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Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive

electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of

EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding

2D and 3D arm movements i.e., executed arm movements. Decoding of observed or

imagined 3D movements has been demonstrated with limited success and only reported

in a few studies. MTP studies normally use EEG potentials filtered in the low delta

(∼1Hz) band for reconstructing the trajectory of an executed or an imagined/observed

movement. In contrast to MTP, multiclass classification based sensorimotor rhythm

brain-computer interfaces aim to classify movements using the power spectral density

of mu (8–12Hz) and beta (12–28Hz) bands.

Approach: We investigated if replacing the standard potentials time-series input with

a power spectral density based bandpower time-series improves trajectory decoding

accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D

trajectory of the hand joint) and whether imagined 3D hand movements kinematics are

encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or

imagine generating pointing movements with their right dominant arm to four targets

distributed in 3D space in synchrony with an auditory cue (beep).

Main results: Using the bandpower time-series based model, the highest decoding

accuracy for motor execution was observed in mu and beta bands whilst for

imagined movements the low gamma (28–40Hz) band was also observed to improve

decoding accuracy for some subjects. Moreover, for both (executed and imagined)

movements, the bandpower time-series model with mu, beta, and low gamma bands

produced significantly higher reconstruction accuracy than the commonly used potential

time-series model and delta oscillations.

Significance: Contrary to many studies that investigated only executed hand

movements and recommend using delta oscillations for decoding directional
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information of a single limb joint, our findings suggest that motor kinematics for imagined

movements are reflected mostly in power spectral density of mu, beta and low gamma

bands, and that these bands may be most informative for decoding 3D trajectories of

imagined limb movements.

Keywords: brain-computer interface, motor imagery, imagined arm movement, motion trajectory prediction,

electroencephalography

INTRODUCTION

Brain-computer interface (BCI) research and development aims
to achieve movement-free communication between a user
(human or animal) and an electronic device using information
encoded in neural signals. A prominent application of BCIs
is controlling objects in real (LaFleur et al., 2013) or virtual
spaces (McFarland et al., 2010; Royer et al., 2010) using non-
invasively recorded neural signals, most commonly achieved with
electroencephalography (EEG).

Sensorimotor rhythm (SMR) based brain-computer
interfaces (BCIs) use voluntary modulation of the sensorimotor
activity during an imagined movement (motor imagery) for
communication or control. Electrodes positioned centrally
over sensorimotor areas contralaterally and ipsilaterally to
the imagined movement are commonly used. Multiclass
classification (MC) based sensorimotor rhythm BCIs enable
multi-dimensional control in real or virtual spaces using a
classifier trained to distinguish between the imagined movement
of different limbs, commonly the left hand, right hand, feet,
and/or tongue (Pfurtscheller et al., 2006). The neurophysiology
controlling these limbs produces separable features, spatially
and spectrally, for the majority of BCI users. Control can be
trained and learned by focused kinesthetic or visual imagery of
the limb movement to activate spatially distinct cortical areas
or by using a self-regulatory scheme in which the user learns
to modulate the sensorimotor rhythms to gain control of the
movement of an object in 2- or 3-dimensions, independently
(Wolpaw and McFarland, 2004; Royer et al., 2010). Multiclass
classification based sensorimotor rhythm BCIs use a feature
extraction and classifier approach (extracting features that
maximize the inter-class variance and minimize the intra-class
variance), determining a separating plane that enables allocation
of features to distinct classes (Pfurtscheller et al., 1998; Coyle,
2009; Blankertz et al., 2010).

In contrast to multiclass classification based sensorimotor
rhythm BCIs that aim to classify the movement/imagined
movement at any time instance, motion trajectory prediction
(MTP) BCIs aim to estimate the track of the spatial coordinates
or velocity vectors of moving limb joints (Georgopoulos
et al., 2005). To date, most MTP studies have focused on
reconstructing the movement of the upper limbs (Bradberry
et al., 2010; Robinson et al., 2015), lower limbs, (Presacco et al.,
2011), and fingers (Paek et al., 2014). However, to realize a
movement independent BCI, reconstructing the 3D trajectory
of an imagined movement is necessary. Only a limited number
of papers have reported trajectory decoding of imagined limb
movements in 2D (Ofner and Müller-Putz, 2015) or observed

limb movements in 3D space (Kim et al., 2015), with limited
success.

MTP BCIs commonly use a multiple linear regression (mLR)
based kinematic data estimation module with a time-series of
band-pass filtered EEG potentials as input features (Bradberry
et al., 2010; Presacco et al., 2011; Toda et al., 2011; Yeom et al.,
2013). Other works reported achieving reasonable reconstruction
of arm trajectory using a Kalman filter (Robinson et al., 2015),
kernel ridge regression (KRR) (Kim et al., 2015), or partial least
squares (PLS) (Ofner and Müller-Putz, 2015).

Multiclass classification based sensorimotor rhythm BCIs
normally report the highest classification accuracy using the
power spectral density (PSD) of mu (8–12Hz) and beta (12–
28Hz) bands (Pfurtscheller and Aranibar, 1979; McFarland
et al., 2000). The PSD in these bands is modulated during
movement planning and generation (Pfurtscheller et al., 1998;
Pineda et al., 2003; Wolpaw and McFarland, 2004; McFarland
et al., 2008; Royer et al., 2010). This power change is referred to
as event-related (de)synchronization (ERD/S) (Pfurtscheller and
Aranibar, 1979), normally measured relative to a reference period
prior to the movement/imagined movement event. Lateralized
differences in band power enable discrimination of one imagined
movement from another (Lange et al., 2015). Beta bandpower
changes are believed to be directly related to the dis-inhibition
of neuronal populations involved in the specification of a motor
command (Brinkman et al., 2016). In contrast, the majority
of MTP BCI papers, however, report the best results when
a time-series of low delta (0.5–2Hz) band-pass filtered EEG
potentials is used (Waldert et al., 2008; Bradberry et al., 2010;
Paek et al., 2014). It is contended that the low delta band contains
information about velocity, and trajectory for discrete (step-
tracking) two-dimensional movements (Mehring et al., 2003;
Rickert et al., 2005). It has been suggested that the low delta
band reflects a sum of local, motor, and sensory feedback signals
and is not simply considered as the arrival of input to drive
movement-related activity (Reidner et al., 2011).

Slow cortical potentials (SCP)—slow direct-current shifts
in the EEG, originating mainly from gradual changes in the
postsynaptic potential on the pyramidal cells apical dendrites in
the upper cortical layer, were also found to encode movement-
related information. For example, the Bereitschaftspotential
(BP)—a bilateral negative direct current shift that is detectable
prior to the onset of a voluntary movement (Barrett et al.,
1986), has been used to classify imagined wrist movement
(Gu et al., 2009). The contralateral motor potential (MP) (Deecke
et al., 1969), another type of SCP that is detectable at the time
of movement execution, was also found to hold movement-
related information (Birbaumer et al., 1990). SCP has also been
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used for controlling grasp or open a neuroprosthetic hand in
a closed-loop condition (Fukuma et al., 2015). As presented by
Koester et al. event-related potentials (ERPs) can be obtained
during movement execution involving a grasping task (Koester
et al., 2016). They showed ERP components may be related
to functional components of grasping according to traditional
distinctions of manual actions such as planning and control
phases.

As outlined above, movement-related information is not
stored in the activity of a single frequency band and can be
decoded from slow DC shifts and various neural oscillations.
However, limb movement classification mostly relies on the PSD
of mu and beta oscillations while limb movement trajectory
decoding normally involves the time-series of SCP and low
delta oscillations (Müller-Putz et al., 2016). In order to study
whether the poor trajectory reconstruction using activity in
higher frequency bands (alpha and beta) (Yeom et al., 2013;
Úbeda et al., 2017) has a biological grounding or is a shortcoming
of the methods used, we replaced the band-pass filtered potential
time-series (PTS) input with a PSD based bandpower time-
series (BTS) in a limb movement related MTP study (Korik
et al., 2016a) which was subsequently extended to a pilot study
involving four subjects where we investigated both decoding
3D limb movements and imagined 3D movements (Korik
et al., 2016b). Surprisingly, the BTS model provided significantly
higher accuracy rates in mu and beta bands than in delta
band, a result which is consistent with a substantial number of
sensorimotor rhythm BCI studies using multiclass classification
reporting the high classification accuracy rate using PSD of mu
and beta bands. Here, we present a study with improved analysis
and validation procedures, comparing the performance of limb
movement and imagined limb movement decoding across 12
subjects, and take a closer look at the underlying spectral and
spatial characteristics of associated brain signals. The results
support our earlier findings that the bandpower time series (BTS)
model is a better alternative for decoding both movements and
imagined movements and that it provides the highest accuracy
when the PSD of mu and beta bands are used.

Imagined limb movement classification has been reported
in numerous BCI studies. Motor imagery is the focus of these
studies because the aim of most BCI studies is to provide a
means of allowing motor disabled patients to interact with the
environment. However, limb movement classification is limited
in the sense that it does not allow the decoding of the limb
trajectory and therefore may not provide natural control for
future prosthesis. To date, there is limited evidence that 3D
movement imagination decoding is feasible using EEG. The
present paper shows that this objective is feasible and suggests
that, with training, subjects may learn to control prostheses
and/or objects in 3D space using imagined directional movement
of a single limb.

METHODS

Subjects
Twelve right-handed male subjects (aged 25–46 years) gave
informed and written consent to participate in the study,

which was approved by the Wolfson Medical Center Helsinki
committee. All subjects were healthy without any medical or
psychological illness and/or medication and had normal or
corrected to normal vision (subject 10 had brain surgery 12 years
prior to the study, to remove a brain tumor in the right temporal
lobe, causing epilepsy). Data acquisition took place at the Hybrid
BCI lab at Holon Institute of Technology (HIT), Israel.

Experimental Paradigm
Prior to the experiment, the subjects were informed about the
experimental protocol. Subjects were seated in an armchair
positioned 1.5m in front of a 3D Microsoft Kinect camera
(Kinect, 2010; Figure 1A). The subjects were asked to look
forward and maintain a constant head position, avoid teeth
grinding and to minimize unnecessary movements during the
experiment. They were also asked try to avoid eye blinks during
the movement cycles (described below).

The experiment involves eight runs, each run comprised four
blocks, each block comprising twenty executed or imagined
periodic arm movements between the home position and one of
the four targets. For runs involving imagined arm movements,
the subjects were asked to refrain from moving the hand
and to kinesthetically imagine moving the arm toward the
corresponding target, synchronously with an auditory cue. Each
run that involved executed movements was followed by a run
involving imagined movements. Inter-run resting periods lasting
one minute provided an opportunity for the subject to relax,
however, the subject was asked not to move or talk during
the inter-run resting periods. The experimental paradigm is
presented in Figure 2.

Eight seconds before commencing each run, a voice message
played automatically to inform the subject about the incoming
run. Twelve seconds before commencing of each block, a
vocal message announced the identification number of the
upcoming target (target positions were marked physically with
printed labels in the environment to indicate target positions as
illustrated in Figure 1A). A trial (movement cycle) comprised
four epochs: a movement period between the home position
and a target position was synchronized with an 800ms length
auditory cue (6 kHz tone), an 800ms length pause at the target
position without auditory cue, a movement period between
the target position to the home position was synchronized
with an 800ms auditory cue (4 kHz tone), and an 800ms
pause at the home position without auditory cue. Thus, the
length of a trial was 3,200ms (Figure 2A) and the length
of a movement block was 64 s and consisted of 20 similar
kinematic trials between the home and one of the four target
positions (i.e., repeated movement trials) (Figure 2B). The
order of the targets (i.e., order of the blocks) was the same
in each run (T1-4) as presented in Figure 2C (the location
of the targets indicated with labels 1-4 in Figure 1A). Each
run comprised four blocks, with an inter-block resting period
between consecutive blocks lasting 12 s (Figure 2C), thus, the
length of each run was 5min. The runs were separated by an
inter-run resting period lasting 1min. Visual Basic software in
Visual Studio was used to display and time the experimental
paradigm.
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FIGURE 1 | Experimental setup and EEG montage. (A) Experimental setup including an overlaid image of the 3D trajectory of the registered (colored thin curves) and

averaged (black thick curves) arm movements between the home position (green circle with H) and four target positions (blue circles with numbers) of a representative

subject (Subject 1). (B) The channels that were used as center points for the Laplace filtering and optimal MTP parameter selection are labeled (non-labeled channels

were used only as side electrodes for the corresponding Laplace filter center positions, where required).

FIGURE 2 | Experimental paradigm. (A) The timing of an executed or imagined movement cycle (depending on the run) between the home position and one of the

four target positions (T1-4). (B) The structure of a block comprising 20 movement cycles between the home position and one of the four target positions. (C) The

structure of the runs involving executed and imagined movements. A run involving executed movements is followed by a run involving imagined movements and the

runs are separated by inter-run resting (IRR) period. A run comprises four blocks corresponding to each of the four targets (T1-4) and the blocks are separated by an

inter-block resting (IBR) period.

Data Acquisition
EEG signals were registered with a g.HIamp80 EEG system
(g.HIamp80, 2013) using 61 channels for EEG and two channels
for electrooculogram (EOG) signal recording. The ground
electrode was positioned on the forehead above the nose and
the EEG reference electrode was positioned on the right earlobe.

The EEG was amplified (gain: 20000), filtered (Butterworth,
0.5–100Hz, 8th order), and sampled (A/D resolution: 24 Bits,
sampling rate: 1,200 samples/s). The kinematic data were
recorded using the 3D Microsoft Kinect camera system (Kinect,
2010), developed for the Xbox 360 game console. We used this
device as it does not require markers to be placed on the joints
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of the arm. Kinematic data were recorded from the right hand,
elbow, and shoulder at 30 frames per second (FPS). Control of
an artificial or virtual arm is possible using a complex multi-
joint based kinematic model. As trajectory estimation of the hand
joint during 3D armmovements provides enough information to
calculate all parameters of this complex arm model (Kawamura
and Svinin, 2006), only hand trajectory prediction was tested.
As EEG and kinematic data were registered using different
data acquisition software, installed on different computers, time
stamps of trigger events were stored for offline synchronizing the
two signals; trigger cues from the experimental paradigm control
software were simultaneously sent to the EEG data acquisition
software and kinematic data acquisition software using the RS-
232 serial communication protocol.

During the experiments, physical movements of the
participants were recorded using a video camera which was
positioned in front of the subject and the view angle was set to
record the whole body apart from the legs. The recorded video
was manually inspected after the experiment to confirm that
no arm movements were generated during motor imagery task
performance. Moreover, manual inspection of the kinematic
data confirmed that the arm was idle during movement imagery
epochs [i.e., did not move in any orthogonal direction more
than 1.3mm, the minimal spatial displacement (per pixel)
that can be detected with the Kinect sensor (Kinect, 2010)].
Supplementary Videos 1, 2 illustrate task performance during
executed and imagined movements, respectively. Although
some of the subjects may have generated covert arm movements
that were too small to be detected by the Kinect sensor and/or
sequential co-contraction of arm muscles, it is unlikely that
such movements would have a significant impact (positive or
negative) on imagined 3D movement decoding accuracy.

Preprocessing
The impedance of the EEG electrodes was measured with the
g.HIamp80 EEG software package (g.HIamp80, 2013). EEG
channels with impedance higher than 50 k� were removed
from the analysis. To reduce common mode artifacts, EEG was
re-referenced using a small Laplace filter (McFarland et al.,
1997) centered at the 41 electrodes labeled in Figure 1B.
Although all 61 electrodes were used in Laplace filtering, only
41 electrodes were denoted as Laplacian channels, completing
the requirement for Laplace filtering, i.e., derived from adjacent
electrodes in each (left, right, up, down) direction (e.g.,
electrodes of F3 were F5, F1, AF3, FC3). As the offset of
the amplifiers in the EEG hardware might cause a channel
specific constant baseline shift (that should be eliminated
before band-pass filtering), the mean baseline value of each re-
referenced channel was computed across the entire experiment
and removed, separately. A 0.5–40Hz, 8th order Butterworth
filter was applied for filtering out non-relevant EEG bands.
Finally, independent component analysis (ICA) was performed
on the 41 preprocessed Laplacian channels using the logistic
infomax ICA algorithm (Bell and Sejnowski, 1997) to remove
electrooculogram (EOG) and electromyogram (EMG) artifacts
(Mognon et al., 2011).

The number of removed independent components varied
between four and six across subjects and the projection of
the removed components (using the inverse ICA transform)
was mostly over frontal cortical areas, including AF3, AF4,
F5, F4, FC5, and FC6 electrodes. Here we aim to compare
motion trajectory prediction (MTP) accuracy using two different
approaches (i.e., EEG potentials versus PSD inputs: PTS vs. BTS),
the remaining preprocessing steps differed when applying each of
the two approaches.

For the band-pass filtered potential time-series based PTS
model, six non-overlapped, 8th order zero-phase band-pass
filters were applied separately to the ICA filtered EEG in the lower
delta (0.5–2Hz), theta (4–8Hz), mu (8–12Hz), lower beta (12–
18Hz), upper beta (18–28Hz), and gamma (28–40Hz) bands
(the gap between 2 and 4Hz is covered by the cutting edges of
lower delta and theta band-pass filters). Each of the six band-pass
filtered EEG datasets was re-sampled to 100Hz.

For the PSD (bandpower) time-series based BTS model, the
time-varying bandpower was calculated based on the ICA filtered
EEG signals using the six non-overlapped EEG bands described
above, whilst the time-varying bandpower was calculated from
a 500ms width sliding window with a 10ms time lag between
adjacent windows. This time lag was chosen to match the
100Hz re-sampling frequency rate. The 500ms window width
is supported by the results of a pilot analysis that compared
decoding accuracies obtained using four different window sizes
(i.e., 50, 100, 200, and 500ms). As the analysis (Supplementary
Figure 1) did not identify significant differences using the various
window-width options, that were assessed a 500ms window-
width was selected for this study, as this window-width is the
shortest possible for accurate calculation of the bandpower in
the lowest frequency band analyzed (i.e., in the 0.5–2Hz low
delta band). The bandpower within a time windowwas calculated
by averaging the square values of the band-pass filtered EEG
potentials as described in Equation (1).

Bfn[t] =

∑M
m= 1

(

S(m)fn[t]
)2

M
(1)

where Bfn[t] is the bandpower value calculated from EEG channel
n, using band-pass filter f on the same frequency ranges that are
used for the potential based model (i.e., 0–2, 4–8, 8–12, 12–18,
18–28, and 28–40Hz), within a 500ms width time window at
time t. M is the number of samples within a time window and
S(m)fn[t] is the mth band-pass filtered sample within the time
window using the above described f, n, and t parameters.

Using a manual inspection, a high-frequency noise (>10Hz)
was detected in the kinematic data in the form of transient
peaks (i.e., jitters) which did not match the curve of the joint
movement but were generated by the 3D Microsoft Kinect
camera system (Kinect, 2010). The moving average window
involved five adjacent samples (resulting in 166ms windowwidth
based on 30Hz sampling rate) and the step between each window
was 1 sample. Using this approach jitters were smoothed out
from the movement curve and the filter did not cause significant
distortion in the jitter-free curve. Data intervals involving high-
level transient noise were marked during a manual inspection,

Frontiers in Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Korik et al. Decoding Imagined Movements From EEG

and these artifactual intervals were removed from further
processing along with their corresponding EEG data. Overall,
less than one percent of the whole dataset was removed due to
high transient noise. As it is not possible to record imagined
movement related kinematic data an average of the kinematic
data in the movement run prior to the corresponding imagined
movement run is used to evaluate the imagined movement
decoding accuracy.

Kinematic Data Reconstruction
The core module of movement trajectory prediction is
the kinematic data estimator block, which is dedicated to
reconstructing the kinematic trajectory using an optimal time-
series of the preprocessed EEG features. In the training stage,
the key parameters of the estimation block are optimized. The
mLR-based PTS model using time-resolved band-pass filtered
potentials (the PTS model approach) proposed by Bradberry
et al. (2010) is

xi [t] = aif +
∑N

n=1

∑L

k=0
bifnkSfn

[

t − k
]

+ ε [t] (2)

where aif and bifnk are regression parameters representing

the relationship between the input Sfn
[

t − k
]

and output
xi [t] data. xi [t] are three orthogonal components of the velocity
vector where i represents the three spatial dimensions in the
3D coordinate system. Sfn

[

t − k
]

is a standardized temporal
difference of those EEG potentials on which band-pass filter f
is applied at sensor n at time lag k. N is the number of EEG
sensors, L is the number of time lags, and ε[t] is the residual error.
The embedding dimension (i.e., the model order) is equal to the
number of time lags plus one (L+1), i.e., the number of time-
lagged samples that are selected from each channel for estimating
kinematic data at time point t. The standardized difference for
the PTS model is given by

Sfn[t] =
Pfn[t]− µPfn

σPfn
(3)

where Pfn[t] is the value of the band-pass filtered potential based
input time-series at time t (i.e., a potential value),µPfn is themean
value, and σPfn is the standard deviation of Pfn (µPfn and σPfn are
calculated based on the range of time points which are involved in
the corresponding training dataset, separately in the case of each
training option—data separation is discussed in Section Optimal
Parameter Selection and Evaluation of the Results).

The time-resolved PSD based BTS model use the same
equation for mLR as described for the PTS model in Equation (2)
but the standardized temporal difference Sfn

[

t − k
]

is calculated
from PSD of the specified EEG band (i.e., from bandpower
values), rather than from band-pass filtered EEG potentials. As
the range of the bandpower values is limited to positive values,
the standardized difference is calculated differently for the BTS
model compared to the PTS model (Equation 3) where the range
of the input was roughly symmetric. The standardized difference
for the BTS model is given by

Sfn[t] =
Bfn[t]

σBfn
(4)

where Bfn[t] is the value of the PSD based input time-series at
time t (i.e., a bandpower value) and σBfn is the standard deviation
of Bfn.

The input-output data structures for the PTS and BTS models
were prepared based on the same principles. The optimal time lag
and the optimal number of lagged time points (i.e., embedding
dimension minus one) was selected for both models separately,
as described in the following section.

Optimal Parameter Selection and
Evaluation of the Results
The optimal parameter selection and final result calculation were
processed in the framework of the inner-outer (nested) cross-
validation (CV) technique (Figure 4) based on the principles
described in (Korik et al., 2016a) and using the structure
presented in (Figure 3). As the inner-outer CV allows testing
and selecting a range of parameters using an inner fold CV
(Figure 4C) and calculating the final results in the outer fold CV
(Figure 4A) using the optimal architecture that is selected by the
inner fold CV, the final results were calculated using test data
that was not used for architecture optimization. In the current
analysis, six outer folds and five inner folds were used.

As the homogeneous distribution of movement dependent
data intervals in the outer folds is essential for each type
of movement to be weighted equivalently, the analyzed EEG-
kinematic dataset was re-distributed into the six outer-folds
based on a data separation method that guaranteed homogeneity
(Figure 3B). Furthermore, the method described in Figure 4B

provides an identical inner level data structure by mixing the
movement sub-intervals within the selected outer training data
folds whilst simultaneously maintaining the homogeneity in the
distribution of movement dependent data intervals within the
inner level data structure. Eachmovement sub-interval presented
in Figure 4B (i.e., b1, b2, b3, b4 . . . f1, f2, f3, f4) covers three
continuous movement cycles between the home position and
one of the four target positions. Letters b, c, d, e, and f are
associated with five different movement cycle triplets forming the
data structure of the outer folds 2-6. Indices 1, 2, 3, and 4 are
associated with the four registered blocks (four targets) within
the same run. While the outer fold data structure is prepared
based on movement sub-intervals a1 . . . f4 (as is illustrated
in Figure 3), the inner fold data structure is formed by those
re-distributed movement sub-intervals (i.e., in the case of the
illustrated example: β1 . . . ϕ4), which are derived from the
movement sub-intervals within those outer folds that are selected
for training purposes at the actual outer fold setup.

The optimal time lag, embedding dimension, and most
prominent frequency bands were selected in the inner level
CV (Figure 4C) using a three steps approach (Table 1). Step
1: a fixed EEG montage using ten electrodes covering the
sensorimotor area (i.e., FC3, FC4, C5, C3, C1, C2, C4, C6, CP3,
CP4) was used to select the optimal time lag and embedding
dimension. Step 2: using the optimal time lag and embedding
dimension selected in the first optimization step, the importance
of channels was identified by evaluating the MTP accuracy
for all single channels independently and subsequently ranking
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FIGURE 3 | Outer fold structure. (A) A block with 20 movement cycles from which movement cycles 2–19 were used for the present analysis. (B) Re-distribution of

discrete movement sub-intervals (Ax-Fx) in a randomized order (ax-fx), done separately for each of the four blocks. (C) Preparation of the outer folds involving the

homogeneous distribution of each of the four movement types, respectively, to the four targets (i.e., the data for each of the six outer folds were drawn from four

randomly re-distributed discrete movement intervals, with a similar length, respectively, to the four targets).

FIGURE 4 | Inner fold structures. Illustration of the six training/test data separation setup options for the applied inner-outer (nested) cross-validation technique using

six outer folds and five inner folds. (A) The outer fold setup involving six different training/test data separation options. Each of the six setup options involves five outer

folds for training purposes and one outer fold for calculating the final test results. (B) Illustration of the outer fold training data re-distribution method for the data

structure in the inner fold level of the selected outer fold. (C) Illustration of the inner level training/test data separation options based on the outer setup option which

uses outer folds 2–6 for training and outer fold 1 for test purpose.

channels by their importance (accuracy) and selecting a subset.
Step 3: involved re-optimization of time lag and embedding
dimension with the chosen subset of best channels from the

second optimization step. The optimal time lag, embedding
dimension, and most prominent frequency bands were selected
by the inner level CV (Figure 4C) while the final results were
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TABLE 1 | The parameter space used for optimal parameter selection.

Parameter Parameter space

PTS model BTS model

Time lag 10…200ms 100…300ms

Embedding dimensions 1…13 samples

Frequency range 0.5–2Hz, 4–8Hz, 12–18Hz, 18–28Hz, 28–40Hz

calculated based on the outer test folds (Figure 4A), using the
optimal architectures that were selected in the inner level CV.

As the accuracy of trajectory reconstruction in MTP BCIs
is assessed by comparing the trajectory of the performed
movement and the reconstructed limbmovement (Georgopoulos
et al., 2005; Bradberry et al., 2010; Yeom et al., 2013; Paek
et al., 2014; Kim et al., 2015; Robinson et al., 2015), the
Pearson product-moment correlation coefficient between the
two descriptors was computed separately for each investigated
setup and served as an accuracy metric. The optimal parameter
selection was run for each model (PTS and BTS), movement
type (imagined or executed), subject, run, frequency band, and
velocity component (v(x), v(y), and v(z)), separately. In order to
obtain the optimal EEG montage, the MTP was trained and
tested using a single channel input. The test accuracy values
were calculated separately for each of the 41 Laplace filtered
and further preprocessed EEG channels in each of the five
inner folds. Each channel was assigned an average score based
on the Pearson correlation value and was ranked. The eight
EEG channels that provided the highest accuracy rates were
included in the EEGmontage. The final results were calculated by
averaging MTP accuracy across the outer folds for each subject,
separately.

In order to assess the validity of the obtained trajectory
reconstruction accuracy, a shuffling test was performed. For
the shuffling tests, the trajectory was reconstructed using the
original (i.e., non-shuffled) EEG test dataset but the order of
the blocks was shuffled in the kinematic test dataset. Thus, the
reconstructed trajectory in the shuffled test was comparedwith an
incorrect target trajectory. The correlation of the reconstructed
and shuffled target trajectories is expected to be low. The
correlation values between shuffled and non-shuffled tests from
six outer folds were compared using the Student’s two-tailed
t-test, separately for the various investigated options (i.e., model
type, movement type, subjects, and bands).

In order to study the contribution of each of the Laplace
filtered EEG channels to trajectory reconstruction, the average
accuracy rate was computed for the 12 subjects in 6 × 5 inner
folds. For subject specific topographical maps, all Laplacian
channels were assessed by checking the contribution to trajectory
reconstruction that is significantly higher than expected given the
null hypothesis (i.e., all channels have the same contribution).
To that end, for each subject and fold, the R value (correlation
between neural activity and one of the coordinates) of each
Laplacian channel was normalized by the highest R value and
the absolute value taken (looking for a high correlation - both
positive and negative). Next, for each channel, the R values from

all folds of the actual subject were pooled together and a t-test was
run (checking whether the mean of R values minus the expected
value is higher than zero). As each channel was assessed, the p
value was corrected for multiple comparison [p < 0.001, Student
two-tailed t-test corrected for FDR (false discovery rate)]. Finally,
significant R values were normalized and plotted, separately for
each MTP model, movement type, subject, and frequency band,
in the form of a subject specific topographical map. Next, in
order to identify those cortical areas which provide a significant
contribution to trajectory reconstruction across 12 subjects, the
contribution of each Laplacian channel was estimated using 6 ×
5 inner folds. Again, Laplace filtered channels that contributed
significantly higher than expected given the null hypothesis (i.e.,
all channels have the same contribution) were determined [p <

0.001, Student two-tailed t-test corrected for FDR (false discovery
rate)]. Finally, the R values were normalized and plotted (for
channels which successfully completed the t-test), separately for
each MTP model, movement type, and frequency band, in the
form of a cross-subject topographical map.

The cross-subject averages of reconstructed trials for imagined
and executed movements were calculated, separately, using the
PTS and BTS models. Each average trial was calculated using
twelve subjects, six outer folds, and four runs based on low delta
information for the PTS model and based on mu, lower beta,
upper beta, and gamma information for the BTS model. The
cross-subject average of reconstructed trials and an example of
single velocity trial reconstruction for imagined and executed
arm movements using the PTS and BTS models are presented in
the results section.

A general overview of the signal processing steps and
evaluation blocks is illustrated in Figure 5.

RESULTS

Figure 6 illustrates the accuracy rates obtained for executed and
imagined arm movement trajectory reconstruction. In line with
other MTP studies (Bradberry et al., 2010; Yeom et al., 2013;
Paek et al., 2014), the accuracy of the PTS model using band-
pass filtered potential time-series input was maximal when a low
delta band (0.5–2Hz) band-pass filter was applied (RPTS

Executed
∼

0.15) and it was very low for other frequency bands (R∼0)
(Figures 6A,C). In contrast to the PTS model, the BTS model
using bandpower time-series enabled reconstruction of the
executed movements with the highest accuracy (RBTS

Executed
∼ 0.4)

using the time-resolved power spectral density of the mu (8–
12Hz) and beta (12–28Hz) bands (Figure 6D). For imagined
arm movements, the PTS model provided low accuracy for all
frequency bands (RPTS

Imagined
∼ 0). In contrast to the PTS model,

the BTS model achieved higher accuracy (RBTS
Imagined

∼ 0.2) in

the mu (8–12Hz), beta (12–28Hz), and low gamma (28–40Hz)
bands (Figure 6B) for imagined arm movements. The validity
of the results was confirmed by a shuffling test as described
in the Methods section. The original (non-shuffled) dataset
provided significantly higher accuracy than the shuffled dataset
for both models (PTS and BTS) (p < 0.05, Student two-tailed
t-test).
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FIGURE 5 | Signal processing pipeline—from data acquisition to evaluation. EEG and kinematic data were parallel registered during the task and preprocessed offline.

For motor imagery runs, the target kinematic trajectories were calculated by averaging the kinematic data in the executed movement run prior to the corresponding

imagined movement run. The optimal time lag, embedding dimension, and most prominent frequency bands were selected using a three-step procedure for finding

optimal parameters. The parameter optimization and final results were calculated in framework of the inner-outer cross-validation technique.

FIGURE 6 | Motion trajectory prediction accuracy using different models. Each displayed accuracy value is an average value based on the results of four runs, six

outer folds, and three velocity components. Decoding accuracy values of imagined arm movements are presented in (A) for the band-pass filtered potential based

PTS model and (B) for the PSD based BTS model. Reconstruction accuracy of executed arm movements is presented in (C) for the band-pass filtered potential

based PTS model and (D) for the PSD based BTS model. For the BTS model, the cross-subject average of the reconstruction accuracy is presented in (B*) for

imagined and in (D*) for executed movements (similar comparison of cross-subject mean values for the PTS results is not presented in this Figure as panels (A) and

(C) show that the low delta band (0–2Hz) is the dominant band for each subject for the PTS model).
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MTP accuracy values using different single channel setups
were calculated (i.e., the MTP BCI was trained and tested for
each analyzed EEG channel, separately) and the accuracy values
were calculated for each model (PTS and BTS), subject and
frequency band, separately. The topographical distribution of the
electrodes’ contribution to trajectory reconstruction revealed that
different sets of electrodes conveyed most of the information
regarding the generation of arm movements and imagined
arm movements. With the PTS model, electrodes positioned
over the sensorimotor cortex conveyed most of the trajectory-
related information, as evident in Figures 7A,C showing group
(i.e., cross-subject) topographical maps (also in Figures 8A,C

single-subject topographical maps). For the BTS model during
executed movements, the highest accuracy is derived from
the contralateral sensorimotor and occipital cortex when the
movement was decoded from one of the two most prominent
(i.e., mu or beta) frequency bands, as illustrated for 8–12, 12–18,
and 18–28Hz frequency ranges in Figure 7D (and in Figure 8D).
The prominent cortical areas for imagined movement using the
BTS model are more diversified across different subjects, as
presented in Figure 7B (and in Figure 8B). For some subjects,
the most prominent electrodes were positioned over the frontal
cortex (e.g., subject 8 in Figure 8B), whereas for some, occipital
located electrodes conveyedmost of the information (e.g., subject
7 in Figure 8B).

An example of a single velocity trial reconstruction using the
PTS and BTS models for movement and imagined movements is
presented in Figure 9. Model, subject, and frequency bands used
for Figure 9were selected for subjects with the highest accuracies
(Figure 6). The cross-subject average of reconstructed trials is
presented in Figure 10.

DISCUSSION

PSD of Mu, Beta, and Low Gamma
Oscillations for Decoding Imagined Arm
Movements
Decoding the trajectory of imagined movements from EEG has
been reported in only a limited number of studies. The aim of this
study was to investigate if the trajectory of 3D hand movements
could be decoded from EEG and determine which neural
oscillations and detection methods provide maximal decoding
accuracy. We evaluated the possibility of decoding imagined
3D arm movements by decoding the imagined 3D trajectory
of the right (dominant) hand and its relationship with the
average trajectory of 3D movements using time-resolved band-
pass filtered potentials and time-resolved PSD values, in six non-
overlapped EEG bands covering the 0.5–40Hz frequency range.
The results of this study, which focused on direct and implicit
decoding of the trajectory of the hand during kinesthetically
imagined 3D arm movements (i.e., neither motor execution nor
movement observation but kinesthetic motor imagination in 3D
spaces), provided a clear evidence that mu, beta, and low gamma
oscillations are more likely to provide better performance for
MTP of imagined 3D arm movements using a power spectral

density estimation approach compared with low delta oscillations
using a band-pass filtered EEG potential approach.

To the best of the author’s knowledge, all other 3D motion
trajectory studies to date involve arm movements and not
imagined arm movements and most arm motion trajectory
prediction (MTP) BCIs use time-resolved band-pass filtered
EEG potentials (referred to here as the PTS model) for
reconstructing the 3D trajectory of the movement (Bradberry
et al., 2010; Presacco et al., 2011; Paek et al., 2014). Closely
related imagined/observed movement studies include (Kim et al.,
2015; Ofner andMüller-Putz, 2015). Although Kim et al. decoded
3D trajectory of executed and imagined arm movements with
multiple linear regression (mLR) and kernel ridge regression
(KRR) methods in (Kim et al., 2015), the motor imagery task
was performed in parallel with observation of a human volunteer
or robot performing 3D arm movement. In Ofner and Müller-
Putz (2015) the motor imagery task was synchronized with a
metronome, the required imagery movement was not presented
during the motor imagery task, and the task involved performing
imagery of arm movement in vertical and horizontal directions
of a two dimensional (2D) plane and not a complex three
dimensional (3D) movement. As outlined, decoding the 3D
trajectory of an imagined movement is very much understudied
- both of the above cited studies (i.e., Kim et al., 2015; Ofner
and Müller-Putz, 2015) used time-resolved band-pass filtered
potential values from the low delta band and do not support
the use of low delta band information for MTP in imagined 3D
arm movement. The present and our recent study (Korik et al.,
2016a) showed that trajectory reconstruction of 3D movement
is possible using time-resolved PSD values (referred to here as
BTS model) and mu, beta, and gamma oscillations but not delta
oscillations.

For the PTS model, reasonable accuracy rate for both
movement and imagined movements was achieved only in the
low delta band. A mathematical evidence for explaining this
observation is discussed for executed movements in Korik et al.
(2016a) and summarized below. As the movement followed a
characteristic period of 1.6 s (Figures 9, 10), corresponding to
a 0.625Hz frequency, it is logical to suppose that only the 0–
2Hz band will contribute to the decoding using a band-pass
filtered potential time-series with a multiple linear regression
based model. If the band-pass is applied to a frequency range
which is significantly higher than the characteristic frequency
of the movement, the samples in the potential time-series pick-
up quasi-random values of the band-pass filtered EEG. In other
words, a band-pass filtered potential time-series input of the
mLR based PTS model represents information content of the
EEG correctly if and only if the band-pass filter matches the
characteristic period of the movement cycles (i.e., applied to the
0–2Hz low delta band). For the BTS model, this issue does not
exist as time evolution of bandpower values in any EEG sub-band
match the above described characteristic period, therefore, the
BTS model represents correctly the information content of the
EEG in a wide range of different sub-bands.

However, the accuracy rate for imagined movements
(Figure 6A) was much lower than observed for movements
using the low delta band (Figure 6C). This result in agreement
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FIGURE 7 | Cross-subject based topographical maps. Topographical distribution of electrode contribution to the reconstruction of arm movement trajectory. Color

coding—averaged contribution of significant channels [p < 0.05, Student two-tailed t-test corrected for FDR (false discovery rate)] based on accuracy rates of single

channel setups over 12 subjects indicating cortical areas providing a high contribution for trajectory decoding. (A,C) present topographical maps for imagined and

executed arm movements using band-pass filtered potentials for the PTS model, respectively. (B,D) Present topographical maps for imagined and executed arm

movements using PSD values for the BTS model, respectively.

FIGURE 8 | Subject specific topographical maps. Topographical distribution of electrode contribution to the reconstruction of imagined and executed arm movements

for subjects 2, 7, and 8 [i.e., subjects for whom reconstruction accuracy was highest (see Figure 6)]. Color coding—contribution of significant channels [p<0.05,

Student two-tailed t-test corrected for FDR (false discovery rate)] based on accuracy rates of single channel setups in 6 × 5 inner folds indicating cortical areas

providing a high contribution for trajectory decoding. (A,C) Present topographical maps for imagined and executed arm movements using band-pass filtered potentials

for the PTS model, respectively. (B,D) Present topographical maps for imagined and executed arm movements using PSD values for the BTS model, respectively.

with (Babiloni et al., 2017), who observed in a reach and grasp
task that the ECoG delta and theta (<8Hz) band contain
more information for movement execution than for movement
observation. Our results show that although 3D trajectory
reconstruction of imagined arm movements can be realized
using time-resolved potentials from the low delta band, the

low delta band encodes less information related to imagined
arm movements compared to that observed for movement. In
contrast to the PTS model, the BTS model using time-resolved
PSD values for reconstructing movements (Figure 6D) and
imagined movements (Figure 6B) achieved the highest accuracy
rate using information from the mu, beta, and low gamma bands.
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FIGURE 9 | Reconstructed hand velocity vector components of single kinematic trials. V(x), v(y), and v(z) velocity vector components are matched with executed or

imagined movement in horizontal, vertical, and depth directions, respectively. For the imagined movement reconstruction (A,B), the target trajectory was calculated

based on executed arm movement trials that were registered using the experimental protocol that was used for the run with imagined arm movements. The imagined

arm movement velocity reconstruction is presented in (A,B) for the PTS and BTS models, respectively. The executed arm movement velocity reconstruction is

presented in (C,D) for the PTS and BTS models, respectively. (A,B) are calculated based on subject 2, run 4, and outer fold 1 using the time-resolved low delta

(0–2Hz) band-pass filtered EEG for (A) and PSD of the low gamma (28–40Hz) band for (B), while (C), and (D) are calculated based on subject 2, run 2, and outer fold

1 using the time-resolved low delta (0–2Hz) band-pass filtered EEG for (A) and the time-resolved PSD of the low beta (12–18Hz) band for (D).

Topographical Analysis
The topographical analysis showed different results using time-
resolved band-pass filtered potentials for the PTS model and
time-resolved PSD values for the BTS model (Figure 7). The
PTS model decoded maximal trajectory information from the
sensorimotor cortex in both types of movement (i.e., imagined
Figure 7A and executed Figure 7C), as expected (Paek et al.,
2014; Ofner and Müller-Putz, 2015). Although using the BTS
model, the sensorimotor cortex has been detected as the most
important cortical area for decoding trajectory information of
an executed movement (Figures 7D, 8D), for some subjects,
the frontal or occipital cortical areas were also important for
decoding an imagined movement (Figures 7B, 8B). Neuper
et al. showed that the cortical activity during motor execution
and kinesthetic motor imagery is focused in the contralateral
sensorimotor area, whereas during movement observation and
motor imagery the frontal and occipital areas, respectively, show
higher contribution for hand movement classification (Neuper
et al., 2005). It may be speculated that some subjects have
used different methods (e.g., kinesthetic or visual imagery) to
imagine armmovement (Dickstein and Deutsch, 2007), although
explicitly asked to use motor memory during the imagined
movement task. Movement-related modulation of mu and beta
activity in the motor cortex is discussed in Miller et al. (2010),

Miller et al. (2012), and Gwin and Ferris (2012). Halder et al.
showed that the active cortical area for BCI users who achieve
higher performance in a motor imagery tasks is not limited to
only the sensorimotor cortex, and have found activations in the
right middle frontal gyrus (Halder et al., 2011). The trajectory
relevant frontal activity for an imagined arm movement (subject
8 in Figure 8B) might originate from the planned movement as
planning is probably more important when motor imagery is
being performed, particularly if a subject is performing motor
imagery for the first time, as is the case for all subjects in
this study. This observation paired with the low gamma results
for imagined MTP is in line with a study by Ball et al. who
reported the planned movement-related oscillations associated
with the gamma activity in the frontal cortical areas (Ball et al.,
2008), and a study by Thürer et al. shows increased gamma
activity following retrieval of motor memory after a period of
consolidation in a dynamic adaptation task (Thürer et al., 2016).
Limb movement visualization is also a possible explanation for
the increased MTP accuracy when occipital activity is used for
imagined arm movement estimation. If a subject concentrated
on motion visualization instead of performing an imagined
kinesthetic task, an increase in neural activity in the visual cortex
may occur (Halder et al., 2013), resulting in higherMTP accuracy
using signals from occipital areas, as observed for subject 7 during
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FIGURE 10 | The cross-subject average of reconstructed hand velocity vector components. V(x), v(y), and v(z) velocity vector components are matching with

executed or imagined movement in horizontal, vertical, and depth directions, respectively. For the imagined movement reconstruction (A,B), the target trajectory was

calculated based on arm movement trials. The averaged trial of the imagined arm movement velocity reconstruction is presented in (A,B) for the PTS and BTS

models, respectively. The averaged trial of executed arm movement velocity reconstruction is presented in (C,D) for the PTS and BTS models, respectively. The

averaged trial for the PTS model (A,C) involve results of time-series predictions using the time-resolved low delta (0–2Hz) band-pass filtered EEG. The averaged trial

for the BTS model (B,D) involve results of time-series predictions using PSD of the optimal band selected in the inner level cross-validation [i.e., mu (8–12Hz), lower

beta (12–18Hz), upper beta (18–28Hz), and gamma (28–40Hz) bands].

imagined movement tasks (subject 7 in Figure 8B). In summary,
however, our analysis could not clearly link cortical areas and
cognitive strategies for the best imagined movement prediction
due to the variability in the topological results across 12 subjects.

Reconstructed Trajectories
The results across twelve subjects (Figure 10) show greater
estimation accuracy for both arm movements and imagined
arm movements using PSD time-series of mu and beta
bands compared to using the time-series of low delta band-
pass filtered EEG potentials. A comparison of target and
reconstructed trajectories (Figure 9 shows an example for single
subject trajectories and Figure 10 presents results using cross-
subject average) indicates better reconstruction accuracy in the
vertical (y) and depth (z) movement directions (especially for
executed movements) compared to the horizontal (x) plane. This
difference might originate from the topographic distribution of
the targets, as the angle between different targets, is greater
measured from the view point of the home position, for
the horizontal coordinates compared to the vertical or depth
coordinate component. The greater angular difference in the
horizontal plane may be more difficult to achieve for the subject
during the motor task execution, and may impact on the results,
especially in the case of the executed movement tasks. The

reconstructed trajectories using cross-subject average show better
fitting with the target trajectories than those obtained for the
single subject trajectories (Figure 9 vs. Figure 10), suggesting
that the target and reconstructed trajectories are correlated across
different subjects.

A Closer Look at the Techniques and
Paradigms Used
This study uses a block design paradigm involving repeated
movements to one target in each block of trials. The block design
paradigm, previously used in several similar studies (e.g., Ofner
and Müller-Putz, 2015), involve repeated movements to each of
the four targets. Block design was preferred, rather than cueing
the subject before each trial to imagine a movement to any
one of the four targets, as a single trial design is often more
complex and cognitively challenging for the subject and is a more
time consuming experiment as a cue period is required before
each trial. This cue could also have confounding influence on
the neural response e.g., ERP or stimulus onset effect. A block
design also minimizes the risk of a subject imaging a movement
to a wrong target and reduces eye movements (gazes to the
target) that could impact on the signal. With a block design, it is
possible that repeated movements to a single target consecutively
could result in a motor kinesthetic memory that leads to the
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evolution of segregated, distinct neural patterns, which result in
high classification accuracy (as shown in Sosnik et al., 2016).
Whether this effect has an influence on motion trajectory
prediction accuracy compared to that of using a random trial
sequence based paradigm remains to be investigated, however,
any effect on accuracy will affect both models and frequency
band approaches compared in this study. Future work will
explore the variations in performance for single trial vs. block
design.

There is no exact trajectory to evaluate the imagined
movement decoding accuracy and therefore the averaged
kinematic trajectory was calculated in the movement run prior
to the corresponding imagined movement run. Here we provide
a justification for this. The variability of the averaged trials
(calculated for the same target in each run, separately) was
analyzed across four runs as follows: First, averaged trials were
calculated based on the same target for the same subject and
same vector component but based on different runs. Next, the
cross-correlation of averaged trials corresponding to the same
target, subject, and vector component was calculated for each
paired-combination of the four runs, separately. The cross-
correlation values obtained using twelve subjects, four targets,
three vector components, and all combination of four runs were
very high (the mean R value was 0.972 with a standard deviation
of 0.056). This result indicates that a target-related averaged
trial computed for a specific run can represent an imagined
movement between the home position and the corresponding
target position.

As training the model on an averaged trajectory, overlooking
variability in movement kinematics, may bias decoding accuracy
rate, decoding accuracy rates in runs involving executed
movements were computed and compared using the following
two approaches: 1. trajectory information from each individual
movement trials were used as targets for each movement
trial i.e., each movement trial trajectory differed based on the
inconsistency of limb movement and 2. average movement
trajectory for movement trials (i.e., averaged across trials in a
block) was used as the training target for all movement trials
i.e., each movement trial target was identical. Test results were
calculated for both approaches and no significant differences in
decoding accuracy (p > 0.05, Student two-tailed t-test) were
found (Supplementary Figure 2). As replacing identical trials
with an averaged trial in the training dataset to predict executed
arm movements did not result in a significant difference in
decoding accuracy, identical trials in the kinematic training
data can be replaced with averaged trials, without biasing the
decoding accuracy rate with respect to the variability of the
kinematic training dataset. We are, therefore, confident that
using the averaged trials for imagined movement prediction
from the corresponding motor execution block, prior to
the run involving imagined movements, does not bias the
results.

Performance metrics have been investigated in the context of
motion trajectory prediction based BCIs. Antelis et al. reported
that a BCI employing multiple linear regression (mLR) models
using periodicmovementsmay lead to an overestimated accuracy
in the low delta band if the metric is the correlation between

target and reconstructed trajectories (Antelis et al., 2013). As
we use correlation to compare methods and frequency band
performance, it is important to emphasize that Paek et al.
observed that resting state EEG yielded R-values centered at r= 0
across subjects, indicating that high R-values cannot be attained
from randomly generated data and therefore correlation is an
appropriate measure to use (Paek et al., 2014).

Though the decoding accuracy was higher for the BTS model
using PSD values (RBTS

Executed
∼ 0.4) compared to the PTS

model using band-pass filtered potentials (RPTS
Executed

∼ 0.15), the
observed accuracy rates are relatively low compared to a number
of studies reporting accuracies of R∼0.3–0.7 for executed upper
limb movement reconstruction using the standard PTS input
(Bradberry et al., 2010; Liu et al., 2011). This difference could
be a result of an over-sensitive ICA applied in the present study
for removing muscular artifacts. For example, in some cases, an
executed movement might have some influence on the signals
in low-frequency bands, i.e., the executed movement might
cause an effect on the electrodes as discussed in Castermans
et al. (2014) for a walking task based study. Eye movement
following the movement may also have an impact on non-
invasive recordings. However, in Kim et al. (2015), where
movement observation was combined with imagery, even though
the EOG-related activity was removed using ICA the residual
effect of the visual observation could have an influence on results.
Kim et al. reported that electrooculographic contamination of
EEG can have a significant impact on mLR approaches that
use low delta band information, which can be avoided using
a nonlinear model (Kim et al., 2015). In our study, the ICA
was applied to remove any such distortions and as we have
focused on imagined movement only, neither artifacts caused
by movement of limbs to targets nor movement observation
could have an influence on the observed imagined movement
results.

Although 12 subjects participated in the experiment, the
results should be validated with a higher number of subjects. In
addition, it would be advantageous to study subjects over longer
and/or more sessions to investigate performance improvement
and learning in a closed loop scenario.

CONCLUSION

To date, electroencephalography (EEG) based decoding accuracy
of arm movement trajectories is found to be maximal using
information in the low delta band. The most commonly studied
EEG-based brain-computer interface (BCI) decodes directional
information of an executed limb movement from a band-
pass filtered potential time-series. In the present study, we
replaced the time-resolved band-pass filtered EEG potential
based potential time-series input with a time-resolved power
spectral density based bandpower time-series. The accuracy
rates of three dimensional (3D) trajectory reconstruction of
the right (dominant) hand for executed and imagined arm
movements were compared for both approaches in six non-
overlapped bands selected within the 0.5–40Hz frequency
range. Our results not only show that the 3D trajectory of
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an imagined arm movement can be decoded from power
spectral density of the mu, beta, and low gamma bands
but the bandpower time-series based model provides higher
accuracy rates in these bands compared to the potential
time-series based model produces with the low delta band.
The results present evidence that the power spectral density
of mu, beta, and low gamma bands encode movement-
related information during imagined 3D arm movement, thus,
mu, beta, and low gamma bands are better candidates for
imagined 3D arm movement decoding than the low delta band.
The evidence presented here also corroborates the evidence
from the extensive literature on classical motor imagery BCI
paradigms that predominantly use mu and beta oscillations
and rarely use low delta oscillations. The results support the
development of BCIs which may enable physical movement
independent 3D control of artificial or virtual limbs. Our
current focus is on evaluating the proposed methods in a
closed-loop BCI where users imagine 3D arm movements to
control virtual arms in real-time. BCIs that decode imagined
movements are necessary for applications that are targeted at
enabling physically impaired individuals perform movement-
independent communication and control in real and virtual
spaces.
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