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Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models.
While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone,
and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk
prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that
arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different
methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived
from our institution’s electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different
challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in
the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this
review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Electronic health records † Risk prediction † Precision medicine † Personalized medicine

Introduction
Risk prediction is important in clinical research and patient care.
Models for risk of cardiovascular disease are used to identify pa-
tients for statin therapy1 and choose anticoagulation strategies for
atrial fibrillation.2 Traditional approaches for developing prediction
tools have used regression-based models, such as a logistic model
to predict 30-day mortality risk for patients with STEMI (TIMI),3 a
Weibull model used for the Systematic Coronary Risk Evaluation
(SCORE) model,4 and a Cox model used for the Framingham Risk
Score.5 Such models use a small number of variables to predict the
probability of an event and are ubiquitous in clinical research
because they estimate easy to interpret parameters, e.g. odds ratios,
relative risks, and hazard ratios. Such models are useful and often
necessary in association analyses; however, this is not necessarily

the case in prediction analyses, where the focus is on the outcome
instead of the predictors. Therefore, constraints that aid interpret-
ation for association studies—the effect of the predictor on the out-
come is linear and homogeneous (i.e. the effect increases uniformly
throughout the range of the predictor and the factor operates in the
same way in all participants), and relatively few predictors used—
serve as limitations in prediction studies.

For studies where the goal is to predict the occurrence of an out-
come and not measure the association between specific risk factors
and an event in a clinically interpretable way, traditional regression
models can be modified or abandoned in favour of models that
produce a more flexible relationship among the predictor variables
and the outcome. These methods—generally referred to as ma-
chine learning—have similar goals to regression-based approaches
but different motivating philosophies (Figure 1). They do not require
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pre-specification of a model structure but instead search for the op-
timal fit within certain constraints (specific to the individual algo-
rithm). This can result in a better final prediction model at the
sacrifice of interpretability of how risk factors relate to the outcome
of interest.

Increasing ubiquity of large, multifaceted datasets, such as Elec-
tronic Health Records (EHRs)6 and 2omics data7,8 (i.e. ‘big data’)
for risk prediction, requires researchers and clinicians to rethink
risk modelling: for analysts, new statistical techniques may be
needed; for clinicians, clinical decision tools may evolve beyond sim-
ple scoring algorithms to ones that require computational assistance
through computer applications. The European Heart Journal instructs
authors to develop their statistical analysis plan to ‘be as simple as
possible, but as sophisticated as needed’. But when should more so-
phisticated techniques, particularly those for model development
and validation, be considered as essential? This question is particu-
larly salient when developing prediction or risk models. Recently,
Steyerberg and Vergouwe9 laid out seven steps for developing pre-
diction models. A natural follow-up is: what is the best prediction
model to use? As others have noted that10 there is no best approach
for all data problems. The various techniques differ in their ap-
proaches as they aim to solve different data complexities. Therefore,
the ‘best’ algorithm will depend on the specific data problem at
hand.

Others have reviewed machine-learning methods geared towards
technical,11 practitioner,12 and medical audiences,13 to name just a
few. Although we recapitulate some of that discussion, the goal of
this review is to discuss different complexities that arise in the ana-
lysis of clinical cardiology data and illustrate different machine-
learning approaches that can address these issues. We consider
machine-learning algorithms to be any approach that performs an
automated search, either stochastic or deterministic, for the optimal
model. While these tools are often presented as ‘black-box’ algo-
rithms that simply take inputs that return an answer, this review
will peer under the hood to better understand how they operate.
Doing so allows one to understand when certain machine-learning
models may be considered, what data challenges each algorithm is
trying to resolve, and therefore foretell when a certain approach

will be best for one’s data problem. We first describe an illustrative
data set we will use through the review. We next discuss different
challenges that arise in the analysis of clinical data and then present
various machine-learning methods and how they address these chal-
lenges. We conclude with some additional considerations for using
machine-learning methods including some limitations. In the appen-
dices, we provide a glossary of typical terms used as well as addition-
al details on many of the discussed methods.

Illustrative data
We use a sample dataset derived from the EHR system of Duke Uni-
versity Medical Center to illustrate some of the concepts described.
Using data from 2007 to 2013, we identified patients that were admit-
ted to the hospital through the emergency department with a primary
diagnosis of acute myocardial infarction (AMI). We abstracted infor-
mation on laboratory tests that were performed in the first 24 h of
admission, and included all labs that were present in at least 80% of
patients and deemed not redundant (i.e. haematocrit and haemoglo-
bin). Since multiple tests were often performed, we calculated the me-
dian, min, and max values. Finally, we abstracted information on
patient demographics (age, gender, and race) and comorbidities
(combined via the Charlson Comorbidity Index14).

Overall, we identified 1944 patients who were admitted with a
primary diagnosis of AMI. Of these, 101 (5.2%) died during their
hospitalization. Among those that died, the median time to death
was 6.5 days (IQR: 2.6, 13.5). We identified 13 laboratory tests
that were present in at least 80% of the sample (calcium, carbon di-
oxide, creatinine, creatinine kinase—mb, haemoglobin, glucose,
mean corpuscular volume, mean corpuscular haemoglobin concen-
tration, platelet count, potassium, red blood cell distribution width,
sodium, white blood cell count). After calculating median, min, and
max values, there were 43 predictor variables. We applied various
machine-learning algorithms to compare predictive models for in
hospital mortality. We used single mean imputation for those
without a lab result and as described below, used 10-fold cross-
validation to assess predictive performance. Analyses were per-
formed in R 3.1.2.15

Figure 1 One perspective on the intersection of statistical modelling (blue) and machine-learning (green) goals. The figure highlights that while
the processes differ the overarching goals are often the same.
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Analytic challenges
We first consider three challenges that are not well handled by typ-
ical regression modelling strategies. These challenges may degrade
traditional regression model performance, which may result in low-
er real-world value since they may not account for important rela-
tionships in the data.

Non-linearities
The most basic assumption of regression models is that the relation-
ship between a risk factor and outcome is linear, i.e. the effect in-
creases uniformly throughout the range of the predictor. While
this may be plausible, or at least a good approximation, for some
risk factors, there are many examples in cardiovascular research
that have non-linear relationships. Consider age: the risk of death
rises sharply with increasing age. Thus, one’s change in risk of death
moving from age 40 to 50 years is much lower than increasing age
from 70 to 80 years. Other non-linear risk factors include the ‘J’ like
relationship of BMI with most diseases—with obese and under-
weight people being at increased risk;16 and the many laboratory va-
lues that indicate increased risk both above and below the normal
ranges (i.e. hypoglycaemia and hyperglycaemia both increasing
risk). Even though a regression model may approximate the true
non-linear relationship well and provide a more parsimonious inter-
pretation, when developing risk models, we want to ensure that we
capture these non-linearities as much as possible. Figure 2 illustrates
the non-linear relationship between two of the collected laboratory
measures, calcium and haemoglobin, and post-AMI mortality. Cal-
cium and haemoglobin both show decreasing risk as values rise,
then level off at moderate and higher values.

Heterogeneity of effects (interactions)
Related to non-linearities is heterogeneity of effects. Heterogeneity
of effects, known as interactions, occurs when a variable’s relation-
ship with the outcome depends on the level of some other variable.
A typical example of an interaction are gene–environment interac-
tions. For example, researchers have identified that air pollution
may have a differential effect on cardiovascular disease risk based
on one’s genetics.17 Similarly, interaction effects have been detected
with regard to anthropomorphic characteristics and mortality18 and
racial differences in the effects of HDL-C.19 As with non-linearities,
not properly accounting for these interaction effects may degrade
the quality of a risk model.

Many predictor variables
A hallmark of large datasets like EHRs is the large amount of poten-
tial predictor variables. When working with many predictor vari-
ables it is often challenging to know which and how many should
be used in a risk model. An oft referred to rule of thumb is to
have at least 10 events-per-predictor or degree of freedom
used,20 although some have suggested a 20 events-per-predictor
rule for prediction studies.21 However, with EHRs, it is common
to have many potential, often correlated, predictor variables—
perhaps even more predictors than events. This particularly be-
comes a problem when developing risk models for rare events.22,23

For instance, in our data example, we had 43 predictor variables and
only 101 events. Had we included information on vital signs, service

utilization history, medications, and other comorbidities, we easily
could have had .100 potential predictor variables. The presence
of many predictors, relative to the number of events, creates a prob-
lem because estimated effects can be unstable with high estimated
variability because when one variable is ‘held constant’, there is little
remaining variability in the other variables. In these settings, alterna-
tive approaches are required. However, even machine-learning
methods aimed at handling large numbers of predictors may be-
come unstable.24

Machine-learning methods

How machine-learning models operate:
bias-variance trade-off
Machine-learning methods consist of computational algorithms to
relate all or some of a set of predictor variables to an outcome.
To estimate the model, they search, either stochastically (randomly)
or deterministically, for the best fit. This searching process differs
across the different algorithms. However, through this search,
each algorithm attempts to balance two competing interests: bias
and variance. In the machine-learning context, bias is the extent to
which the fitted predictions correspond to the true values—i.e.
how accurately does the model predict the ‘true’ risk of death in
the population? Variance is the sensitivity of the predictions to per-
turbations in the input data, i.e. how does sampling variability impact
the predictions? Even though it is not possible to separately quantify
a model’s bias and variance, these two values are summarized to-
gether by loss functions (see below). While our aim is to reduce
both bias and variance, these two goals are often in conflict: de-
creased bias may increase variance and vice versa. For example,
we may create an algorithm that correctly predicts all deaths in
our dataset. However, this model may be configured in such a
way that it is tied too specifically to the individual intricacies of
our dataset, essentially modelling ‘statistical noise.’ The model
would then perform poorly when applied in a validation dataset
(i.e. have high variance). This is also referred to as an ‘overfit’ model.
Different approaches are used to balance bias and variance, but in
general the parameters set to control this are called tuning
parameters.

Types of machine-learning methods
Many machine-learning methods can be grouped into different fam-
ilies based on their underlying structure. The two largest families are
those that amend the traditional regression model and tree-based
methods.

Amendments to regression models
A large class of machine-learning methods are those that directly
manipulate the traditional regression model in order to improve
upon it. These approaches can often be applied to most any regres-
sion method, allowing for broad appeal. The most common amend-
ment to regression is stepwise (forwards and backwards) selection.
These procedures iteratively search for the best subset of predic-
tors to use and then fit a basic regression model. They are particu-
larly useful when one has a lot of potential predictors and can also
be used to search for interactions. Since the final fit is based off of a
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regression model, they can still be somewhat limited and are prone
to overfitting.25

An extension of selection methods are regularized methods which
include the common ridge regression26 and LASSO.27 Instead of
choosing the optimal subset of variables, one regresses an outcome
(e.g. mortality) onto all of the predictors (e.g. laboratory values). To
handle many predictor variables, these methods shrink the regres-
sion coefficients towards 0. This shrinkage is achieved by placing a
penalty on the summation of the estimated coefficients. Although
this shrinkage results in biased regression estimates (i.e. the esti-
mated odds ratio is not reflective of the true population odds ratio),

and cannot be used for inferences on association, it results in a more
stable model that produces a better predictor in particular when ap-
plied to external datasets. Regularized methods differ in how the
perform this shrinkage: ridge regression results in a relatively equal
shrinkage of all regression coefficients; LASSO regression results in
a full shrinkage of a subset of variables. This full shrinkage effectively
operates as a form of variable selection. The final set of coefficients
is determined by choosing the optimal penalty.

Another approach to handling multiply correlated variables is to
transform the variables into derived inputs. Algorithms such as prin-
cipal components regression (PCR) and partial least squares

Figure 2 Observed non-linearities in the predicted probabilities of death for calcium (A) and haemoglobin (B) on the logistic (i.e. linear) and
probability (C/D) scales. Both show a sharp decreasing relationship with death at lower values, which levels off at more moderate values. Models
were estimated using cubic splines and were adjusted for age, sex, and race. 95% confidence bands are shown.
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(PLS),11 transform correlated predictor variables into a set of un-
correlated variables to be used in the model. This allows one to
fit a regression model using fewer derived inputs while still capturing
the variability of the original predictors.

Selection, regularized, and derived methods are useful when one has
many variables and/or highly correlated variables. A different ap-
proach to amending the regression model when one has non-linear
data is generalized additive models (GAMs).28 Generalized additive
models start with the basic regression framework (i.e. logistic, linear,
etc.), but instead of forcing predictors to have a linear relationship
with the outcome, they are allowed to be non-linear. To achieve
this non-linearity, GAMs transform the predictor variables via
splines. Splines allow for a smooth, flexible, non-linear representa-
tion of a continuous variable. The algorithm searches for the optimal
degree of flexibility for each predictor. While GAMs are not very
efficient with many predictors, they have been combined with reg-
ularized methods such as LASSO to perform predictor selection.29

It is also worth noting that these splines are also applicable to regular
regression methods and are useful to graphically explore relation-
ships of predictor variables and the outcome.

Classification trees
Another common class of machine-learning approaches for predic-
tion includes the tree-based algorithms. Like regression-based
methods, there are many modifications of tree-based models. The
most common approach in clinical research is to use classification
and regression trees (CART).30 Classification and regression trees
was developed with clinical application in mind, with one of the mo-
tivating examples triaging a patient in the emergency department
with a suspected myocardial infarction. The idea was to mimic the
way a doctor may approach a patient with a series of questions guid-
ing the clinician, with subsequent questions based on the answer to
the prior. This algorithm is typically able to handle all three chal-
lenges of non-linearities, heterogeneous effects, and many
predictors.

Classification and regression trees searches among the available
predictor variables to find the variable which best separates the out-
come into two groups with the most disparate probabilities of
event. Since this split is binary, it is able to capture non-linearities
in the data, as multiple splits on the same predictor can occur within
one tree. Within each group, the algorithm then re-searches the re-
maining predictors to find the next best split, which may (and often
does) vary from one group to the next. This continues until all of the
groups (a.k.a. ‘nodes’) are homogeneous. To create a more stable
tree, the algorithm then ‘prunes the tree’ (reducing the number of
nodes/decision points) to reduce the complexity or over-
specification of the model. This separate searching allows for the de-
tection of interactions. For example, if the first split is based on sex,
separating males and females into different sides of the tree, than any
subsequent split among males that does not also occur among fe-
males, is an interaction with gender. Finally, since not all predictors
will find their way into the tree, CART can handle the situation of
more predictors than observations.

Figure 3A shows the CART tree for predicting mortality among
patients with AMI from our dataset. The first split is based on min-
imum CO2 with those having a value .16 being at increased risk
(4.1% probability of mortality vs. 30%). The fact that creatinine is

only on the left-hand side of the tree suggests a potential interaction
between CO2 and creatinine. We explore this in Figure 3B. We fit a
logistic regression model, discretizing minimum CO2 at 16 and
keeping maximum creatinine continuous. For those with CO2

.16, higher creatinine levels increase the probability of mortality.
Conversely, for those with CO2 ,16 higher creatinine is not asso-
ciated with mortality or nominally protective. This lack of effect is
reflected by the absence of creatinine on the right-hand side of
the tree in Figure 3A. Finally, while the P-value for the interaction
is borderline significant (P , 0.075), it is important to note that
this is not proper inference since we used the fit from CART to
choose our variables and split points.

One disadvantage of trees is that they tend to exhibit high vari-
ance, limiting their utility as stand-alone prediction models.31 How-
ever, it is possible to improve the overall predictions by aggregating
the results from multiple trees—referred to as ensemble methods. A
common ensemble method with trees is the Random Forests algo-
rithm,32 which uses the bagging procedure to combine multiple
trees. Another ensemble approach, gradient boosting machines,33

use the boosting procedure to combine stumps of trees. These en-
semble methods can be loosely conceptualized as forming a robust
overall prediction by aggregating the predictions of many simpler
predictive models. This is similar to the process of deriving a clinical
diagnosis for a patient by utilizing consultations from many specia-
lists, each which would that look at the patient in a slightly different
way.

Other approaches
There are many other machine-learning algorithms that do not fit
into the above groupings. Two common ones are Nearest Neigh-
bours34 and Neural Networks.35 In Nearest Neighbours, one clus-
ter observations with similar predictor variables and predicts an
outcome based on that cluster. In the medical context, these can
be thought of as predicting a patient’s outcome based on previous
patients with similar symptoms. While Nearest Neighbours can
enforce an intuitive structure to the data, Neural Networks are
the canonical ‘black box’ algorithm. They apply a non-linear trans-
formation to the predictor variables and recombine them to derive
a prediction. The overall transformation can have multiple layers to
achieve what is known as deep learning. Due to these non-linear
transformations, one is able to model many non-linear and hetero-
geneous effects; however, describing this relationship for interpret-
ative purposes can be challenging. Many image recognition
algorithms utilize deep learning models to classify image based on
data patterns observed in the pixels. Although neural networks
and deep learning have gained limited traction in risk prediction,
they have seen use in image processing.

Applying machine-learning models
Figure 4 presents a flow chart for applying machine-learning algo-
rithms. Below we outline some of these steps.

Choosing tuning parameters
As stated above, all machine-learning algorithms require user de-
fined inputs to achieve a balance between accuracy and generaliz-
ability (bias and variability), referred to as tuning parameters. These
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Figure 3 Classification and regression trees (A) for predicting acute myocardial infarction. The first split is on minimum CO2. Splits on different
sides of the tree (creatinine on left, sodium on right) indicate potential interactions. Interaction plot (B) between CO2 and creatinine highlights the
differential relationship.
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tuning parameters impact the way the algorithm searches for the
optimal solution. Through controlling this search, the tuning para-
meters impact the overall complexity of the final model and the final
bias–variance trade-off. For many, the choice of tuning parameters
is the most daunting aspect of using a machine-learning algorithm.
Fortunately, in our experience, many of these tuning parameters
are robust to different settings and many implementations of
machine-learning algorithms have default settings. Therefore, one
does not need to be concerned with getting the ‘best’ setting rather
one that is ‘good enough’. That said, it is important to try different
settings to see which works best in a specific data problem. While an
in-depth discussion of tuning parameters is beyond the scope of this
review, it is usually possible to develop an intuition as to how differ-
ent setting will impact the model’s bias and variance. In the appendix,
we detail some of the tuning parameters for the different algorithms.

Need for validation
Implicit in the search for the optimal tuning parameters is the need
to check or validate the model. This is a key component of the TRI-
POD statement for reporting prognostic models.36,37 In the trad-
itional regression model framework, internal validation is not
necessary because one (ideally) posits an analytic model before fit-
ting it to the data. For instance, the analyst posits that risk of CHD is

a function of age, sex, cholesterol, smoking, and blood pressure and
the regression model calculates optimal prediction weights for the
predictor variables. It does not select the model. Conversely,
machine-learning methods involve a ‘search’ for the optimal model.
The typical approach is to try a range of settings and use the one
with the best performance. However, done naively, this will gener-
ally lead to choosing the most complex model resulting in
‘overfitting’.

To avoid over-fitting and provide a means to validate the model,
we typically divide the data into training, validation, and testing sets.
We fit our model(s) with various tuning parameters using the train-
ing data, testing their performance with the validation data. Once we
have chosen the ‘best’ model we use the testing data to calculate clin-
ical performance metrics (e.g. calibration, net-benefit,38 etc.) and
compare with any other existing approaches. It is typical to combine
training and validation together through techniques such as cross-
validation and bootstrapping. These approaches involve repeatedly
sub-setting the data and fitting the model on one set and testing on
the hold out set. These methods are more robust than the split sam-
ple validation21 (i.e. randomly split a dataset into a training and val-
idation set) since the procedure is repeated many times. An
important consideration is the need to test the entire modelling
processe.g. variable selection, any imputation—and not just a final
model’s form.

Choosing the right model: assessing
model performance with loss functions
With the wide range of available machine-learning methods and set-
tings, an important step is deciding which approach is best. Even
though secondary considerations such as computational time and
interpretability may be factors, the most important consideration
is model performance. As Steyerberg et al.13 discussed in their re-
view, there are multiple metrics to assess the clinical performance
of a prediction model. Typically, we apply these metrics during
the final testing to assess aspects of model performance. However,
for the purposes of choosing the best machine-learning model, we
usually focus on metrics that produce an overall assessment of fit,
known as loss functions. For binary outcomes, common loss functions
include squared-error loss, logistic loss, and miss-classification
rate.39 Loss functions aggregate the difference between the ob-
served value and the predicted value and, in doing so, summarize
both the model’s variance and bias. Typically, we choose the model
with the lowest loss (best fit) without regard to the complexity of
the model, though there are approaches to assess whether one ap-
proach is ‘significantly better’ than another.40 Table 1 shows model
fits for our example based on cross-validation. Since different me-
trics balance bias and variance differently, they produce different re-
sults. While not a standard loss function, we present the familiar
c-statistic (area under ROC) as a comparison. Overall, among the
best performing algorithms, there is minimal difference in perform-
ance and one may choose the approach that meets other subjective
criterion (e.g. ease of computation).

Variable importance
Unlike regression models, machine-learning models do not estimate
an easily interpretable quantity that relates the predictor variables

Figure 4 High-level overview of process of applying machine-
learning routines to data.
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to the outcome. Since the relationship that machine-learning mod-
els fit is more complex than regression models, it is generally not
straightforward to summarize the relationship into any single par-
ameter. However, many machine-learning methods attempt to sum-
marize the impact of individual variables into metrics referred to as
variable importance. The variable importance metric is specific to
the individual algorithm and its value does not generally have a causal
or even statistical interpretation. Instead, the measure can often be
thought of as a rank ordering of which variables are most ‘important’
to the fitted model.41 Since each machine-learning algorithm fits a dif-
ferent type of model, one would expect that different methods would
come up with different rank orderings. Table 2 shows the variable im-
portance rankings for different algorithms for predicting mortality
among AMI patients. As one can see different approaches produce
similar but different rankings. Calcium (Ca2+) and CO2 both seem
to be consistently important predictors, while potassium (K+) and
white blood cell count have importance to different models. Although
variable importance rankings cannot replace targeted hypothesis tests
of specified parameters, they can be hypothesis generating and may
help detect which factors are worthy of further study.42

Missing data
A common challenge in clinical research is the presence of missing
data. Missing data within machine-learning methods present many of
the same challenges as in typical regression approaches. In these set-
tings, the focus is usually on the missing data mechanism, specifically
whether it is ignorable (the missingness is not related to the unob-
served values, i.e. missing at random) or non-ignorable (the missing-
ness is related to the unobserved values).43 Non-ignorable missing
data, for example labs not taken because a patient was unconscious,
are always challenging to deal with and depending on their extant
can undermine one’s prediction model. However, if missingness is
ignorable, for example a lab not performed due to oversight, it
can address be in the same ways as for regression-based approaches,
typically imputation. One simplification is that since we often do not
care about the variability of the predictions, one can usually use a
single imputation strategy to impute the missing value.44 Moreover,
some machine-learning algorithms—specifically tree-based ones—
are able to handle missing values through the modelling process al-
leviating the need for imputation. The important consideration is
that when using techniques such as cross-validation, the imputation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Model fits for different algorithms

c-Statistic Squared-error loss Logistic loss Misclassification ratea

Regression based

Logistic regression 0.702 0.049 0.995 0.23

Forward selection 0.761 0.046 0.995 0.24

LASSO 0.750 0.046 0.995 0.26

Ridge 0.753 0.047 0.996 0.27

PCR 0.546 0.049 0.998 0.41

Generalized additive model 0.708 0.050 0.994 0.22

Tree based

CART 0.623 0.053 0.997 0.12

Random forests 0.741 0.048 0.995 0.32

Boosting 0.763 0.047 0.996 0.20

Other

Nearest Neighbours 0.583 0.050 0.998 0.22

Neural Networks 0.598 0.065 0.996 0.44

The bold value represents the best algorithm for that performance metric.
aMisclassification rate is discretized at the mean event rate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Variable importance rankings

Variable rank t-Test GLM LASSO GAM Random forests Boosting

1 CO2 Min Ca2+ Max Ca2+ Median Ca2+ Min CO2 Min CO2 Min

2 CO2 Median K+ Min Ca2+ Max Ca2+ Max CO2 Median WBC Max

3 WBC Max Hgb Median Hgb Median CO2 Median WBC Max CO2 Median

4 K+ Max Ca2+ Median K+ Median Ca2+ Median Glucose Max Ca2+ Median

5 CO2 Max Hgb Min K+ Min RDW Median WBC Median K+ Max
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process needs to be part of the cross-validation. In our data
example, we first split the sample into cross-validation folds, and
used the data from each training set to impute into the test set.

Other outcomes: time to event,
continuous, and multi-category
While the discussion and data example have focused on binary out-
comes, most machine-learning procedures are applicable to many
outcome types, including time-to-event outcomes. Such ap-
proaches are particularly useful when there is loss to follow-up
and censoring, since these are naturally handled. Moreover, such
models allow one to derive risk predictions over multiple time
points. However, some results suggest that when one cares about
risk at a specific time point (e.g. 30-day readmission) binary models
may perform better, likely due to non-proportionality in predictor
effects.45 This is particularly the case when full follow-up is available
for all individuals. Similarly, these methods are easily extended to
continuous outcomes and multi-category outcomes.46 Overall,
the above considerations stay the same, though usually the choice
of loss functions will change for different outcomes.39,47

Software implementation
The present analysis was performed in R; however, all of the dis-
cussed algorithms are also available in major statistical packages
such as SAS and STATA. Additionally, initiatives like WEKA and
scientific languages like Python provide advanced quantitative algo-
rithms that excel at model estimation. In the appendix, we provide a
list of functions in various software. Implementations of a specific
algorithm should involve the choice of the same tuning parameter
and provide similar (if not identical) results; however, different algo-
rithms may be coded differently. Moreover, when using stochastic
algorithms (e.g. random forests), it is important to use a random
number generator ‘seed’ to ensure the results are reproducible.
Finally, it is important to note that many of the discussed methods
have extensions and derivatives which may provide better perform-
ance for a given data problem.

Where machine-learning methods fail
Machine-learning methods are useful in many contexts; however,
there are some scenarios where such methods will perform worse.
For instance, if the true underlying model is a linear, homogenous
relationship (i.e. the regression assumptions are met), then
regression-based methods will always be more efficient.48 More-
over, extra considerations are needed when observations are
correlated.49 For example, if one has longitudinal data, most
machine-learning methods will not properly utilize the temporal
nature of the data. As suggested above, another area where
machine-learning methods are limited is if one cares about causality.
A risk predictor may be incorporated into a model not because it
causes the outcome, but because it is simply a useful maker or dir-
ectly in the casual pathway. This is not a problem for the purposes of
prognostication but does limit causal interpretation. Additionally,
even though a machine-learning method may show better perform-
ance, presentation of the results may be more complicated. For ex-
ample, many risk models have been converted into hand calculable
scores (e.g. the Framingham risk score). This conversion is usually

obtained by rounding regression coefficients into a points-based
score for each predictor. However, such a conversion is not obtain-
able with many machine-learning methods (e.g. any tree-based
approach). Finally, machine-learning methods differ in the amount
of computational time, which usually depends on data size. Some
approaches like LASSO and CART will often be as fast as regression
models while ensemble approaches will take longer. For our mod-
erately sized dataset, the longest to fit was boosting which took
�6-min with cross-validation.

Conclusions
As we enter the age of precision medicine, risk assessment tools are
becoming more salient. When one’s goal is to generate a model that
most accurately predicts an outcome, machine-learning algorithms
can be advantageous over traditional regression methods. Such
methods can be employed to help confront issues of multiple and
correlated predictors, non-linear relationships, and interactions
between predictors and endpoints, in large datasets. However,
when using machine-learning methods, extra care is needed in the
form of model validation. Finally, since each method differs in its util-
ity in addressing individual issues, it is often prudent to compare
multiple approaches. This question of how much flexibility to allow
for when developing as risk model is what ultimately becomes the
art of modelling.
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