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Abstract: Soil microorganisms are well studied for their beneficial effects on plant growth and their
impact on biocontrol agents. The production of volatile antifungal compounds emitted from soil
fungi is considered to be an effective ability that can be applied in biofumigants in the control of plant
diseases. A soil fungus, Trichoderma asperelloides TSU1, was isolated from flamingo flower cultivated
soil and identified on the basis of the morphology and molecular analysis of the internal transcribed
spacer (ITS), rpb2, and tef1-α genes. To test T. asperelloides TSU1-produced volatile organic compounds
(VOCs) with antifungal activity, the sealed plate method was used. The VOCs of T. asperelloides
TSU1 inhibited the mycelial growth of fungal pathogens that were recently reported as emerging
diseases in Thailand, namely, Corynespora cassiicola, Fusarium incarnatum, Neopestalotiopsis clavispora,
N. cubana, and Sclerotium rolfsii, with a percentage inhibition range of 38.88–68.33%. Solid-phase
microextraction (SPME) was applied to trap VOCs from T. asperelloides TSU1 and tentatively identify
them through gas chromatography–mass spectrometry (GC/MS). A total of 17 compounds were
detected in the VOCs of T. asperelloides TSU1, and the dominant compounds were identified as
fluoro(trinitro)methane (18.192% peak area) and 2-phenylethanol (9.803% peak area). Interestingly,
the commercial 2-phenyethanol showed antifungal activity against fungal pathogens that were similar
to the VOCs of T. asperelloides TSU1 by bioassay. On the basis of our study’s results, T. asperelloides
TSU1 isolated from soil displayed antifungal abilities via the production of VOCs responsible for
restricting pathogen growth.

Keywords: soil fungi; Trichoderma; VOCs; plant pathogen; antifungal activity

1. Introduction

Soil is an important source of beneficial microorganisms. Multiple soil fungi partici-
pate in the decomposition of organic matter to deliver plant nutrients [1]. They play an
important role in plant protection against pathogens as biocontrol agents that influence
soil health [2]. Trichoderma is a genus of filamentous ascomycete fungi that are frequently
isolated from soil or rhizosphere soil in tropical areas containing approximately 101–103

culturable propagules per gram [3,4]. Trichoderma is the most important genus of beneficial
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microorganisms in agricultural soil, and it has been widely used in crop-plant produc-
tion [5]. It is used as a natural-decomposition agent [6], plant-growth promoter [7], and as
a biocontrol agent of plant diseases [8,9] and bioremediation [10].

One of the most dominant abilities of Trichoderma species is as a biocontrol agent
against plant diseases. Several Trichoderma strains were widely studied due to their capacity
to compete for nutrients and space [11,12], parasitize other fungi [13,14], enact antibiosis
by producing secondary metabolites or antimicrobial compounds [15,16], induce defense
responses in plants [17,18], and promote plant growth [15,19]. The key to the success of
Trichoderma species in the soil is their fast growth and high reproductive ability, aiding
them in surviving under unfavorable conditions, and their ability to utilize nutrients and
antagonize plant pathogenic fungi [20,21].

Producing volatile organic compounds (VOCs) is considered to be an effective an-
tibiosis mechanism of Trichoderma species. Trichoderma species produce and emit valuable
volatiles associated with antimicrobial ability, induce defense responses in plants, and
promote plant growth [15,16]. VOCs released by several species of microorganisms directly
inhibit the growth of pathogens or cause abnormal changes of pathogens, resulting in the
weakness of pathogens interacting with plant hosts [22,23]. For instance, T. spirale T76-1
was reported to produce VOCs to restrict the fungal growth of Corynespora cassiicola and
Curvularia aeria, the leaf-spot pathogens in lettuce [12]. Wonglom et al. [24] also reported
that Trichoderma sp. T76-12/2 produces VOCs to inhibit the growth of Sclerotium rolfsii.

The capacity to produce beneficial compounds, especially the VOCs, by Trichoderma
species is particularly interesting. Some Trichoderma strains produce valuable VOCs with
multifaceted mechanisms involved in biological control, inducing defense responses and
promoting plant growth [12,15,16]. The antifungal ability of VOCs released by Trichoderma
is highly interesting because effective VOCs can be applied as biofumigants in controlling
plant diseases and pests. Therefore, the screening of novel volatile-producing Trichoderma
strains is still being conducted. As soil is the main source of beneficial microorganisms,
this study characterizes the antifungal activity of VOCs released from Trichoderma that
were isolated from soil. The isolation of Trichoderma, the identification of Trichoderma by
morphology and molecular properties, and VOC bioassay against plant fungal pathogens
were conducted.

2. Materials and Methods
2.1. Isolation and Morphological Identification

Trichoderma species strain TSU1 was isolated from the soil of the flamingo flower
(Anthurium) cultivation farm, Nakhon Si Thammarat province, southern Thailand, by the
soil-dilution pour-plate method. A primary screening revealed the competition ability
of Trichoderma sp. TSU1 against plant fungal pathogens. This strain was subjected to
morphological and molecular identification. Trichoderma sp. TSU1 was cultured on potato
dextrose agar (PDA); macroscopic and microscopic features were observed by a Leica
S8AP0 stereomicroscope (Leica Microsystems, Wetzlar, Germany) and a Leica DM750
compound microscope (Leica Microsystems, Wetzlar, Germany), respectively.

2.2. Pathogen Sources

Plant pathogens recently causing emerging diseases in Thailand were obtained from
Culture Collection of Pest Management, Faculty of Natural Resources, Prince of Songkla
University; details are provided in Table 1. Airborne pathogens were cultured on PDA
for three days before being subjected to bioassay: Corynespora cassiicola, causing leaf spots
on lettuce [25]; Neopestalotiopsis clavispora, causing flower blight on anthurium [26]; and
Neopestalotiopsis cubana, causing leaf fall in rubber trees [27]. The soilborne pathogen was
Sclerotium rolfsii, causing stem rot in Jerusalem artichoke. The postharvest pathogen was
Fusarium incarnatum, causing fruit rot in muskmelon [28].
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Table 1. List of fungal pathogens used for bioassay in this study.

Pathogen Disease Host Sources

Corynespora cassiicola Leaf spot Lactuca sativa [25]
Fusarium incarnatum Fruit rot Cucumis melo [28]

Neopestalotiopsis clavispora Flower blight Anthurium andraeanum [26]
N. cubana Leaf fall Hevea brasiliensis [27]

Sclerotium rolfsii Stem rot Helianthus tuberosus CCPM *
* Culture Collection of Pest Management (PSU-HT01), Faculty of Natural Resources, Prince of Songkla University.

2.3. Molecular Identification

Trichoderma sp. TSU1 was cultured on PDA for 3 days and subjected to DNA extraction
by DNA Extraction Mini Kit (FAVORGEN, Ping-Tung, Taiwan) following the manufac-
turer’s protocol. A polymerase chain reaction (PCR) was performed in 20 µL volume
containing 1.0 µL DNA template, 1.0 µL of each primer, 10.0 µL 2× Quick Taq® HS DyeMix
(TOYOBO, Saitama, Japan), and 7 µL deionized water. PCR amplification of internal tran-
scribed spacer (ITS), part of RNA polymerase 2 (rpb2), and translation elongation factor
1-α (tef1-α) genes were amplified by using ITS1/ITS4 [29], fRPB2-5F/fRPB2-7cr [30], and
Tef1-728F [31]/Tef1-986R [32] primer pairs, respectively, in the following thermal condi-
tions: 94 ◦C for 2 min, followed by 35 cycles of 94 ◦C for 2 min, annealing at a temperature
dependent on the amplified gene (Table 2) for 60 s and 72 ◦C for 1 min, and a final 72 ◦C
for 10 min in a peqSTAR thermal cycler (PEQLAB Ltd., Fareham, UK). PCR products were
observed on 1% agarose gels stained with ethidium bromide under UV light. PCR products
were purified using a PCR clean-up Gel Extraction NucleoSpin® Gel and PCR Clean-Up Kit
(Macherey-Nagel, Düren, Germany). The purified PCR products were directly sequenced.
Sanger sequencing was carried out by 1st Base Company (Kembangan, Selangor, Malaysia)
using the PCR primers mentioned above. Sequences were used to query the GenBank
gene sequence database via BLAST (http://blast.ddbj.nig.ac.jp/top-e.html, accessed on
6 December 2020).

Table 2. Details of primers and annealing temperatures used for the amplification of gene targets in
this study.

Region Primer Orientation Annealing
Temperature (◦C) Reference

ITS * ITS5 Forward 50 [29]
ITS4 Reverse 50 [29]

rpb2 fRPB2-5F Forward 54 [30]
fRPB2-7cr Reverse 54 [30]

tef1-α Tef1-728F Forward 52 [31]
Tef1-986R Reverse 52 [32]

* ITS = internal transcribed spacer; rpb2 = RNA polymerase II; tef1-α = translation elongation factor 1-α.

Multiple-sequence alignment was carried out using MUSCLE [33]. A phylogenetic tree
was constructed using maximum-likelihood (ML) and Bayesian inference (BI) methods. The
best substitution models for ML and BI analyses were estimated by the Akaike information
criterion (AIC) in jModeltest v2.1.10 [34]. ML analysis was carried out on RAxML v7.0.3
under the GTR + I + G model with 1000 bootstrap replications [35,36]. BI analysis was
conducted with MrBayes v3.2.6 [37] to evaluate the posterior probabilities (PPs) by Markov
chain Monte Carlo (MCMC) sampling. Markov chains were run for 1 million generations;
trees were sampled every 100th generation, and 10,000 trees were obtained. The first 2000
trees representing the burning phase of the analyses were discarded. The remaining 8000
trees were then used to calculate PP in the majority-rule consensus tree. Bootstrap support
(BS) and PP values greater than or equal to 70% and 0.95 of each branch, respectively, were
considered to be significantly supported [38,39].

http://blast.ddbj.nig.ac.jp/top-e.html
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2.4. Sealed Plate Method

To test the effect of volatiles released from Trichoderma TSU1 in suppressing the fungal
growth of plant pathogens, the sealed plate method was used [40] with some modifications.
Trichoderma TSU1 was grown on PDA in 8 cm Petri dishes (Citotest, Jiangsu, Haimen, China)
for 3 days. A mycelial plug (0.5 cm in diameter) was cut from the culture plate, inserted
centrally, and the lid of each Petri dish was removed. The bottom plate containing PDA
inoculated with tested fungi was replaced, and the two bottom plates were then sealed
together with Parafilm. For the control, the bottom plate with PDA alone was replaced,
instead of the tested fungi, in the same manner. The experiment was conducted in five
replicates and repeated twice. Tested plates were incubated at ambient temperature (28 ±
2 ◦C) for 3 days. Colony diameters of plant pathogens were measured and converted into
the percentage of inhibition through the following formula

Percentage inhibition (%) = [(Dc − Dt)/Dc] × 100 (1)

where Dc is the mycelial growth of the plant pathogen on the control plate, and Dt is the
mycelial growth of the plant pathogen on the tested plate.

2.5. SPME/GC/MS Analysis

To determine the volatile compounds released from Trichoderma TSU1, gas chromatography
–mass spectrophotometry (GC/MS) was conducted [15,16]. The TSU1 strain was cultured
in PDA in a 20 mL chromatography vial, 20 mm in diameter (PerkinElmer, Waltham, MA,
USA), and incubated at ambient temperature (28 ± 2 ◦C) for 7 days. Solid-phase microex-
traction (SPME) was performed to extract the volatile organic compounds (VOCs) emitted
by TSU1. The SPME fiber (DVB/CAR/PDMS fiber) was exposed to vapors above the
TSU1 culture for 30 min and inserted into the injection port of an SQ8 gas chromatograph
(PerkinElmer, Waltham, MA, USA), equipped with a DB-Wax capillary column (30 m ×
0.25 mm i.d., 0.25 µm film thickness). The oven temperature was initially maintained at
40 ◦C and then increased to 230 ◦C at a rate of 7 ◦C min−1. The injector temperature was
230 ◦C. The carrier gas was ultrahigh-purity helium with an initial column head pressure
of 60 kPa at a flow rate of 1 mL min–1. Electron-impact (EI) mass spectra were collected
at 70 eV ionization voltage over the m z–1 range of 29–550. Ion-source and quadrupole
temperatures were both set at 200 ◦C. Volatiles emitted by TUS1 were tentatively identified
on the basis of computer searches dictated by The National Institute of Standards and
Technology (NIST) Mass Spectral Library Search Chromatogram.

2.6. Effect of Commercial Volatile Compounds on Fungal Growth

To test the effect of commercial volatile compounds against plant pathogens, the
sealed plate method was conducted as described in Section 2.4. The commercial volatile
compound 2-phenylethanol (2-PE) was purchased from Sigma-Aldrich (St. Louis, MO,
USA), dissolved in 95% ethanol, and dilution was adjusted to 10–1, 10–2, or 10–3. The
solution of 2-PE was applied on a sterile cotton pad (20 µL) and subjected to the method
of Wonglom et al. [15]. The application of 95% ethanol served as the negative control.
Bioassay plates were incubated at ambient temperature for seven days. Each treatment
was composed of five replicates, and the experiment was repeated twice. The colony
diameters of plant pathogens were measured, and the percentage inhibition was calculated
as described in Section 2.3.

2.7. Statistical Analysis

Results on fungal inhibition were subjected to one-way ANOVA. Statistically signifi-
cant differences among treated samples were determined by Tukey’s test.
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3. Results
3.1. Taxonomy

Trichoderma asperelloides (TSU1) Samuels, Mycologia 102(4): 961 (2010).
Conidia germinated on PDA within 24 h, reaching 8.5 mm diameter in four days

at 28 ± 2 ◦C. Colonies on PDA with white, downy mycelia turned pale green and dark
green after a few days (Figure 1). Conidiophores branched, produced in pustules, and
secondary branches arose. The secondary branches tended to be paired and asymmetric,
terminating in a single phialide or a whorl of two to three divergent phialides. Phialides
were 5.43–11.76 µm long, 1.50–3.44 µm wide at the base (x = 7.74 × 2.22 µm, n = 30), and
ampulliform. Conidia were 2.48–4.59 × 2.13–3.93 µm (x = 3.30 × 3.02 µm, n = 30), dark
green, and subglobose (Figure 1).
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Figure 1. Morphological characteristics of Trichoderma asperelloides strain TSU1 colony on potato
dextrose agar (PDA) in (A) top and (B) bottom view; (C) colony observed under stereomicroscope;
(D) detail of conidiophores and phialides; (E) mass of conidia and (F) conidia.

Phylogenetic analyses: Multiple genes were amplified through PCR, and their nu-
cleotide sequences were analyzed. A BLAST search revealed that the sequences of ITS, rpb2,
and tef1-α genes matched 100% with T. asperelloides. Therefore, our isolation strain TSU1
was identified as T. asperelloides [32,41]. The partial ITS, rbp2, and tef1-α sequences of this
fungal isolate were deposited in GenBank as MW504989, MW546917, and MW546916, re-
spectively. The combined ITS, rbp2, and tef1-α sequence dataset consisted of 36 taxa, and the
aligned dataset comprised 2332 characters including gaps (ITS: 1–650, rbp2: 651–1745, and
tef 1-α: 1746–2436). ML analysis of the combined ITS, rbp2, and tef 1-α sequences was based
on the estimated parameters of the GTR + I + G model, and the proportion of the invariable
sites and gamma shape parameters were 0.3730 and 0.8260, respectively. Additionally,
the tree with a log-likelihood of –12,412.6914 was built after 1000 bootstrap replications.
The average standard deviation of the split frequencies of BI analysis was 0.00536. The
phylograms of ML and BI analyses were similar in topology. Therefore, we only present the
phylogram obtained from ML analysis (Figure 2). Five main clades—namely, Ceramicum,
Harzianum, Helicum, Strictipile, and Viride—were assigned according to the findings
of previous phylogenetic studies [42,43]. The results indicated that fungal isolate TSU1,
placed in the monophyletic clade of T. asperelloides, was within the Viride clade with high
supporting values (BS 100% and BP 1.0). T. asperelloides formed a sister taxon to T. asperellum
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and T. yunnanense. Therefore, the isolated TSU1 was identified as T. asperelloides on the
basis of morphological, physiological, biochemical, and molecular characteristics.

J. Fungi 2021, 7, x FOR PEER REVIEW 6 of 13 
 

 

indicated that fungal isolate TSU1, placed in the monophyletic clade of T. asperelloides, 
was within the Viride clade with high supporting values (BS 100% and BP 1.0). T. 
asperelloides formed a sister taxon to T. asperellum and T. yunnanense. Therefore, the iso-
lated TSU1 was identified as T. asperelloides on the basis of morphological, physiological, 
biochemical, and molecular characteristics. 

 
Figure 2. Phylogram derived from maximum-likelihood analysis of combined ITS, rbp2, and tef1-α 
genes of 36 taxa of Trichoderma. Sequences of Nectria aurantiaca and N. eustromatica used as the 
outgroup. Numbers above branches represent (left) maximum-likelihood bootstrap percentages 
and (right) Bayesian posterior probabilities. Bootstrap values ≥70% and Bayesian posterior proba-
bilities ≥ 0.90 shown. Scale bar represents 10 substitutions per nucleotide position. Sequences of 
fungal species obtained in this study are in bold. 

Figure 2. Phylogram derived from maximum-likelihood analysis of combined ITS, rbp2, and tef1-α
genes of 36 taxa of Trichoderma. Sequences of Nectria aurantiaca and N. eustromatica used as the
outgroup. Numbers above branches represent (left) maximum-likelihood bootstrap percentages and
(right) Bayesian posterior probabilities. Bootstrap values ≥70% and Bayesian posterior probabilities
≥0.90 shown. Scale bar represents 10 substitutions per nucleotide position. Sequences of fungal
species obtained in this study are in bold.

3.2. Trichoderma asperelloides TSU1 Released VOCs against Fungal Pathogens

We tested the effect of VOCs released from T. asperelloides TSU1 against five fungal
pathogens, namely, C. cassiicola, F. incarnatum, N. clavispora, N. cubana, and S. rolfsii, through
the sealed plate method. The results show that T. asperelloides TSU1 released VOCs with
antifungal abilities for the inhibition of fungal pathogen growth (Figure 3). Fungal growth
in the tested plates was significantly smaller than that in the control plates (p < 0.05). The
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percentage inhibition of VOCs emitted by T. asperelloides TSU1 against fungal pathogens
was in the range of 38.88–68.33% (Figure 4). The percentage inhibition of VOCs against C.
cassiicola, F. incarnatum, N. clavispora, N. cubana, and S. rolfsii was 68.33%, 38.88%, 54.22%,
42.22%, and 41.19%, respectively (Figure 4). VOCs emitted from T. asperelloides TSU1
effectively inhibited the fungal growth of C. cassiicola causing lettuce leaf spot (68.33%),
followed by N. clavispora causing anthurium flower blight (54.22%).
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3.3. Identification of VOCs through SPME/GC/MS

The results above show that VOCs released from T. asperelloides TSU1 inhibited the
growth of fungal pathogens, suggesting antifungal ability. The identification of the volatiles
of T. asperelloides TSU1 was conducted through SPME/GC/MS. A total of 17 compounds
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with percentages matching >70% were tentatively identified using an NIST library search
(Table 3). The detected compounds in T. asperelloides TSU1 contained carbon numbers
ranging from C1 to C21, classified as members of the following compound classes: alcohol,
fatty acid, pyran, and terpene. The most dominant volatile found in this study was
fluoro(trinitro)methane, followed by 2-phenylethanol (2-PE), with percentage peak areas of
18.192% and 9.803%, respectively (Figure 5). According to previous studies, only 2-PE was
shown to suppress fungal growth. Figure 5 shows the mass spectrum of major compounds
and the structure of 2-PE. No major peaks were observed in PDA alone, which served as
the control group.

Table 3. International Union of Pure and Applied Chemistry (IUPAC) names of volatile compounds produced by Trichoderma
TSU1 identified through solid-phase microextraction (SPME)/GC/MS analysis.

Retention
Time IUPAC Name Formula Percentage

Match (%)
Percentage
Area (%)

1.575 Fluoro(trinitro)methane CFN3O6 95 18.192
2.309 Azetidine C3H7N 87.1 2.628
5.303 1-Methyl-2-propan-2-ylbenzene C10H14 81.9 0.675
5.656 3,7-Dimethylundecane C13H28 82.2 2.182
6.287 5,7-Dimethylundecane C13H28 84.4 2.215
6.464 4-Methyl-2-(2-methylprop-1-enyl)oxane C10H18O 85.1 5.639
6.514 2-Phenylethanol C8H10O 92.1 9.803
6.712 (2R,4R)-4-Methyl-2-(2-methylprop-1-enyl)oxane C10H18O 91.6 2.296
7.453 (2,2-Dimethylcyclopentyl)cyclohexane C13H24 68.6 1.989
8.201 1,3-Benzothiazole C7H5NS 82.3 1.506
11.639 1-Methyl-4-(6-methylhept-5-en-2-yl)cyclohexa-1,4-diene C15H24 82 4.386
11.831 7,11-Dimethyl-3-methylidenedodeca-1,6,10-triene C15H24 76.1 0.811
13.297 4,7-Dimethyl-1-propan-2-yl-2,3,4,5,6,8a-hexahydro-1H-naphthalen-4a-ol C15H26O 74.3 0.701
14.033 Cyclohexylmethyl hexyl sulfite C13H26O3S 77.8 1.418
14.578 Methyl icosa-11,14-dienoate C21H38O2 82.5 3.708
14.804 Ethyl (E)-octadec-9-enoate C20H38O2 82.5 5.449
16.998 Ethyl hexadecanoate C18H36O2 84.4 6.003
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ethanol-substituted by a phenyl group at position 2. It has a role as a fragrance, a Sac-
charomyces cerevisiae metabolite, a plant metabolite, an Aspergillus metabolite, and a plant 
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Figure 5. Total ion chromatogram of volatile compounds identified from T. asperelloides TSU1 through gas chromatography–
mass spectrometry (GC/MS) analysis, and peaks at 1.58 min and 6.51 min tentatively identified as fluoro(trinitro)methane
and 2-phenylethanol (red rectangles), respectively, and their structures.
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3.4. Effect of 2-PE on Fungal Growth

We found 2-PE to be a major peak by SPME/GC/MS analysis (Figure 5), and it
was reported as an antifungal compound [44]. 2-Phenylethanol is a primary alcohol that
is ethanol-substituted by a phenyl group at position 2. It has a role as a fragrance, a
Saccharomyces cerevisiae metabolite, a plant metabolite, an Aspergillus metabolite, and a plant
growth retardant. It is a primary alcohol and a benzene, and is an antimicrobial, antiseptic,
and disinfectant that is also used as an aromatic essence and preservative in pharmaceutics
and perfumery. In this study, commercial 2-PE was diluted at concentrations of 10−1, 10−2,
and 10−3 and subjected to the sealed plate method to test its antifungal activity against
plant fungal pathogens. The results show that the fungal colonies of the tested plates were
smaller than that of the control, similar to the result of VOCs from T. asperelloides TSU1
(Figure 6). The high-percentage inhibition was related to the high concentration. At 10–1

dilution, the commercial 2-PE inhibited fungal growth with a percentage inhibition ranging
from 48.33% to 77.51% (Figure 7). The percentage inhibition of 2-PE against C. cassiicola, F.
incarnatum, N. clavispora, N. cubana, and S. rolfsii was 48.33%, 64.28%, 67.91%, 63.49%, and
77.51%, respectively (Figure 7).
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4. Discussion

In this study, a soil fungus was isolated and identified on the basis of morphology
and molecular techniques, and antifungal activity against plant diseases was examined.
The isolated fungus was identified as T. asperelloides TSU1 (Figures 1 and 2). This isolate
was documented as being capable of emitting 17 VOCs, and results indicate that its VOCs
were responsible for the in vitro inhibition of fungal growth for some airborne, soilborne,
and postharvest pathogens (Figures 3 and 4). The antifungal activity of the VOCs from this
isolate was comparable to the adverse activity of commercial 2-PE against the same group
of tested fungal plant pathogens. Interestingly, the commercial 2-phenyethanol showed
antifungal activity against fungal pathogens that was similar to the VOCs of T. asperelloides
TSU1 by bioassay.

Low-molecular-weight volatile phase compounds produced by growing Trichoderma
species are chemically diverse and possess antimicrobial properties. The antifungal activity
of T. asperelloides TSU1 VOCs that suppress the growth of fungal pathogens is correlated
with the presence of 2-PE. The volatile eight-carbon compound 2-PE is an important
element that imparts flavor and taste in food with a rose-like aroma. Interestingly, 2-PE
showed antifungal ability against plant diseases. For instance, Liu et al. [45] applied 2-
pehynylethanol isolated from Kloeckera apiculata to control the Penicillium mold of citrus.
Here, T. asperelloides TSU1 produced VOCs that contained 2-PE, and effectively inhibited the
growth of fungal pathogens (Figures 6 and 7). Therefore, the ability to produce antifungal
compounds of T. asperelloides TSU1 may control several plant diseases.

The ability to produce VOCs by endophytic fungus T. asperelloides strain PSU-P1 was
recently reported to inhibit fungal pathogens, induce a defense response, and promote
plant growth in Arabidopsis thaliana [16]. Our result agrees with those reporting that T.
asperelloides TSU1 produces VOCs to inhibit the growth of plant pathogens (Figure 3). The
pattern of the antifungal ability of VOCs and commercial 2-PE is seemed to be differed
(Figures 4 and 7). The effects of the volatiles from the fungus were more effective on C.
cassiicola than on S. rolfsii (Figure 4), while the results in Figure 7 show a lower effect on
C. cassiicola and a higher effect on S. rolfsii. This phenomenon may be explained by how
volatiles of Trichoderma were produced and released in a complex mixture containing 17
compounds; some compounds might work synergistically to inhibit fungal growth with
more effective inhibition than with single compounds [15]. For a commercial volatile,
pure 2-PE was used, which may affect the different inhibitions against plant pathogens.
Furthermore, fungi produce a wide range of different types of hyphae; therefore, the effect
of the volatile mixture and the single compound may also differ, resulting in different
inhibitory activities in the bioassay.

Phoka et al. [16] recently revealed that T. asperelloides PSU-P1, an endophytic fungus,
released major volatile compounds (namely, 2-methyl-1-butanol and 6-pentyl-2H-pyran-
2-one) responsible for antifungal ability. Our results demonstrated that a different strain
of the same species, T. asperelloides (TSU1), released 2-PE. This study provides evidence
that VOCs emitted from T. asperelloides TSU1 have antifungal effects against some plant
pathogens and could be used as a suitable alternative to synthetic fungicides. Biofumi-
gation by microorganisms is an alternative way to control postharvest diseases that is
environmentally friendly and less toxic to human health.

5. Conclusions

A new strain of T. asperelloides TSU1 isolated from flamingo flower cultivated soil
showed antifungal ability against fungal pathogens causing emerging diseases in Thailand
via the production of VOCs. These findings suggest that T. asperelloides TSU1 produces
effective VOCs that may be used to control fungal pathogens. To apply VOCs released
by T. asperelloides as a biofumigant for controlling plant diseases, especially postharvest
diseases, more experiments are needed.
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in Podzol Ectohumus Horizons Affected by Alkaline Fly Ash in the Vicinity of Electric Power Plant. Geomicrobiol. J. 2017, 34,
579–586. [CrossRef]

3. Etschmann, M.M.; Huth, I.; Walisko, R.; Schuster, J.; Krull, R.; Holtmann, D.; Wittmann, C.; Schrader, J. Improving 2-phenylethanol
and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 2015, 32, 145–157. [CrossRef]
[PubMed]

4. Morán-Diez, M.E.; Trushina, N.; Lamdan, N.; Rosenfelder, L.; Mukherjee, P.K.; Kenerley, C.M.; Horwitz, B.A. Host-specific
transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genom. 2015, 16, 8. [CrossRef]
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