for details) using function SOLVEILP with additional constraints to fix
the values of the variables that encode the presence/absence of discontinuous edges
for the transcripts in T . The resulting reduction in number of binary variables from
∣E↷∣k to ∣E↷∣ improves the running time of the MILP. As an additional optimi-
zation, we re-estimate the abundances of a new set T 0 of transcripts. This set
contains all transcripts in T as well as additional transcripts corresponding to all
possible subsets of discontinuous edges σðT 0Þ of the newly identified transcript T 0 ,
identified by the function EXPAND. We solve a linear program (see Supplemen-
tary Note B.3 for details) with function SOLVELP to re-estimate the abundances c0

of T 0, retaining only the top p transcripts Ti from T 0 with the largest abundances
ciLi. We terminate upon convergence, i.e. if T ¼ T 0 , or if the number p of itera-
tions reaches the number k. We note that a segment graph G with ∣E↷∣ dis-
continuous edges induces a space of 2jE

↷ j , thus providing a theoretical upper bound
for k. However, in practice, we typically restrict our attention to the set of tran-
scripts that exceed a minimum abundance threshold, resulting in a much smaller
value for k. Algorithm 1 provides the pseudo code of the progressive heuristic
implemented in JUMPER. The details of the subproblems SOLVEILP and SOL-
VELP are given in Supplementary Note B.3.

Algorithm 1. JUMPER(R, k)
1 ðT ; cÞ  ð;; ½�Þ
2 for p ← 1 to k do
3 T 0  SOLVEILP ðT Þ
4 T 0  T ∪ EXPAND ðT 0Þ
5 c0  SOLVELP ðT 0Þ
6 Sort ðT 0; c0Þ s.t. Lic0i ≥ Liþ1c

0
iþ1 for all i 2 f1; ¼ ; jT 0j � 1g

7 ðT 0; c0Þ  ðfT1; ¼ ;Tpg; ½c01; ¼ ; c0p�Þ
8 if T 0≠T then
9 ðT ; cÞ  ðT 0; c0Þ
10 else
11 return ðT ; cÞ
12 return ðT ; cÞ

Implementation details. Matching core sequences that mediate the discontinuous
transcription by RdRp lead to ambiguity in precise location of breakpoint during
alignment of spliced reads. Therefore, in practice we observe multiple dis-
continuous edges with closely spaced 5ʹ and 3ʹ breakpoints. Moreover, false-
positive discontinuous edges are introduced due to sequencing and alignment
errors. We use a threshold on the number of spliced reads supporting a dis-
continuous edge to filter false-positive edges with low support. This parameter can
also be used to reduce computational burden and focus on the highly expressed
transcripts in the sample. A discussion on the choice of the thresholding parameter
Λ is provided in Supplementary Note B.4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data deposited by Kim et al.3 into the Open Science Framework (OSF) at
https://doi.org/10.17605/OSF.IO/8F6N9 were analyzed. The accession numbers of data
available on SRA analyzed in this study are—SRR11573904, SRR11573905,
SRR11573906, SRR11573907, SRR11573924, SRR11573925, SRR11573926,
SRR11573927, SRR1942956, SRR1942957, SRR10357372, SRR10357373, and
SRR10357374. All the simulated data generated in this study have been deposited to the
Illinois Databank and are available at https://databank.illinois.edu/datasets/IDB-6667667.
The analyzed and processed real and simulated data and results are available at https://
github.com/elkebir-group/Jumper-data.

Code availability
The code has been deposited on Github at https://github.com/elkebir-group/Jumper52.
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