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Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint
information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC
algorithm via encoding landmark-based graph construction into a new CSCmodel and applying random sampling to decrease the
data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of
itsmodel size asymptotically; comparedwith themost efficientCSC algorithmknown, the new algorithm runs faster and has awider
range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination
of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering.
We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages
in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy
proved in the stage of consensus clustering is also suitable for the weighted 𝑘-means clustering and thus gives the theoretical
guarantee to this special kind of 𝑘-means clustering where each point has its corresponding weight.

1. Introduction

With the arrival of the big data era, data has become an
important asset. How to analyse the large scale data efficiently
is becoming a big challenge [1, 2]. As an underlying method
for data analysis, clustering can partition a data set into
several subsets according to the similarities of points [3],
and it has become a basic tool for image analysis [4, 5],
community detection [6, 7], disease diagnosis [8], and so
on. Therefore, more and more attention has been paid to the
design of efficient and effective clustering algorithms.

Constrained clustering can improve the accuracy of the
clustering result via encoding constraint information into
unsupervised clustering. As an important area of clustering,
many constrained clustering algorithms [9–17] have been
proposed. Since spectral clustering often has high clustering

accuracy and the suitability for awide range of geometries [18,
19], constrained spectral clustering (CSC) [11–17] can usually
have better performance than other constrained clustering
algorithms. However, the 𝑂(𝑛2) space complexity and 𝑂(𝑛3)
time complexity of many CSC algorithms [11–15] restrict
their applications over large scale data sets, where 𝑛 is the
number of data points. The most efficient CSC algorithm
known is SCACS algorithm [16], which reduces the space and
time complexities to be linear with 𝑛 through incorporating
the landmark-based graph construction [20, 21] with the
constrained normalized cuts problem [15]. What is needed to
be noticed is that the constrained normalized cuts problem
[15] makes SCACS algorithm solve the generalized eigenvec-
tor problem twice. In 2016, Cucuringu et al. [17] proposed
a new CSC algorithm with better accuracy and shorter
running time empirically than constrained normalized cuts
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problem. Taking a new encoding technique of constraint
information, the new CSCmodel just needs the computation
of eigenvectors once.

By means of integrating many basic partitions into a
unified partition, ensemble clustering has many excellent
properties such as the improvement of clustering quality, the
robustness and stability of clustering results, the handling
of noise, the reuse of knowledge [3], and the suitability
to multisource and heterogeneous data [22]. Researchers
have proposedmany ensemble clustering algorithms [22–29].
Since there are different notations in different literatures, we
call the integration of basic partitions as ensemble clustering
or consensus clustering and call the union of the stages of
basic clustering and ensemble clustering as cluster ensemble
in the following. Among different ensemble clustering meth-
ods, the method based on coassociation matrix has become
a landmark [22]. Specifically, the coassociation matrix is
constructed to represent the similarities of pairs of points
from the basic partitions and the final partition result is
computed via the graph partition method on the matrix.
Thus, this kind of method suffers from the high space and
time complexity. Recently, Liu et al. [22] transformed spectral
clustering on coassociation matrix to weighted 𝑘-means
clustering over specific binary matrix equivalently, which
decreased the space and time complexities vastly. However,
when the number of basic partitions or clusters is large, the
corresponding binary matrix will be high dimensional.

As the seminal work, Johnson and Lindenstrauss [30]
pointed out that the random projection produced by random
orthogonal matrix could preserve the pairwise distances of
data sets approximately with reduced dimensions. Subse-
quently, a lot of researches constructed more matrices with
the above properties: random Gaussian matrix [31], random
sign matrix [32], random matrix based on randomized
Hadamard transform [33], random matrix based on block
random hashing [34], and so on. In addition, dimensionality
reduction with random projection has also been widely
applied to data mining methods such as classification [35],
clustering [36–38], and anomaly detection [39]. In terms of
object function, there are several works [36–38] to prove
that random projection can maintain the accuracy of 𝑘-
means clustering approximately. Since its objective function
is different from that of 𝑘-means clustering, the theoretical
analysis of the influence of random projection on weighted𝑘-means clustering is still scarce.

Our Contribution. In this paper, our contributions can be
divided into three parts: the first part is the proposition of a
fast CSC algorithm which is suitable for a wide range of data
sets; the second part is the analysis of the effect of random
projection on the spectral ensemble clustering; the third
part is the proposition of a scalable semisupervised cluster
ensemble algorithm. More specifically, the contributions are
as follows:

(i) We propose a fast CSC algorithm whose space and
time complexities are linear with the size of a data set:
we compress the size of the original model proposed
by Cucuringu et al. [17] by the encoding of landmark-
based graph construction and improve the efficiency

further via random sampling in the process of 𝑘-
means clustering. Besides, we prove that the new CSC
algorithm will have the comparable clustering result
of the original model asymptotically. Experimental
results show that the new algorithm not only can
utilize the constraint information effectively, but also
costs less running time and fits a wider range of data
sets compared to the state of the art SCACS method.

(ii) With respect to the difference of objective function
caused by random projection, we give a detailed
proof that random projection can keep the clustering
quality of spectral ensemble clustering within a small
factor. Based on this theoretical analysis, we design a
spectral ensemble clustering algorithm with reduced
dimensions caused by sparse random projection.
Experiments over different data sets also verify the
correctness of our theoretical results. Moreover, since
the theoretical analysis is also suitable for the ordinary
weighted 𝑘-means clustering, the influence of random
projection on weighted 𝑘-means clustering is also
obtained.

(iii) We propose a scalable semisupervised cluster ensem-
ble algorithm through the combination of the fast
CSC algorithm and spectral ensemble clustering algo-
rithm with random projection. The efficiency and
effectiveness of the new cluster ensemble algorithm
are also demonstrated theoretically and empirically.

The remainder of our paper is organized as follows. In
Section 2, we introduce the CSC model of Cucuringu et al.
[17], landmark-based graph construction, and two related
components in our cluster ensemble algorithm: spectral
ensemble clustering and random projection. In Section 3, we
present our fast CSC algorithm and give its asymptotic prop-
erty.Then, the algorithm formulation and theoretical analysis
of spectral ensemble clustering with random projection are
displayed in Section 4. In Section 5, we show the experiment
results of our algorithms. Finally, we draw the conclusions of
the article and put forward the future directions in Section 6.

2. Preliminaries

In this section, we present the CSC algorithm proposed by
Cucuringu et al. [17] and introduce landmark-based graph
construction [20, 21] which will be applied to our fast CSC
algorithm. In addition, we also introduce spectral ensemble
clustering algorithm [22] and sparse random projection
[34] which can be used to speed up the spectral ensemble
clustering.

2.1. Constrained Spectral Clustering. Here, we first introduce
the notion of undirected graph which is very important in
constrained spectral clustering and then show theCSCmodel
proposed by Cucuringu et al. [17].

Let 𝐺 = (𝑉, 𝐸,𝑊) be an undirected graph, where 𝑉 ={V1, V2, . . . , V�푛} is the vertex set, 𝐸 is the edge set, and 𝑊 is
the weight set with respect to the edges. 𝑤�푖�푗 = 𝑤�푗�푖 is specially
the nonnegative weight of the edge between the vertices V�푖
and V�푗, indicating the level of “affinity” between V�푖 and V�푗. If
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𝑤�푖�푗 = 0, there is no edge between the vertices V�푖 and V�푗. We
denote L�퐺 = D − W as the Laplacian matrix of 𝐺, where the
diagonal entry of diagonal matrixD isD(𝑖, 𝑖) = ∑�푗 ̸=�푖 𝑤�푖�푗;W is
an adjacency matrix withW(𝑖, 𝑗) = W(𝑗, 𝑖) = 𝑤�푖�푗.

The constrained spectral clustering has three undirected
graphs: one data graph 𝐺�퐷 and two knowledge graphs 𝐺ML
and 𝐺CL. In data graph 𝐺�퐷 = (𝑉, 𝐸�퐷,𝑊�퐷), each weight
indicates the similarity level of vertices in the corresponding
edge. The “must link” (ML) graph 𝐺ML = (𝑉, 𝐸ML,𝑊ML)
gives the “must link” information of vertices: each edge
in 𝐺ML indicates that the corresponding vertices should be
in the same group and the level of “must link” belief is
described by the weight.The “cannot-link” (CL) graph𝐺CL =(𝑉, 𝐸CL,𝑊CL) has analogous components to 𝐺ML. The values
of weights in the two knowledge graphs are both nonnegative
and set according to the constraint information such as prior
knowledge. For example, assuming that the range of value of
weight is set from 0 to 1, if we have known that points V1, V2
are in the same group, their correspondingweight𝑤ML,12 = 1.
If we only have 40% confidence in the constraint information
that the two points are in the same group, the weight𝑤ML,12 =0.4, and if we have no constraint information about these two
points, 𝑤ML,12 = 𝑤CL,12 = 0.

Viewing pairwise similarities of vertices as the implicit
ML constraints declaration, Cucuringu et al. [17] defined a
generalized ML graph𝐺�퐷[𝛼] = (𝑉, 𝐸�퐷 ∪𝐸ML,𝑊�퐷 +𝛼∗𝑊ML)
where 𝛼 is the level of trust for ML constrains. Let 𝑘 be the
number of clusters and x�퐶𝑖 be the indicator vector of cluster𝐶�푖 such that x�퐶𝑖(𝑗) = 1 if the 𝑗th data point belongs to
cluster 𝐶�푖 and x�퐶𝑖(𝑗) = 0 otherwise. In order to violate as few
ML constraints as possible and meet as many CL constraints
as possible, the constrained 𝑘 way cuts problem [17] can be
described as

argmin
{{x𝐶1 ,x𝐶2 ,...,x𝐶𝑘 }}

max
x∈{x𝐶1 ,x𝐶2 ,...,x𝐶𝑘 }

x�푇L�퐺𝐷x
x�푇L�퐺CLx

s.t.
�푘∑
�푖=1

x�퐶𝑖 = {1}�푛 , x�퐶𝑖 ∈ {0, 1}�푛 .
(1)

To solve the problem in (1) approximately, Cucuringu et
al. [17] relaxed the condition “x�푖 ∈ {0, 1}�푛, ∑�푘�푖=1 x�푖 = {1}�푛” to
be the real vectors. Thus, the solution vectors of the relaxed
problem are the first 𝑘 nontrivial generalized eigenvectors of
the problem

L�퐺𝐷x = 𝜆L�퐺CLx. (2)

After getting the generalized eigenvectors, an additional
embedding phase embeds the row vectors of eigenvectors
matrix onto the 𝑘-dimensional sphere and gives the theoret-
ical guarantees of clustering results. The detailed embedding
procedures can be accessed in [17].However, the construction
cost and storage cost of data graphs for large scale data
sets are both huge (𝑂(𝑛2)). What is more, if the number
of iterations in the process of 𝑘-means clustering on the
embedded eigenvectors matrix is great, the process will also
be time-consuming over large scale data sets.

2.2. Landmark-Based Graph Construction. Based on sparse
coding theory [40], the landmark-based graph construction
[20, 21] scales linearly with the number of data points and can
suit large scale data sets very well.

Let data set be A ∈ R�푛×�푑 and the row vector a�푖 of A be
data points; sparse coding problem is defined as follows:

min
U,Z

󵄩󵄩󵄩󵄩󵄩A�푇 − UZ󵄩󵄩󵄩󵄩󵄩2
s.t. Z is sparse,

(3)

where each column vector of U ∈ R�푑×�푝 is the basis vector,
column vectors of Z ∈ R�푝×�푛 are the representations of
data points over U and 𝑝 is the number of basis vectors.
To avoid the high time complexity of solving sparse coding
problem, landmark-based graph construction just samples
points randomly from input data A as basis vectors. In the
process of computing Z, if u�푗 is among the 𝑟 nearest basis
vectors of data points a�푖, Z(𝑗, 𝑖) can be computed as

Z (𝑗, 𝑖) = 𝐾�휎 (a�푖, u�푗)
∑�푗󸀠∈�푈(�푖,�푟)𝐾�휎 (a�푖, u�푗󸀠) , (4)

where 𝑈(𝑖, 𝑟) is the indices set of the 𝑟 nearest basis vectors
of a�푖 and𝐾�휎(⋅) is Gaussian kernel function with bandwidth 𝜎;
otherwise Z(𝑗, 𝑖) = 0.

After obtaining the sparse representationZ ∈ R�푝×�푛, graph
affinity matrix is constructed as follows:

W = Ẑ�푇Ẑ, (5)

where Ẑ = D−1/2Z and D is a diagonal matrix with diagonal
entry D(𝑖, 𝑖) = ∑�푗 Z(𝑖, 𝑗). Since Chen and Cai [20, 21]
have pointed out that W was automatically normalized,
the normalized graph Laplacian matrix for A is I − Ẑ�푇Ẑ.
Considering 𝑝 ≪ 𝑛, the𝑂(𝑛𝑝𝑑) time of computing Ẑ is much
less than the 𝑂(𝑛2𝑑) time of the nearest neighbors graph
construction.

2.3. Spectral Ensemble Clustering. To gain the unified results
from different basic partitions, spectral ensemble clustering
applies spectral clustering to the coassociation matrix [24]
derived from basic partitions. In 2015, Liu et al. [22] trans-
formed spectral ensemble clustering into weighted 𝑘means
clustering over specific binary matrix. This transformation
decreased the time and space complexities effectively and
our new ensemble clustering method is based on this nice
transformation.

Given 𝑔 basic clustering results Π = {𝜋1, 𝜋2, . . . , 𝜋�푔} of
data set A ∈ R�푛×�푑; the coassociation matrix C is constructed
in the following way:

C (𝑗, 𝑘) = �푔∑
�푖=1

𝜂 (𝜋�푖 (a�푗) , 𝜋�푖 (a�푘)) , (6)
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where 𝜋�푖(a�푗) is the label of a�푗 in the 𝑖th clustering result 𝜋�푖,
and

𝜂 (𝑎, 𝑏) = {{{
1, if 𝑎 = 𝑏
0, if 𝑎 ̸= 𝑏. (7)

Viewing this coassociation matrix as adjacency matrix,
spectral ensemble clustering uses spectral clustering to get
final clustering result. In the process of the transformation
from spectral clustering to weighted 𝑘-means clustering,
binary matrix B = {b(a)} [22] is built as follows:

b (a) = [b (a)1 , . . . , b (a)�푔] , (8)

where b(a)�푖 = [𝑏(a)�푖1, . . . , 𝑏(a)�푖�푘𝑖], 𝑏(a)�푖�푗 = 1 if 𝜋�푖(a) = 𝑗,
and 𝑏(a)�푖�푗 = 0 otherwise; “[]” indicates a row vector. The fol-
lowing lemma [22] presents the connection between spectral
ensemble clustering and weighted 𝑘-means clustering.

Lemma 1 (see [22]). Given a basic partitions set Π, let the
corresponding coassociation matrix be C, the diagonal matrix
whose diagonal elements are sums of rows of C be D1, and the
diagonal element set of D1 be {𝑤b(a)}. Then normalized cuts
spectral clustering on coassociation matrix C has equivalent
objective function to weighted 𝑘-means clustering on data sets{b(a)/𝑤b(a)} with weight set {𝑤b(a)}.

Through Lemma 1, the space and time complexities of
spectral ensemble clustering can be decreased dramatically.
However, when the number of basic partitions and cluster num-
ber are large, the binary matrix B will be a high dimensional
data set, resulting in long running time for weighted 𝑘-means
clustering.

2.4. Random Projection. Recently, random projection has
become a common technique of dimensionality reduction
[36–39, 41]. Random projection often has low computing
complexity and can preserve the structure of original data
approximately. In this paper, we use the sparse random
projection proposed by Kane and Nelson [34]. Whenmost of
the elements of data are zero, the sparse random projection
can utilize the sparsity of data effectively and speed up the
process of dimensionality reduction.

Lemma2 (see [34]). For any 0 < 𝛿, 𝜀 < 1/2,𝑑 > 0, there exists
an 𝑑×(𝑎V) sparse randommatrixR, where 𝑎 = Θ(𝜀−1log(1/𝛿))
and V = Θ(𝜀−1), such that for any fixed x ∈ R�푑

Pr {(1 − 𝜀) ‖x‖22 ≤ 󵄩󵄩󵄩󵄩󵄩R�푇x󵄩󵄩󵄩󵄩󵄩22 ≤ (1 + 𝜀) ‖x‖22} > 1 − 𝛿. (9)

And the random matrix R can be constructed as follows:

R�푇 =
[[[[[[[
[

√1𝑎 ⋅ Φ1 ⋅D1...
√ 1𝑎 ⋅ Φ�푎 ⋅D�푎

]]]]]]]
]
, (10)

where matrix Φ�푙 (𝑙 ∈ [1, 𝑎]) is a V × 𝑑 sparse matrix with
nonzero elements Φ(ℎ(𝑖), 𝑖) = 1, ℎ : {1, . . . , 𝑑} → {1, . . . , V}
is a random hashing such that Pr{ℎ(𝑖) = 𝑗} = 1/V for 𝑖 ∈{1, . . . , 𝑑}, 𝑗 ∈ {1, . . . , V}, and matrix D�푙 is a 𝑑 × 𝑑 diagonal
matrix with Pr{D�푙(𝑖, 𝑖) = ±1} = 0.5.

The number of nonzero (nnz) elements of sparse random
matrix R is 𝑎𝑑, and the time complexity of AR is nnz(A)𝑎.
Lemma 2 implies that the sparse random projection can
preserve the length of data points approximately. Thus, for𝑛 data points, since there are 𝑛(𝑛 − 1)/2 pairwise distances,
we can conclude that the pairwise distances squares can be
preserved within a factor of 1 ± 𝜀 with 𝑎 = Θ(2𝜀−1 log(𝑛/𝛿)).
3. Fast Constrained Spectral
Clustering Framework

In this section, we introduce our fast CSC framework for large
scale data sets. Inspired by [20, 21], we also try to compute
the sparse representation Ẑ and obtain the approximate adja-
cency matrix W = Ẑ�푇Ẑ, where Ẑ ∈ R�푝×�푛, and 𝑝 ≪ 𝑛. Then,
our fast framework decreases the size of graph Laplacian
through the above approximate graph reconstruction. At
last, we analyse the asymptotic property of our new CSC
algorithm.

3.1. Framework Formulation. Toget the generalized eigenvec-
tor x approximately, we can let x = Ẑ�푇y, where Ẑ ∈ R�푝×�푛 is
the sparse representation in (5) and y ∈ R�푝. Thus, bringing
the x back to (1) can decrease the size of problem apparently
if 𝑝 ≪ 𝑛.

Specifically, we use Q to denote constraint matrix, where
Q(𝑖, 𝑗) = 1 if edge (k�푖, k�푗) ∈ 𝐸ML, Q(𝑖, 𝑗) = −1 if edge(k�푖, k�푗) ∈ 𝐸CL, and Q(𝑖, 𝑗) = 0 otherwise. Let adjacency
matrix be computed approximately byW = Ẑ�푇Ẑ. Next, bring
x = Ẑ�푇y into (1) and relax their solution over real vectors.
Thus, we reformulate the original problem as the following
problem.

Problem 3. One has

argmin
{{y1,y2,...,y𝑘}}

max
y∈{y1,y2,...,y𝑘}

y�푇ẐL�퐺𝐷Ẑ
�푇y

y�푇ẐL�퐺𝐶𝐿Ẑ
�푇y

s.t. y�푖 ∈ R
�푝 for any 𝑖 ∈ [1, 𝑘] .

(11)

To obtain shorthand notations, we denote ẐL�퐺𝐷Ẑ
�푇 by LCGD

and denote ẐL�퐺CL Ẑ
�푇 by LCCL. Thus, the first 𝑘 nontrivial

generalized eigenvectors of the problem

LCGDy = 𝜆LCCLy (12)

are the solution vectors of (11).

In order to speed up the 𝑘-means clustering on the
embedded eigenvector matrix, we sample row vectors of
eigenvectors matrix randomly and get 𝑘 centers through 𝑘-
means clustering over the selected row vectors. According to
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Input: data set A ∈ R�푛×�푑, the number of landmark points 𝑝, constraint matrixQ, cluster number 𝑘,
confidence parameter 𝛼, sample rate 𝑠;

Output: the grouping result.
(1) Compute the sparse representation Ẑ ∈ Rp×n in Equation (5);
(2) Compute Laplacian LCGD = ẐL�퐺𝐷Ẑ

�푇 and LCCL = ẐL�퐺CL Ẑ
�푇, where L�퐺𝐷

is the Laplacian matrix of 𝐺�퐷, L�퐺CL is the Laplacian matrix of 𝐺CL;
(3) Solve the first 𝑘 non-trivial generalized eigenvectors Y of Equation (12);
(4) Compute X = Ẑ�푇Y;
(5) Embed X into a 𝑘-dimensional sphere X̂ using the embedding process in [17];
(6) Sample 𝑛 × 𝑠 row vectors of X̂ randomly and run 𝑘-means clustering on the sampled row vectors;
(7) Get the clustering result utilizing distances between centers of 𝑘-means clustering and row vectors of X̂.

Algorithm 1: Fast constrained spectral clustering.

the distances between centers and row vectors, we can parti-
tion all the row vectors into different clusters. Cucuringu et
al. [17] have pointed out that the specific embedding process
after getting the generalized eigenvectors can concentrate the
row vectors of eigenvector matrix onto the 𝑘-dimensional
sphere and a simple partition algorithm such as 𝑘-means
clustering can be applied to get the final clustering result.
Since random sampling is a popular scalability method for 𝑘-
means clustering [42], we will take it to improve the efficiency
of the clustering on the row vectors of eigenvector matrix.
The experimental results in Section 5 also show that random
sampling has little influence on the clustering results and
makes the algorithm more efficient than the original one.

Our fast CSC framework is shown in Algorithm 1. In our
new algorithm, parameter 𝛼 (in L�퐺𝐷 of Step (2)) stands for
the trust level on constraint information. Since the 𝛼 of the
original problem (see (2)) has been taken to a constant in the
previous work [17], we also set 𝛼 as a constant.

The complexity analysis of Algorithm 1 is presented as
follows. The time of computing Ẑ is 𝑂(npd). In Step (2), the
LCGD is computed as follows:

LCGD = ẐL�퐺𝐷Ẑ
�푇 = Ẑ (I − Ẑ�푇Ẑ + 𝛼L�퐺ML

) Ẑ�푇
= ẐẐ�푇 − (ẐẐ�푇)2 + 𝛼ẐL�퐺ML

Ẑ�푇. (13)

Let the number of data points with constraint information be𝑐; then the time cost for computing 𝛼ẐL�퐺ML
Ẑ�푇 is𝑂(𝑝2𝑐+𝑝𝑐2).

Hence, the time cost of Steps (1) and (2) is 𝑂(𝑝2𝑛 + 𝑝3) +𝑂(𝑝2𝑐 + 𝑝𝑐2) = 𝑂(𝑝2𝑛 + 𝑝3 + 𝑝2𝑐 + 𝑝𝑐2). Besides, the time
complexity of Step (3) is𝑂(𝑝3), that of Step (4) is𝑂(𝑘𝑝𝑛), and
that of Step (5) is𝑂(𝑘𝑛).Thus, the time cost of the first 5 steps
is 𝑂(𝑝2𝑛) considering 𝑝, 𝑐 ≪ 𝑛 and 𝑘 ≪ 𝑝, 𝑐. Assuming the
iteration numbers of 𝑘-means clustering are 𝑙, the time cost
of Steps (6) and (7) is 𝑂((𝑛𝑠)𝑘2𝑙 + 𝑛𝑘2), which is much less
than the time cost 𝑂(𝑛𝑙𝑘2) of 𝑘-means clustering on X̂ with(𝑛𝑠) ≪ 𝑛. Hence, the time complexity of our algorithm is

𝑂(𝑛𝑝2 + 𝑛𝑘2 + 𝑛𝑝𝑑) . (14)

Since three matrices Ẑ, LCGD, and LCCL are stored, the
memory complexity is

𝑂(𝑛𝑝 + 𝑝2) . (15)

3.2. Asymptotic Property of the Framework. In this subsec-
tion, we show that the partition result of our fast CSC
algorithm could be comparable to that of the original model
[17] as 𝑝 converges to 𝑛.
Theorem 4. Assuming the adjacency matrixW in the original
model is full rank, the result of Step (4) in Algorithm 1 will
converge to the generalized eigenvectors of (2) as 𝑝 converges
to 𝑛.
Proof. From the construction of sparse representation Ẑ, we
can get that

lim
�푝→�푛

Ẑ = Ŵ, (16)

where Ŵ is the normalized adjacency matrix. Equation (12)
can be rewritten as

Ẑ [I − Ŵ + 𝛼L�퐺ML
] Ẑ�푇y = 𝜆ẐL�퐺CL Ẑ�푇y. (17)

Equally, we have that

Ẑ [I − Ŵ + 𝛼L�퐺ML
− 𝜆L�퐺CL] Ẑ�푇y = 0. (18)

Since the rank of Ẑwill be equal to 𝑛, Ẑ can be removed.Thus
the equation will be

[I − Ŵ + 𝛼L�퐺ML
] Ẑ�푇y = 𝜆L�퐺CL Ẑ�푇y. (19)

This equation shows that Ẑ�푇y and 𝜆 in Step (4) of Algorithm 1
are indeed the eigenvector and eigenvalue of (2), respectively.
Moreover, the number of eigenvectors of (19) will converge to𝑛 as 𝑝 converges 𝑛. Hence Algorithm 2 could also get all the
eigenvectors of (2) asymptotically.

Since the eigenvectors of our framework will converge to
that of original CSC model [17] and the random sampling
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Input: binary matrix B ∈ R�푛×�푑
󸀠

, weights set {𝑤b(x)}, cluster number 𝑘.
Output: the final partition result.
(1) Generate a 𝑑�耠 × (V𝑎) sparse random matrix Rmeeting the requirements of Lemma 2,

where 𝑎 = Θ(2𝜀−1 log(𝑛/𝛿)), V = Θ(𝜀−1), 0 < 𝛿, 𝜀 < 1/2, V𝑎 < 𝑑�耠;
(2) Compute B̃ = W−1B B, whereWB is a diagonal matrix with diagonal entries {𝑤b(x)};
(3) Compute B̂ = B̃R;
(4) Run weighted 𝑘-means clustering on B̂ with weight set {𝑤b(x)} to obtain the final clustering result.

Algorithm 2: Spectral ensemble clustering with random projection.

has little influence on the clustering result of embedded
eigenvectors matrix, our new CSC algorithm will generate
the partition result which is comparable to that of original
framework. In addition, the reason why we give the assump-
tion of Theorem 4 is that each row vector of adjacency
matrix is the similarity representation of certain point over
thewhole data set, and those representations are often linearly
independent. In the experiments, we have demonstrated this
theory empirically on the 30 nearest neighbors adjacency
matrices of three data sets.

4. Spectral Ensemble Clustering with
Random Projection

In this section, we propose an improved spectral ensem-
ble clustering algorithm with random projection. The new
ensemble clustering not only improves the efficiency of
spectral ensemble clustering algorithm designed by Liu et
al. [22], but also can theoretically preserve the approximate
clustering result.

4.1. Algorithm Formulation. In this subsection, we give the
detailed procedure of our new spectral ensemble clustering
algorithm. We denote the original spectral ensemble clus-
tering [22] by SEC and our improved spectral ensemble
clustering with random projection by SECRP.

From the description of Section 2.3, we can know that
the SEC algorithm transforms the spectral clustering on the
coassociationmatrix intoweighted 𝑘-means clustering on the
specific binary matrixB.The dimension of binary matrixB is∑�푔�푖=1 𝑘�푖, where 𝑘�푖 is the cluster number of basic partition 𝜋�푖.
When the number of clusters and/or basic partitions is big, B
is probably a high dimensional matrix on which the weighted𝑘-means clustering runs slowly.

To avoid the high dimensions ofB, we design an improved
SEC algorithm with random projection for dimensionality
reduction. The new algorithm SECRP is showed in Algo-
rithm 2.

The complexity analysis of the new algorithm is as follows.
Obviously, the running time of Steps (1) and (2) is very
short (compared with that of Step (3)). The time of Step
(3) is 𝑂(𝑛𝑛𝑧(B)𝑎) = 𝑂(𝑛𝑔𝑎), where 𝑔 is the number of
basic partitions; 𝑛𝑛𝑧()denotes the number of nonzero entries.
Another common method of dimensionality reduction is
singular value decomposition (SVD). The time of running
SVD on binary matrix B is 𝑂((𝑑�耠)3 + 𝑛(𝑑�耠)2), and that of
the product between eigenvectors and B is 𝑂(𝑛𝑑�耠V𝑎). Since

𝑔 ≈ 𝑑�耠/𝑘, random projection with sparse random matrix
is a cost-effective method of dimensionality reduction. With
respect to the weighted 𝑘-means clustering, dimensionality
reduction of random projection can decrease the running
time of each iteration from 𝑂(𝑛𝑘𝑑�耠) to 𝑂(𝑛𝑘V𝑎).

As a basic module, Algorithm 2 can be combined with
different basic partition methods to produce different clus-
ter ensemble algorithms. Thus, taking Algorithm 1 as the
basic partition algorithm for Algorithm 2 could generate
an efficient constrained cluster ensemble method with high
accuracy (both basic partitions and final clustering are spec-
tral clustering). Moreover, the last two steps of Algorithm 2
are just weighted 𝑘-means clustering with sparse random
projection, which is also suitable for any other applications
of weighted 𝑘-means clustering.

4.2. Theoretical Analysis of New Ensemble Algorithm. In this
subsection, we demonstrate that our new algorithm SECRP
can maintain the clustering result of SEC approximately.

For the theoretical analysis, we give the formal definition
of weighted 𝑘-means clustering problem with matrix nota-
tion:

Definition 5 (weighted 𝐾-means clustering problem). Given
an 𝑛 points set B (each row is a data point), diagonal matrix
WB whose diagonal entries set {𝑤b} is weights set and clusters
number 𝑘 find an 𝑛 × 𝑘 indicator matrix Xopt such that

Xopt = argmin
X

󵄩󵄩󵄩󵄩󵄩W1/2B (B − XX�푇WBB)󵄩󵄩󵄩󵄩󵄩2�퐹 , (20)

where ‖ ⋅ ‖2�퐹 denotes the square of Frobenius norm; X is
selected from the set of all indicator matrices. An indicator
matrix has one nonzero element on each row. Specifically, if
the 𝑖th point belongs to the 𝑗th cluster, X(𝑖, 𝑗) = 1/√𝑤�퐶�푗,
where 𝑤�퐶�푗 denotes the sum of weights points in cluster 𝐶�푗.

Since computingXopt is anNP-hard problem, we focus on
the approximate algorithm for weighted 𝑘-means clustering.
The corresponding definition is as follows.

Definition 6 (weighted 𝐾-means approximation algorithm).
An algorithm is called the “𝛾-approximation” for weighted𝑘-means clustering problem, if the algorithm takes B, 𝑘, and
WB as input and outputs an indicator matrix X�훾 such that
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Pr {󵄩󵄩󵄩󵄩󵄩W1/2B (B − X�훾X
�푇
�훾WBB)󵄩󵄩󵄩󵄩󵄩2�퐹

≤ 𝛾min
X

󵄩󵄩󵄩󵄩󵄩W1/2B (B − XX�푇WBB)󵄩󵄩󵄩󵄩󵄩2�퐹} ≥ 1 − 𝛿�훾,
(21)

where 𝛾 is the approximation factor and 𝛿�훾 is the failure prob-
ability of the “𝛾-approximation”weighted 𝑘-means clustering
algorithm.

Though there is the 𝛾-approximation 𝑘-means cluster-
ing algorithm such as [43], it is unclear whether the 𝛾-
approximation weighted 𝑘-means clustering algorithm exists
or not. To facilitate the proof of our theory, we assume that the
approximation algorithm exists and utilize the definition of
approximation algorithm in the process of proof. And we will
take the weighted version of the classical 𝑘-means clustering
algorithm [44] as the weighted 𝑘-means clustering to verify
our theoretical results in the following experiments.

Theorem 7. Let 𝑛×𝑑�耠 matrix B, weight set {𝑤b(a)}, and cluster
number 𝑘 be the inputs of Algorithm 2. Let 𝜀 ∈ (0, 1/3).
Assuming that a 𝛾-approximation weighted 𝑘-means clustering
algorithm exists, then the output X�훾 of Algorithm 2 satisfies
with probability of at least 0.97 − 𝛿�훾:

󵄩󵄩󵄩󵄩󵄩W1/2B (B̃ − X�훾X
�푇
�훾WBB̃)󵄩󵄩󵄩󵄩󵄩2�퐹

≤ (1 + (1 + 𝜀) 𝛾) 󵄩󵄩󵄩󵄩󵄩W1/2B (B̃ − X�표�푝�푡X
�푇
�표�푝�푡WBB̃)󵄩󵄩󵄩󵄩󵄩2�퐹 .

(22)

In the above, B̃ = W−1B B is the computing result of Step (2) in
Algorithm 2; Xopt is the optimal solution of weighted 𝑘-means
clustering on B̃.

This theorem reveals that random projection not only
can be used to improve the efficiency of spectral ensemble
clustering with lower dimensions, but also maintains its final
result approximately.

In the following, we present a useful lemma which is
needed in the proof of Theorem 7. The results of the lemma
are based on the results of [36] and Lemma 2.

Lemma 8. Let B̃, R, WB, 𝑘, and 𝜀 be the same as those in
Theorem 7; denote W1/2B B̃ by H, the product of top 𝑘 singular
vectors (left and right) and singular values ofH byH�푘.

(1) (Lemma 5 of [36]) Let the SVD ofH�푘 beH�푘 = U�푘Σ�푘V�푇�푘 ,
whereU�푘 andV�푘 are the left and right singular vector matrices;Σ�푘 is a diagonal matrix whose diagonal elements are the 𝑘
singular values. With probability of at least 0.97,

H�푘 = HR (V�푇�푘R)† V�푇�푘 + E, (23)

where ( )† is the pseudoinverse of matrix; E is an 𝑛 × 𝑑�耠 matrix
with ‖E‖�퐹 ≤ 4𝜀‖H −H�푘‖�퐹.

(2) (Lemma 4 of [36]) For any 𝑛 × 𝑑�耠 matrix G, with
probability of at least 0.99,

‖GR‖�퐹 ≤ √1 + 𝜀 ‖G‖�퐹 . (24)

(3) (Combination of Lemmas 2 and 3 of [36]) With
probability of at least 0.99,

󵄩󵄩󵄩󵄩󵄩󵄩(V�푇�푘R)†
󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 11 − 𝜀 . (25)

These conclusions are all about the influences of random
matrixR on the norms of different matrices, which are useful
for bounding the norms of the matrices in Theorem 7. In
the following proof of Theorem 7, we start by decomposing
the term ‖W1/2B (B̃ − X�훾X�푇�훾WBB̃)‖2�퐹 in (22). Then, based on
the influences of randommatrix in Lemma 8, we manipulate
the norms of the different terms in the decomposition
result.

Proof. Using the notation of Lemma 8, (22) can be decom-
posed into

󵄩󵄩󵄩󵄩󵄩W1/2B (B̃ − X�훾X
�푇
�훾WBB̃)󵄩󵄩󵄩󵄩󵄩2�퐹

= 󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )W1/2B B̃󵄩󵄩󵄩󵄩󵄩2�퐹

= 󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H󵄩󵄩󵄩󵄩󵄩2�퐹

= 󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H�푘󵄩󵄩󵄩󵄩󵄩2�퐹

+ 󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H�휌−�푘󵄩󵄩󵄩󵄩󵄩2�퐹 ,

(26)

where H�휌−�푘 = H − H�푘. The last equation is based on the
orthogonality ofH�푘 andH�휌−�푘.

We first give the bound of the second term of
(26). According to our definition of indicator matrix,
X�푇�훾W
1/2
B W1/2B X�훾 = I�푘. Thus, I −W1/2B X�훾X�푇�훾W

1/2
B is a projector

matrix; namely, its 𝑙2 norm is 1. As a result, we get

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H�휌−�푘󵄩󵄩󵄩󵄩󵄩2�퐹 ≤ 󵄩󵄩󵄩󵄩󵄩H�휌−�푘󵄩󵄩󵄩󵄩󵄩2�퐹

≤ 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX
�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩2�퐹 ,

(27)

where the second inequality is caused by the fact that
rank(W1/2B XoptX�푇optW

1/2
B ) ≤ 𝑘 and the optimality of SVD.

We next bound the first term of (26). From the first
statement of Lemma 8, we get

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H�푘󵄩󵄩󵄩󵄩󵄩�퐹

≤ 󵄩󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )HR (V�푇�푘R)† V�푇�푘 󵄩󵄩󵄩󵄩󵄩󵄩�퐹

+ ‖E‖�퐹
≤ 󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X

�푇
�훾W
1/2
B )HR󵄩󵄩󵄩󵄩󵄩�퐹 󵄩󵄩󵄩󵄩󵄩󵄩(V�푇�푘R)†

󵄩󵄩󵄩󵄩󵄩󵄩�퐹
+ ‖E‖�퐹 .

(28)
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From Definition 6 and the meaning of Xopt ofTheorem 7, we
get

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )HR󵄩󵄩󵄩󵄩󵄩�퐹

≤ √𝛾min
X

󵄩󵄩󵄩󵄩󵄩(I −W1/2B XX�푇W1/2B )HR󵄩󵄩󵄩󵄩󵄩�퐹
≤ √𝛾 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX

�푇
optW
1/2
B )HR󵄩󵄩󵄩󵄩󵄩�퐹 .

(29)

Using the statement 2 of Lemma 8, (29) can be transformed
to

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )HR󵄩󵄩󵄩󵄩󵄩�퐹

≤ √𝛾 (1 + 𝜀) 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX
�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩 .

(30)

Combining the statement 3 of Lemma 8 and (30), we get

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )HR󵄩󵄩󵄩󵄩󵄩�퐹 󵄩󵄩󵄩󵄩󵄩󵄩(V�푇�푘R)†

󵄩󵄩󵄩󵄩󵄩󵄩�퐹 + ‖E‖�퐹
≤ √𝛾 (1 + 𝜀) ⋅ 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX

�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩�퐹

⋅ 󵄩󵄩󵄩󵄩󵄩󵄩(V�푇�푘R)†
󵄩󵄩󵄩󵄩󵄩󵄩�퐹 + ‖E‖�퐹

≤ √𝛾 (1 + 𝜀)
1 − 𝜀 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX

�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩�퐹

+ ‖E‖�퐹 ≤ √𝛾(√1 + 𝜀1 − 𝜀 + 4𝜀)
⋅ 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX

�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩�퐹 .

(31)

From (28) and (31), and rescaling 𝜀, we can get

󵄩󵄩󵄩󵄩󵄩(I −W1/2B X�훾X
�푇
�훾W
1/2
B )H�푘󵄩󵄩󵄩󵄩󵄩�퐹

≤ √𝛾 (1 + 𝜀) 󵄩󵄩󵄩󵄩󵄩(I −W1/2B XoptX
�푇
optW
1/2
B )H󵄩󵄩󵄩󵄩󵄩�퐹 .

(32)

Finally, combining (27) and (32) concludes the proof.

It is easy to check that the above theoretical analysis can
be also applied to ordinary weighted 𝑘-means clustering,
indicating that the method of dimensionality reduction with
random projection can preserve the clustering quality of
weighted 𝑘 means clustering approximately. Furthermore,
the integration of Theorems 4 and 7 means that the new
semisupervised cluster ensemble method (combination of
Algorithms 1 and 2) can have an encouraging clustering
result.

5. Experiments

In this section, we present the experimental results of our
new algorithms in Sections 3 and 4. We implemented all the
related algorithms inMatlab and conducted our experiments
on aWindowsmachinewith the Intel Core 3.6GHzprocessor
and 16GB of RAM.

Table 1: Data sets information.

Data set #instances #attributes #classes
Letter recognition 20,000 16 26
MNIST 70,000 784 10
CoverType 581,012 54 7

5.1. Data Sets and Experimental Settings. In order to facil-
itate the comparison, we performed experiments on three
data sets which can be achieved from public web sites
(http://archive.ics.uci.edu/ml/), (http://www.cad.zju.edu.cn/
home/dengcai/). Table 1 summarizes their basic information.

The constraint information is generated from the real
labels of data sets. In our experiments, we sample the labeled
points randomly from data sets. The constraint matrix Q is
constructed as

Q (𝑖, 𝑗) =
{{{{{{{{{

1 x�푖, x�푗 have the same label

−1 x�푖, x�푗 have different labels

0 no constraint.
(33)

The validationmeasures of the partition result used in our
experiments are cluster accuracy (CA) [45] and normalized
mutual information (NMI) [25]. The CA is computed as

CA = �푘∑
�푖=1

max (cluster�푖 | label)𝑛 , (34)

where 𝑘 is the cluster number of clustering result, 𝑛 is the
number of data points, max(cluster�푖 | label) is the maximum
number of points with the same true label in the 𝑖th cluster.
For computing the NMI, we construct two random variables𝐶 and 𝐿 from the clustering result and true label, respectively.
The probability distributions of random variables are the
proportions of different clusters (or classes) over the whole
data set. The NMI is computed as follows:

NMI = MI (𝐶, 𝐿)
√𝐻 (𝐶) ⋅ 𝐻 (𝐿)

= ∑�푐,�푙 𝑛�푐,�푙 log ((𝑛 ⋅ 𝑛�푐,�푙) / (𝑛�푐 ⋅ 𝑛�푙))
√(∑�푐 𝑛�푐 log (𝑛�푐/𝑛)) (∑�푙 𝑛�푙 log (𝑛�푙/𝑛))

,
(35)

where MI(𝐶, 𝐿) denotes the mutual information of random
variables 𝐶 and 𝐿, 𝐻(⋅) denotes the entropy of a random
variable, 𝑛 is the number of data points, 𝑛�푐,�푙 is the number
of points in both cluster 𝑐 and class 𝑙, 𝑛�푐 is the points number
of cluster 𝑐, and 𝑛�푙 is the points number of class 𝑙. The values
of CA and NMI both vary from 0 and 1, and the higher value
means better clustering solution.

5.2. Comparisons of Different Constrained Spectral Clustering.
In this subsection, we compare our fast CSC (constrained
spectral clustering) algorithm with other spectral clustering
algorithms. Following is the list of information of different
algorithms in comparison:

http://archive.ics.uci.edu/ml/
http://www.cad.zju.edu.cn/home/dengcai/
http://www.cad.zju.edu.cn/home/dengcai/
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Figure 1: Performance of clustering algorithms with different constraint information.



10 Computational Intelligence and Neuroscience

Sample rate of k-means s (%)
0 20 40 60 80 100

N
M

I (
%

)

10

20

30

40

50

60

70

CoverType
LetterRec
MNIST

Sample rate of k-means s (%)
0

CA
 (%

)

40

45

50

55

60

65

70

75

80

CoverType
LetterRec
MNIST

20 40 60 80 100

Figure 2: Influence of sample rates on proposed algorithms.

(i) LSC-𝑅 [20, 21]: the unsupervised spectral clustering
baseline with landmark-based graph construction.

(ii) SCACS [16]: the most efficient CSC algorithm known
and be set as the CSC baseline over MNIST and
CoverType data sets.

(iii) CCS [17]: the original CSC model proposed in [17],
set as the CSC baseline over LetterRec data set. (Since
the constructions of the nearest neighbors graphs are
both time-consuming onMNIST andCoverType data
sets, we do not run CCS algorithm on these two data
sets.)

(iv) CCS-L: our improved CCS algorithm with landmark-
based graph construction.

(v) CCS-LS: our improved CCS algorithm with land-
mark-based graph construction and random sam-
pling.

In the process of the landmark-based graph construction,
we fix the number of landmark points 𝑝 = 500 and the
number of nearest neighbors 𝑟 = 3.The parameters in SCACS
algorithm that we used are 𝛽0 = 0.1, which is the same as
those in [16]. Since in the original model CCS [17] it has been
pointed out that 𝛼 could be a constant number and 𝛼 was set
to 5 in their implementation code, we also set 𝛼 = 5 in CCS,
CCS-L, and CCS-LS.

First, we investigate the influence of the number of labeled
points 𝑐 on the performance of algorithms.We vary the value
of 𝑐 from 100 to 1000 with step size 100. For each value of 𝑐,
we select the 𝑐 labeled points randomly to produce constraint
information and repeat 20 trials with different labeled points
sets. The corresponding experimental results are presented
in Figure 1. Figures 1(a), 1(b), and 1(c) are related to CA of
clustering results, Figures 1(d), 1(e), and 1(f) are related to

NMI, and Figures 1(g), 1(h), and 1(i) are related to running
time. We can see that our algorithm CCS-LS outperforms
LSC-R on all data sets and the values of CA andNMI increase
with the growth of constraint information. Those indicate
that our algorithm can employ the constraint information
appropriately. Compared with SCACS, our algorithm has the
similar performances on LetterRec and MNIST data sets and
superior performances onCoverType data set, indicating that
our algorithm adapts a wider range of geometries. Over the
three data sets, the performances of CCS-LS are all close to
CCS-L.What ismore, our algorithm runs fastest among these
algorithms.

Next, we study the influence of random sampling (Step
(5) of Algorithm 1) which can be seen in Figure 2. In the
experiments, we fix 𝑐 = 500 and change the sample rate
from 0.1 to 1 by a step size 0.1. We still run 20 independent
trials considering the randomness and compute the means of
validity measures. We can see that the values of CA and NMI
vary slightly along with the growth of sample rate, verifying
the feasibility of random sampling.

5.3. Performance of the Spectral Ensemble Clustering with
Random Projection. Since cluster ensemble consists of two
parts: basic partition clustering and ensemble clustering, we
below combine different basic partition clustering algorithms
and different ensemble clustering algorithms to get different
cluster ensemble algorithms. Thus, the performance of new
ensemble clustering algorithm (Algorithm 2) and new cluster
ensemble algorithm (combination of Algorithms 1 and 2) can
both be manifested. Following is the list of information of
different cluster ensemble algorithms in comparison:

(i) CK-𝑆𝐸: the basic partition clustering algorithm “CK”
is the constrained 𝑘-means clustering algorithm [9],
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Figure 3: Performance of ensemble clustering algorithms with different constraint information.

and the ensemble clustering algorithm “SE” is the
spectral ensemble clustering (SEC) algorithm [22].

(ii) SCACS-𝑆𝐸: the basic partition clustering algorithm
is SCACS [16] in Section 5.2, and the ensemble
clustering algorithm is also SE [22].

(iii) CCSS-SE: the basic partition clustering algorithm
“CCSS” is our fast CSC algorithm (Algorithm 1), and
the ensemble clustering algorithm is also SE [22].

(iv) CCSS-SER: the basic partition clustering algorithm is
CCSS, and the ensemble clustering algorithm “SER”
is our spectral ensemble clustering with random
projection (Algorithm 2).

In the phase of basic partition clustering, we fix the
number of basic partitions as 50 and the parameters of
basic clustering algorithms are the same as those in the
last subsection. In addition, similar to the operation of SE
[22], the basic partitions are obtained by varying the cluster
number from 𝑘 − 5 to 𝑘 + 4. We repeat each cluster ensemble
algorithm 10 times and present the average values of results.

First, we show the comparison of different cluster ensem-
ble algorithms in terms of different constraint information in
Figure 3.Here the dimensionality 𝑟𝑑 ofCCSS-SER reduced by
randomprojection is 40 andwe change the number of labeled
points 𝑐 from 100 to 1000 with step size 100. In the figure, the
validity measures of Figures 3(a)–3(c) and Figures 3(d)–3(f)
are related to CA andNMI, respectively. Just like the results of
last subsection, CCSS-SE has similar performance to that of
SCACS-SE on LetterRec and MNIST data sets and has much
better performance onCoverType data set. From the compar-
ison between Figure 1 and 3, we can see that the two validity
measures are both higher than those of the basic partition
dramatically, verifying ensemble clustering’s improvement
in clustering quality. Compared with CK-SE, CCSS-SE and
CCSS-SER both have better performance significantly, which
indicates that the basic partitions have an obvious impact on
the final result and also verify the high accuracy of our new
constrained spectral cluster ensemble method. In addition,
the little difference of performance between CCSS-SE and
CCSS-SER implies that the random projection can preserve
the results of spectral ensemble clustering approximately on
different constraint information.
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Figure 4: Performance of ensemble clustering algorithms with different dimension.

Table 2: Decrease of running time of SECRP from SEC with different dimensions 𝑟𝑑.
𝑟𝑑 10 20 30 40 50 60 70 80 90 100
LetterRec 2.44 2.39 2.11 2.07 2.04 2.03 1.92 1.74 1.67 1.56
MNIST 2.76 2.68 2.66 2.58 2.51 2.34 2.31 2.11 2.16 2.03
CoverType 18.85 18.64 15.34 15.26 14.04 11.43 9.73 8.31 7.72 7.44

Second, we inspect the influence of dimensions of ran-
dom projection on the performance of our algorithm in
Figure 4 and Table 2. In Figure 4, the “SEC-SVD” denotes
the SEC algorithm with dimensionality reduction of SVD.
When 𝑟𝑑 is above certain bound, the validity measures of
“SECRP” (denote our algorithm SECRP) are almost stable
and similar to those of SEC over all three data sets. This
indicates that the accuracy of clustering algorithm can be
kept when the dimensions surpass a certain bound, which
verifiesTheorem 7.The small bound of dimensions (𝑟𝑑 = 40)
also reveals the effectiveness of dimensionality reduction of
random projection. With respect to SEC-SVD, although it
can also preserve the accuracy of clustering algorithm, its
running time is not encouraging. Even letting 𝑟𝑑 = 20, the

running time comparisons of original algorithm and SVD
method over three data sets are 3.47 s/10.85 s, 4.91 s/14.54 s,
and 22.06 s/326.61 s. These phenomena may be caused by
the tardiness of SVD on large matrix and the breaking of
sparseness of binary matrix B. In Table 2, the decrease
of running time verifies the efficiency of our new spectral
ensemble clustering. Combining this and subfigures (g,h,i)
in Figure 1, the efficiency of new constrained cluster ensem-
ble method is also verified. In addition, we can see the
decrease of running time caused by random projection is
declining with the growth of dimensions, indicating the
relative small dimensionality with random projection is
preferable.
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6. Conclusion

To handle large scale data sets, we propose a fast CSC
algorithm. The new algorithm can decrease the space and
time complexity of a recently introduced CSCmodel through
landmark-based graph construction and improve its effi-
ciency further by random sampling. The new algorithm
not only has the similar property of original model asymp-
totically, but also is the most efficient and suitable to a
wide range of data sets empirically. Taking the new CSC
algorithm as basic partition algorithm, we design an efficient
semisupervised cluster ensemble algorithm. In the stage
of consensus clustering, we reduce the dimensionality of
input of spectral ensemble clustering by sparse random
projection and prove that the sparse random projection can
keep the clustering quality approximately. The experimental
results over several data sets also verify the efficiency and
effectiveness of new cluster ensemble algorithm. Moreover,
in the process of spectral ensemble clustering, the influence
analysis of dimensionality reduction with random projection
can also give the theoretical guarantee for the weighted 𝑘-
means clustering with random projection. In the future, we
will use techniques such as applying several different basic
partition methods, selecting the results of basic partitions,
and giving different weights for basic partitions to improve
the performance of our cluster ensemble algorithm further.
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[12] Z. Lu andM. Á. Carreira-Perpiñán, “Constrained spectral clus-
tering through affinity propagation,” in Proceedings of the 26th
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’08), Anchorage, Ala, USA, June 2008.

[13] Z. Li, J. Liu, and X. Tang, “Constrained clustering via spectral
regularization,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Work-
shops (CVPR ’09), pp. 421–428, Miami, Fla, USA, June 2009.

[14] Z. Lu and H. H. Ip, “Constrained spectral clustering via exhaus-
tive and efficient constraint propagation,” in Proceedings of the
11th European Conference on Computer Vision on Computer
Vision (ECCV ’10), vol. 6316, pp. 1–14, Crete, Greece, September
2010.

[15] X. Wang, B. Qian, and I. Davidson, “On constrained spectral
clustering and its applications,” Data Mining and Knowledge
Discovery, vol. 28, no. 1, pp. 1–30, 2014.

[16] J. Li, Y. Xia, Z. Shan, and Y. Liu, “Scalable constrained spectral
clustering,” IEEETransactions onKnowledge andData Engineer-
ing, vol. 27, no. 2, pp. 589–593, 2015.

[17] M. Cucuringu, I. Koutis, S. Chawla, G. L. Miller, and R. Peng,
“Simple and scalable constrained clustering: a generalized spec-
tral method,” in Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS ’16), pp. 445–
454, Cadiz, Spain, May 2016.

[18] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
analysis and an algorithm,” in Proceedings of the 14th Inter-
national Conference on Neural Information Processing Systems:
Natural and Synthetic (NIPS ’01), pp. 849–856, Vancouver,
Canada, December 2001.

[19] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 22, no. 8, pp. 888–905, 2000.

[20] X. Chen and D. Cai, “Large scale spectral clustering with
landmark-based representation,” in Proceedings of the 25th
AAAI Conference on Artificial Intelligence and the 23rd Innova-
tive Applications of Artificial Intelligence Conference, pp. 313–318,
August 2011.



14 Computational Intelligence and Neuroscience

[21] D. Cai and X. Chen, “Large scale spectral clustering via
landmark-based sparse representation,” IEEE Transactions on
Cybernetics, vol. 45, no. 8, pp. 1669–1680, 2015.

[22] H. Liu, T. Liu, J. Wu, D. Tao, and Y. Fu, “Spectral ensemble clus-
tering,” in Proceedings of the 21st ACM SIGKDD International
Conference onKnowledge Discovery andDataMining (KDD ’15),
pp. 715–724, Sydney, Australia, August 2015.

[23] X. Z. Fern and C. E. Brodley, “Random projection for high
dimensional data clustering: a cluster ensemble approach,” in
Proceedings of the 20th International Conference on Machine
Learning (ICML ’03), vol. 3, pp. 186–193, August 2003.

[24] A. L. N. Fred and A. K. Jain, “Combining multiple clusterings
using evidence accumulation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 6, pp. 835–850,
2005.

[25] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge
reuse framework for combining multiple partitions,” Journal of
Machine Learning Research, vol. 3, no. 3, pp. 583–617, 2003.

[26] J.Wu,H. Liu,H. Xiong, and J. Cao, “A theoretic framework ofK-
means-based Consensus Clustering,” in Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI
’13), pp. 1799–1805, Beijing, China, August 2013.

[27] Z. Yu, L. Li, J. Liu, J. Zhang, and G. Han, “Adaptive noise
immune cluster ensemble using affinity propagation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no.
12, pp. 3176–3189, 2015.

[28] Z. Yu, P. Luo, J. You et al., “Incremental semi-supervised
clustering ensemble for high dimensional data clustering,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 3,
pp. 701–714, 2016.

[29] M. Ye, W. Liu, J. Wei, and X. Hu, “Fuzzy c-means and cluster
ensemble with random projection for big data clustering,”
Mathematical Problems in Engineering, vol. 2016, Article ID
6529794, 13 pages, 2016.

[30] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz
mappings into a hilbert space,” ContemporaryMathematics, vol.
26, pp. 189–206, 1984.

[31] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proceedings
of the 13th Annual ACM Symposium on Theory of Computing,
pp. 604–613, ACM, 1998.

[32] D. Achlioptas, “Database-friendly random projections:
Johnson-Lindenstrauss with binary coins,” Journal of Computer
and System Sciences, vol. 66, no. 4, pp. 671–687, 2003.

[33] J. A. Tropp, “Improved analysis of the subsampled randomized
Hadamard transform,” Advances in Adaptive Data Analysis.
Theory and Applications, vol. 3, no. 1-2, pp. 115–126, 2011.

[34] D. M. Kane and J. Nelson, “Sparser Johnson-Lindenstrauss
transforms,” Journal of the ACM, vol. 61, no. 1, article 4, 2014.

[35] S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas,
“Randomprojections for linear support vectormachines,”ACM
Transactions on Knowledge Discovery from Data, vol. 8, no. 4,
article 22, 2014.

[36] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections
for 𝜅-means clustering,” in Proceedings of the 24th Annual
Conference on Neural Information Processing Systems (NIPS ’10),
pp. 298–306, December 2010.

[37] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas,
“Randomized dimensionality reduction for c-means cluster-
ing,” IEEE Transactions on InformationTheory, vol. 61, no. 2, pp.
1045–1062, 2015.

[38] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu,
“Dimensionality reduction for k-means clustering and low
rank approximation,” in Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC ’15), pp. 163–172,
June 2015.

[39] Q. Ding and E. D. Kolaczyk, “A compressed PCA subspace
method for anomaly detection in high-dimensional data,” IEEE
Transactions on Information Theory, vol. 59, no. 11, pp. 7419–
7433, 2013.

[40] H. Lee, A. Battle, R. Raina, andA. Y.Ng, “Efficient sparse coding
algorithms,” in Proceedings of the 19th International Conference
on Neural Information Processing Systems (NIPS’06), pp. 801–
808, Vancouver, Canada, 2006.

[41] M. Popescu, J. Keller, J. Bezdek, and A. Zare, “Random
projections fuzzy c-means (RPFCM) for big data clustering,”
in Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE ’15), pp. 1–6, Istanbul, Turkey, August 2015.

[42] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and
Techniques: Concepts and Techniques, Elsevier, 2011.

[43] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time
(1+)-approximation algorithm for k-means clustering in any
dimensions,” in Proceedings of the 45th Symposium on Founda-
tions of Computer Science (FOCS ’04), pp. 454–462, Rome, Italy,
October 2004.

[44] D. Arthur and S. Vassilvitskii, “k-means++: the advantages
of careful seeding,” in Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms, pp. 1027–1035, 2007.

[45] A. Fahad, N. Alshatri, Z. Tari et al., “A survey of clustering
algorithms for big data: taxonomy and empirical analysis,” IEEE
Transactions on Emerging Topics in Computing, vol. 2, no. 3, pp.
267–279, 2014.


