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A B S T R A C T

White-matter lesion count and volume estimation are key to the diagnosis and monitoring of multiple sclerosis
(MS). Automated MS lesion segmentation methods that have been proposed in the past 20 years reach their
limits when applied to patients in early disease stages characterized by low lesion load and small lesions. We
propose an algorithm to automatically assess MS lesion load (number and volume) while taking into account the
mixing of healthy and lesional tissue in the image voxels due to partial volume effects. The proposed method
works on 3D MPRAGE and 3D FLAIR images as obtained from current routine MS clinical protocols. The method
was evaluated and compared with manual segmentation on a cohort of 39 early-stage MS patients with low
disability, and showed higher Dice similarity coefficients (median DSC=0.55) and higher detection rate
(median DR=61%) than two widely used methods (median DSC=0.50, median DR < 45%) for automated
MS lesion segmentation. We argue that this is due to the higher performance in segmentation of small lesions,
which are inherently prone to partial volume effects.

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the
central nervous system, characterized by inflammation, demyelination,
axonal loss, and gliosis (Noseworthy et al., 2000). Current MS diag-
nostic and follow-up criteria are exploiting magnetic resonance (MR)
imaging metrics of lesion load, i.e. lesion count and location, as well as
activity, i.e. gadolinium enhancement due to blood-brain barrier dis-
ruption (Rovira et al., 2015). The presence and spatial pattern of focal
lesions in MR images (“dissemination in space”) and the appearance of
new lesions (“dissemination in time”) are key components of current
diagnosis criteria (Filippi et al., 2016; Polman et al., 2011). The iden-
tification of focal pathology and of new lesions as well as their size

changes in follow-up scans are important to perform an early diagnosis,
quantifying ongoing disease activity and monitor treatment effects
(Filippi et al., 2016). Consequently, one current research focus has been
the development of automated MS lesion segmentation (Garcia-Lorenzo
et al., 2013; Lladó, Ganiler, et al., 2012; Lladó, Oliver, et al., 2012).

Automated segmentation approaches are either unsupervised or
supervised. Unsupervised approaches typically apply clustering algo-
rithms that make use of both image intensity from one or several MR
contrasts (T1-weighted, T2-weighted, proton-density-weighted, and/or
2D fluid-attenuated inversion recovery, FLAIR) and spatial information
derived from probabilistic atlases of healthy tissues and/or topological
constraints (Schmidt et al., 2012; Shiee et al., 2008; Souplet et al., 2008;
Tomas-Fernandez and Warfield, 2015; Van Leemput et al., 2001).
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Supervised approaches, on the other hand, rely on manually annotated
image sets used for training (Anbeek et al., 2004; Brosch et al., 2016;
Fartaria, Bonnier, et al., 2016; Morra et al., 2008; Sweeney et al., 2014).

We note that existing automated MS lesion segmentation methods
were mostly evaluated on patients in advanced MS stages, who have a
high disability, high numbers of lesions, and large lesion volumes
(Datta and Narayana, 2013; Sajja et al., 2006; Steenwijk et al., 2013;
Sweeney et al., 2013). They, however, showed substantially lower
performance when applied to subjects with lower disease burden, i.e.
lower lesion load and lesions of smaller size and volume (Anbeek et al.,
2004; Cabezas et al., 2014; Fartaria, Bonnier, et al., 2016; Steenwijk
et al., 2013; Sweeney et al., 2013). Automated MS lesion segmentation
seems to be barely used in clinical practice, where detecting new le-
sions, particularly of small size, is of key importance for early diagnosis
and follow-up of MS patients (Garcia-Lorenzo et al., 2013).

We showed in previous work that small lesions are strongly affected
by partial volume (PV) effects, rendering their detection, segmentation
and volume estimation challenging (Fartaria, O'Brien, et al., 2017).
Taking into account PV could consequently improve the detection of
small lesions and the overall lesion volume estimation. This idea was
investigated in the mid-90s by (Johnston et al., 1994), who proposed a
semi-automated method that takes partial volumes into account using
neighborhood and histogram analysis. The same group later added pre-
and post-processing steps of image enhancement and mathematical
morphology to improve the discrimination between healthy WM and
lesions (Johnston et al., 1996). Recently, (Khademi and Moody, 2015)
performed image classification using mixed tissue labels as in (Cuadra
et al., 2005; Shattuck et al., 2001) and estimated the PV fraction in
mixed classes using spatial image gradient analysis. Variants of this
approach using hierarchical mixture models are employed in
(Galimzianova et al., 2016; Sudre et al., 2015).

Here, we propose a novel method for MS lesion segmentation that
relies on a Bayesian PV estimation algorithm inspired by the “mixel”
model originally proposed by (Choi et al., 1991), which leads to an ill-
posed estimation problem for which (Roche and Forbes, 2014) pro-
posed regularizing priors. We further included spatial constraints to
estimate realistic concentration maps of healthy tissues (WM, GM, CSF),
and pathological brain tissue. These concentration maps are used to
directly compute lesion volumes rather than applying a correction of PV
effects in initial hard tissue classification as in previous methods
(Johnston et al., 1996; Khademi and Moody, 2015; Wu et al., 2006).
Our approach does not rely on edge detection and therefore has the
potential to assess PV effects in small lesions without clearly defined
boundaries.

2. Method

2.1. Partial volume estimation

We consider a set of nc images of a given subject acquired from
different MR image sequences and previously submitted to various pre-
processing steps including alignment, bias field correction and skull
stripping. Consistent with (Choi et al., 1991; Pham and Prince, 2000;
Roche and Forbes, 2014; Van Leemput et al., 2003), we assume that the
vector of image intensities yi at a voxel i in the total intra-cranial mask
relates to an unknown vector of tissue concentrations qi, with qi, t≥ 0
(the concentration of tissue t at voxel i is ≥0) and ∑ =q 1t

n
i t,

t (the sum
of the nt tissue concentrations at a voxel i is equal to one), through the
statistical relation:

= +y Mq ε ε N V, ~ (0, )i i i i (1)

whereM is an nc× nt matrix representing the mean tissue intensities for
each channel (nt is the number of distinct tissues and Mct represents the
mean intensity of tissue t in channel c), and N represents a multi-vari-
able Normal distribution with zero mean and covariance matrix
V= diag (σ12,…,σnc

2). We assumed that, in each MR sequence, image

intensities are corrupted with independent stationary Gaussian white
noise, as a first-order approximation to the non-central chi noise dis-
tribution that takes into account the coil combination in MRI (Larsson
et al., 2003). In this work, we consider nt=4 tissues: CSF, GM, WM and
lesions, as well as nc=2 contrasts: magnetization-prepared rapid gra-
dient echo (MPRAGE) and 3D FLAIR.

It was recognized 25 years ago (Choi et al., 1991) that recovering
the voxel-wise tissue concentrations qi from the above multichannel
image model leads to an ill-posed inverse problem if nt > nc+1, as it
is the case in our application. Recently, (Roche and Forbes, 2014)
proposed a prior concentration model to regularize the problem when
formulated via Bayesian maximum a posteriori (MAP) estimation:
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where nv is the total number of intra-cranial voxels, A is a symmetric
penalty matrix with zero diagonal and positive off-diagonal elements, β
is a positive constant, and Ni is the neighborhood of voxel i according to
the 6-topology (the 6 adjacent voxels connectedness in 3-dimensions).
Both the elements of A and β are hyperparameters to be tuned in a
learning phase. While β controls the amount of spatial smoothness of
tissue concentration maps, the purpose of A is to disentangle intensity
fluctuations due to noise from PV effects. Each non-diagonal element
acts as a penalty on the mixing of distinct tissues in a voxel, hence
limiting spurious concentration variations when a single tissue is pre-
sent. For instance, the larger A12, the less likely voxels contain both CSF
and GM.

We propose to generalize the prior model of (Roche and Forbes,
2014) by allowing voxel-dependent penalty matrices Ai including non-
zero diagonal elements in order to penalize tissues locally. This avoids
confusing GM and lesions, which have similar intensity signatures in
both MPRAGE and 3D FLAIR. Specifically, let πGM and πWM be a pro-
bablistic atlas-based prior probability map for the GM and WM, re-
spectively. We set the diagonal elements of Ai corresponding to CSF,
GM, WM and lesions, via:
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where the parameters a1 to a8 are pre-tuned with the smoothness
parameter β, which are assumed voxel-independent in our particular
implementation.

Following (Roche and Forbes, 2014), we estimate the tissue con-
centrations by MAP, yielding a quadratic programming problem:
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where each qi is searched in the multidimensional simplex. The solution
is evaluated using an iterative scheme that loops over the intra-cranial
voxels, and solves for the associated concentration vector qi with all
other concentration vectors held fixed using an active set algorithm
(Nocedal and Wright, 2006). This method proves very robust in prac-
tice, and typically converges in< 25 iterations.

2.2. Imaging parameters

The noise variance matrix V is initially assumed to be zero, and is
iteratively re-estimated by MAP concurrently with the tissue con-
centrations (see Section 2.1), yielding the update rule:

∑= ⎡
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which is performed after a complete tissue concentration re-estimation
loop over the intracranial voxels.

Conversely, the matrix M of mean tissue intensities is held fixed
during the estimation of tissue concentrations, having been determined
beforehand by histogram matching (Nyul et al., 2000) with a reference
patient. Histogram matching produces a piecewise linear intensity
transformation f from the reference patient image to the input image. M
is estimated as M= f(Mref), where Mref is the mean intensity matrix of
the reference patient, which in this work was determined from manu-
ally drawn regions of interest containing no PV effects for CSF, GM,
WM, and lesions.

2.3. Hyperparameter tuning

The same reference patient used to set the tissue mean intensities M
(see Section 2.2) was used to tune the hyperparameters A and β so as to
minimize the Hellinger distance H, between the manual lesion seg-
mentation binary mask M, and the lesion concentration map output by
the PV estimation algorithm QLes:

∑= −H Q M q( , ) 1
2

· ( m )Les
i

Les i i,
2

(4)

Two elements of A were fixed to very large values in order to pro-
scribe mixing of CSF with WM and CSF with lesions
(a2= a3= 1×1010). The other parameters were optimized using
Powell's method, yielding a1= 11.25, a4= 14.33, a5= 0.47,
a6= 12.21, a7= 1.33, a8= 16.93, and β=0.54.

3. Experimental set

3.1. Data

The study was approved by the Ethics Committee of our institution
and all subjects gave written informed consent prior to participation.

Thirty-nine patients (14 males, 25 females, median age 34 years, age
range: 20–60 years) with early relapsing-remitting MS, (disease dura-
tion < 5 years from diagnosis) and Expanded Disability Status Scale
(EDSS) score between 1 and 2 (median EDSS=1.5), were scanned on a
3 T MRI system (Magnetom Trio a Tim System, Siemens Healthcare
GmbH, Erlangen, Germany) using a 32-channel head coil. The MRI
protocol included: (i) high-resolution MPRAGE (TR/TI= 2300/900ms,
voxel size= 1×1×1.2mm3), and (ii) 3D FLAIR (TR/TE/TI= 5000/
394/1800ms, voxel size= 1×1×1.2mm3), (iii) magnetization-pre-
pared 2 rapid acquisition gradient echo (MP2RAGE, TR/TE/TI1/
TI2=5000/2.89/700/2500 ms, voxel size= 1×1×1.2mm3), all
acquired in the same session without patient repositioning. MS lesions
were identified and marked by one radiologist and one neurologist (6
and 11 years of experience, respectively) by consensus using FLAIR and
MP2RAGE images. A trained technician then delineated the lesion vo-
lumes in each image, which we considered to be the reference for lesion
load and volume (Bonnier et al., 2015; Kober et al., 2012).

3.2. Pre-processing

A patient with relatively high lesion load was chosen as a reference
to train the PV estimation algorithm (see Sections 2.2 and 2.3) and was
subsequently excluded from the ensuing statistical analysis. ELASTIX
(Klein et al., 2010) was used to confirm that the rigid transformation
relating FLAIR and MPRAGE was below 1 voxel according to the re-
sulted transformation parameters. All images were further skull-
stripped using an in-house method (Schmitter et al., 2014), and cor-
rected for intensity inhomogeneities using the N4 algorithm (Tustison
et al., 2010). Fuzzy in-house templates of prior WM and GM prob-
abilities were non-rigidly registered using ELASTIX onto each image
volume to produce the prior maps πGM and πWM (see Section 2.1). Such

priors were obtained using the DARTEL tool of SPM8 (Ashburner and
Friston, 2009), from a data set of 136 MR scans of healthy subjects
acquired at our institution.

3.3. Comparison with freely available software

We compared the results obtained using our method on the cohort
of early MS patients with two widely used and freely available WM
lesion segmentation methods. One method, the Lesion Segmentation
Tool (LST), is based on unsupervised outlier rejection and region
growing, and is distributed as an SPM toolbox (Schmidt et al., 2012).
The other method, LesionTOADS (LTOADS), implements an un-
supervised atlas-based fuzzy clustering and is distributed as a plug-in
for MIPAV (Shiee et al., 2010). Default parameters were used in both
methods, except for the LST where we set the initial threshold
(κ=0.05) based on the best Dice similarity coefficient (DSC) values
obtained in the cohort (Schmidt et al., 2012).

4. Validation and results

4.1. Lesion detection and segmentation

In this section, we evaluate lesion detection and segmentation by
the detection rate (DR), false positive rate (FPR), and Dice similarity
coefficient (DSC). These metrics rely on the overlap between the au-
tomated segmentation and the reference. Fig. 1 illustrates the lesion
maps obtained using the different considered methods.

Fig. 2 shows an example of a small and a large lesion, where the PV
effect becomes apparent. The small lesion is substantially affected by
partial volume, having a maximum voxel concentration of 55% lesional
tissue (45% WM concentration for the same voxel) according to the PV-
method. In the large lesion, PV is evident on the lesion border, where
the voxel concentration of lesional tissue varies between 12% and 98%.
The lesion centre has 100% of concentration of lesional tissue, ac-
cording to the PV-method, indicating “pure” lesion signal.

Since our PV approach provides a concentration map of lesional
tissue, a threshold needs to be applied for comparison with the binary
masks provided by the other methods. Two lesion concentration map
thresholds were used to match the median FPR (across the entire da-
taset) of the PV-method with LST and LTOADS, respectively. The FPR
was obtained by dividing the number of lesions in the automated seg-
mentation that do not overlap with any lesion in the reference with the
number of overall lesions in the automated segmentation (Styner et al.,
2008). An optimal concentration map threshold was also derived from a
receiver operating characteristic (ROC) analysis based on the best
trade-off between DR and FPR.

Diagnostic criteria define a minimal diameter of 3mm for MS lesion
(Chris H. Polman et al., 2005). Recently, the meaningful of this dia-
meter size was proved for 3D sequences at 3T (Grahl et al., 2017). If we
approximate the lesion shape to a sphere, we end up to a minimum
lesion volume of ≈15 μL. However, applying this threshold remove
most of the lesions that are fully prone to PV effects. In this work we
presented the results using two different definitions of minimum lesion
volume: ≈3 μL and ≈15 μL. Our rational in applying a threshold of
≈3 μL was to validate the performance of the methods for small lesions
fully prone to PV effects, that might be relevant for early diagnosis and
follow-up.

We evaluated lesion detection (knowing that lesion number is the
main MRI biomarker for diagnosis in MS) through the DR, defined by
dividing the number of lesions in the automated segmentation that
overlap with a lesion in the reference, with the number of overall le-
sions in the reference (Styner et al., 2008). The lesion segmentation
agreement with the reference was evaluated using DSC:

= ×
× + +

TP
TP FP FN

DSC 2
2 (6)
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where TP: number of true positives; FP: number of false positives; FN:
number of false negatives; (“true” relates to marked voxels in the re-
ference). The Wilcoxon signed-rank tests were used to compare the DSC
results between methods.

To match the FPR of LST (median FPR=51%) and LTOADS
(median FPR=42%), thresholds of 32% and 38% were applied to the
lesion concentration maps, respectively. We found that the optimal
threshold for the generation of the binary lesion maps, according to the
ROC analysis was 40%. PV-method presented the better detection
performance for any lesion size category for all the applied thresholds
to the concentration maps (Fig. 3). For a threshold of 32%, PV-method
achieved better performance than LST in all lesion size categories
(3–14 μL: 30.1%, 13.8%; 15–20 μL: 60.5%, 22.6%; 21–50 μL: 76.5%,
50.8%; 51–100 μL: 94.7%, 86.8%. DR values for PV-method and LST,
respectively.), except for big lesions (lesion volume > 100 μL), where
both methods detected 98.5% of the lesions. Overall, PV-method
achieved a DR=60.7%, against the 43.4% obtained from LST. For a
threshold of 38%, PV-method achieved higher performance when
compared to LTOADS in all lesion size categories (3–14 μL: 22.8%,
12.9%; 15–20 μL: 56.3%, 17.9%; 21–50 μL: 72.7%, 45.3%; 51–100 μL:

93%, 73.2%;> 100 μL: 98.5%, 84.6%. DR values for PV-method and
LTOADS, respectively.). Overall, PV-method achieved a DR=56.2%,
against the 37.8% obtained from LTOADS. Similar behaviour was
found, when the optimal threshold of 40% was applied to the con-
centration maps, where PV-method reached a overall DR of 54.5%.
Although the DR is lower compared to the values obtained with other
thresholds, the PV-method still showed the best performance when
compared to LST and LTOADS. For a threshold of 32% and considering
a minimum lesion volume of ≈3.2 μL, PV-method achieved a median
DSC of 0.55 significantly superior (P < .001) to LST (median DSC of
0.50, Fig. 4A). The same behaviour was observed when a threshold of
38% was applied to the PV map, the method presented the same median
DSC of 0.55, which was significantly (P < .05) higher than LTOADS
(median DSC of 0.51, Fig. 4A). When the optimal threshold of 40% was
applied, PV-method achieved a median DSC of 0.53 significantly su-
perior (P < .001) to LST but non-significantly different from LTOADS
P= .06, Fig. 4A). Lastly, similar behaviour was found when the
minimum lesion volume was set to ≈15 μL. However, median DSC
values appeared to be higher in all the methods: 0.53 for PV-method
with a threshold of 40%; 0.59 for PV-method with a threshold of 32%;

Fig. 1. Axial, sagittal, and coronal views from three dif-
ferent patients showing the detection and segmentation
results obtained from different methods. From top to
bottom. 3D FLAIR slice, manual segmentation (reference),
proposed partial volume (PV) method, and two freely
available software: Lesion Segmentation Tool (LST), and
LesionTOADS (LTOADS).
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0.57 for PV-method with a threshold of 38%; 0.52 for LST; and 0.52 for
LTOADS.

4.2. Total lesion volume

The total lesion volume (TLV) per patient was estimated using each
method, and compared with the reference using the two definitions of
minimum lesion volume (≈3 μL and ≈15 μL, Fig. 5). The Wilcoxon
signed-rank test was used to compare the results between methods.
When the minimum lesion volume was set to ≈3 μL, the PV-method
showed the best agreement in terms of TLV compared to the other
methods (P < .001). Similar behaviour was found when the minimum
lesion volume was set to 15 μL.

Correlations between the reference and each method, for both de-
finitions of minimum lesion volume, were also studied using the

Spearman's rank correlation coefficient (ρS) and the coefficient of de-
termination (R-squared, R2). As shown in Fig. 6, the PV-method and
LST methods were found to be more highly correlated with the
manually determined TLVs than the LTOADS method. For a minimal
lesion volume of ≈3 μL, the overall Spearman's rank correlation coef-
ficient was ρS=0.94 for the proposed method, ρS=0.90 for LST, and
ρS=0.84 for LTOADS. Both LST and LTOADS presented a higher un-
derestimation of the TLVs for patients with high/moderate lesion loads,
as reflected by the coefficient of determination with respect to the
identity line: R2= 0.33 for LST and R2= 0.27 for LTOADS, against
R2= 0.76 for the proposed PV-method. Similar results were observed
when minimal lesion volume was set to ≈15 μL (see Fig. 6).

Fig. 2. Partial volume effect in a small (left side), and large (right side) lesion. The small lesion is fully affected by partial volume, having a maximum concentration of 55% of lesional
tissue in the path A to B, according to the proposed partial volume (PV) method. The big lesion is prone to partial volume effects in the border, detected as low lesion concentration by the
proposed PV-method. In this case, effects of partial volume in the transitions between healthy and lesional tissue are clearly seen. Intensity profiles of the path A to B, for FLAIR intensities,
and PV lesions maps where shown on the bottom. Smooth orange regions in the profile plots represent regions of partial volume (mix of lesional tissue and WM tissue).

Fig. 3. Detection rate for different ranges of lesion size
obtained using the proposed partial volume (PV) method
(using three different thresholds, THLD), Lesion
Segmentation Tool (LST), and LesionTOADS (LTOADS).
Numbers in parenthesis represent the number of lesions for
the respective lesion size range according to the reference.
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5. Discussion

We developed and validated a method to automatically detect and
segment MS lesions in patients at an early disease stage and with low
disability scores. Our method is based on a Bayesian PV estimation
using the “mixel” model (Choi et al., 1991; Roche and Forbes, 2014),
extended to lesion detection by including spatial constraints from atlas-
based probability maps of GM and WM. Our approach was developed
and optimized for images from the routine MS clinical protocol in our
institution (3D MPRAGE and 3D FLAIR). Other clinical images, such as
T2-weighted or proton density, may be also used in our multi-channel
approach, although the hyper parameters require to be tuned accord-
ingly. Most MS lesion segmentation methods reported in the literature
show low performance when applied to patient data exhibiting low
lesion load and small lesions (Anbeek et al., 2004; Cabezas et al., 2014;
Galimzianova et al., 2016; Sajja et al., 2006; Schmidt et al., 2012;
Steenwijk et al., 2013). However, accurate detection especially in the

early stages of MS can be crucial for initial diagnosis and subsequent
treatment monitoring (Filippi et al., 2016). Here, our goal was to im-
prove the detection of very small lesions that are partially or totally
affected by PV effects. Moreover, we aimed to better estimate lesion
volume through better delineation of lesion borders, which are prone to
PV effects.

Our results showed the feasibility of the proposed method to detect
and segment WM MS lesions, including lesions of small size, as well as
the importance of taking into account PV for lesion detection, lesion
segmentation, and lesion volume estimation. We considered two dif-
ferent definitions of minimal lesion size: 1) the one proposed by the MS
diagnostic criteria (Polman et al., 2005) of 3mm diameter and 2) a
smaller size of ≈3 μL in volume in order to include small lesions fully
prone to PV effects. PV-method showed the best results, when com-
pared to LST and LTOADS, for both definitions of minimum lesion size.
However, the improvements were more evident for a minimum lesion
volume of ≈3 μL, where detection of small lesions by the proposed

Fig. 4. Boxplots of Dice similarity coefficient between manual segmentation and automated lesion segmentation using the proposed partial volume (PV) method (using three different
thresholds, THLD), Lesion Segmentation Tool (LST), and LesionTOADS (LTOADS). Results were computed using two different definitions of minimum lesion volume: ≈3 μL (panel A) and
≈15 μL (panel B). The crosses in the plot represent outliers in the cohort.
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method significantly improved the total lesion volume estimation when
compared to LST, and LTOADS.

DSC is one of the most commonly-used metrics to measure the
segmentation quality (Lladó, Oliver, et al., 2012); however, this metric
is not appropriate to evaluate the segmentation of small objects
(Schmidt et al., 2012). Despite this, DSC is widely used (Brosch et al.,
2016; Galimzianova et al., 2016; Jain et al., 2015) even to this type of
data characterized with low lesion load. Interestingly, the median of
DSC for the PV-method was significantly higher than for the other two
studied methods.

Our study shows that modelling the PV effect improves volumetric
measurements as well as the detection of small lesions, which is of
particular importance for MS patients in an early disease phase. The
clinical relevance of lesions with diameter smaller than 3mm is not yet

established. However, their counting can be important not only for
early-diagnosis but also for follow-up assessment (new lesion count)
and to monitor the treatment response.

A limitation of our method is the detection of “black holes” which
are hypointense in FLAIR images. Since the method relies on image
intensity, hypointense voxels in FLAIR images from “black holes” will
most likely be classified as CSF. In this particular data set of early MS
stages, there were few “black holes”, however future developments
based on CSF prior information should be done and tested in data sets of
patients at later MS stages and with higher disability. Furthermore, the
method should be tested on images from different scanners and pro-
tocols. This will enable us to test the robustness of the histogram
matching approach (see Section 2.2) used to homogenise the intensity
scale across images from different acquisitions. Lastly, it should be

Fig. 5. Boxplots of total lesion volume (TLV) difference between reference and automated lesion segmentation using the proposed partial volume (PV) method, and two freely available
software: Lesion Segmentation Tool (LST), and LesionTOADS (LTOADS). Results were computed using two different definitions of minimum lesion volume:≈3 μL (left panel) and≈15 μL
(right panel).The crosses in the plot represent outliers in the cohort.

Fig. 6. Total lesion volume (TLV) correlation between the reference and automated lesion segmentation (from left to right) using the proposed partial volume (PV) method, and two freely
available software: Lesion Segmentation Tool (LST), and LesionTOADS (LTOADS). Results were computed using two different definitions of minimum lesion volume: ≈3 μL (first row)
and≈15 μL (second row). The respective Spearman's rank correlation coefficient (ρS), and coefficient of determination (R-squared, R2) are given. The dash line represents the identity line
(TLVreference=TLVmethod), and the solid line represents the best linear fit to the points.
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considered that the tuning of the hyper-parameters was performed
using only one patient as a reference. This reference was found to be the
most representative case in terms of lesion size and distribution.
However, future validation should be performed in order to evaluate
the influence of the reference patient on hyper-parameter tuning and
consequently on lesion segmentation performance.

Extensions of the presented method should focus on exploring
mathematical morphology operations to better disentangle GM from
lesions, and consequently improve the lesion detection. This could
particularly improve the detection in regions where the method pre-
sents a relatively modest performance due to the lesion location and
very similar intensities between lesional and normal-appearing GM
tissue, as e.g. seen in juxtacortical lesions. Future work will also aim to
extend the method to cortical lesion detection, by incorporating input
from advanced sequences like double-inversion recovery (DIR), and
magnetization-prepared 2 rapid acquisition with gradient echo
(MP2RAGE), which has been recently shown to be more sensitive to
cortical lesions (Fartaria, Bonnier, et al., 2016).
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