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A pyroptosis‑related gene signature predicts 
prognosis and immune microenvironment 
in hepatocellular carcinoma
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Abstract 

Background:  Hepatocellular carcinoma (HCC) is a highly malignant tumor with a very poor prognosis. Pyroptosis 
is an inflammatory form of cell death and plays an important role in cancer development. The prognostic value of 
pyroptosis-related genes (PRGs) in HCC has not been studied extensively.

Methods:  Unsupervised consensus clustering analysis was performed to identify two subtypes based on the expres-
sion profiles of prognostic PRGs in the The Cancer Genome Atlas (TCGA) database, and the differences between the 
two subtypes were compared. A prognostic model based on four PRGs was established by further least absolute 
shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox regression analysis.

Results:  Two subtypes (clusters 1 and 2) were identified by consensus clustering based on prognostic PRGs in HCC. 
Survival outcomes, biological function, genomic alterations, immune cell infiltration, and immune checkpoint genes 
were compared between the subtypes. Cluster 2 had a worse survival outcome than cluster 1. Cluster 2 was enriched 
for hallmarks of cancer progression, TP53 mutation, tumor-promoting immune cells, and immune checkpoint genes, 
which may contribute to the poor prognosis. A prognostic risk signature that predicted the overall survival (OS) 
of patients was constructed and validated. Consequently, a risk score was calculated for each patient. Combined 
with the clinical characteristics, the risk score was found to be an independent prognostic factor for survival of HCC 
patients. Further analysis revealed that the risk score was closely associated with the levels of immune cell infiltration 
and the expression profiles of immune checkpoint genes.

Conclusions:  Collectively, our study established a prognostic risk signature for HCC and revealed a significant correla-
tion between pyroptosis and the HCC immune microenvironment.
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Introduction
Primary liver cancer is the sixth most frequently occur-
ring malignancy and the third most common cause of 
cancer mortality worldwide [1]. Hepatocellular carci-
noma (HCC) is the most dominant form of liver can-
cer and accounts for approximately 90% of cases [2]. 

Liver resection is the main curative treatment for HCC. 
However, most patients with HCC are diagnosed with 
intermediate or advanced stage disease, thus losing the 
opportunity for surgery. Even for patients who undergo 
surgical resection, postoperative recurrence or distant 
metastasis is common. Despite the significant progress 
made in diagnosis and treatment, the combination of the 
difficulty of early diagnosis and the ease of tumor recur-
rence and metastasis contribute to the poor prognosis 
of HCC. Therefore, prognostic biomarkers are urgently 
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needed to help predict the outcomes for HCC patients 
and to guide clinical therapy.

Pyroptosis is an inflammatory form of programmed 
cell death, characterized by cellular swelling, many bub-
ble-like protrusions, rupture, and release of inflamma-
tory cytokines such as interleukin-1β (IL-1β) and and 
interleukin-18 (IL-18) [3]. Pyroptosis is mainly regulated 
by two main pathways: the caspase-1-mediated inflam-
masome pathway, involving the NLRP1, NLRP3, NLRC4, 
AIM2, and pyrin inflammasome (the canonical inflam-
masome pathway), and the caspase-4/5/11-mediated 
inflammasome pathway (the noncanonical inflamma-
some pathway) [4]. In both the canonical and noncanoni-
cal pathways, activated caspase cleaves pro-pyroptotic 
factor gasdermin D (GSDMD), leading to the generation 
of an N-terminal fragment (GSDMD-NT) [5]. The result-
ant N-terminal fragment binds to phosphatidylinositol 
phosphates and phosphatidylserine on the inner surface 
of cell membranes and oligomerizes to generate pores 
in the lipid bilayer [6]. These pores disrupt the osmotic 
balance within cells, resulting in rupture of the plasma 
membrane and the release of cell contents and pro-
inflammatory cytokines [3].

Research has increasingly indicated that pyropto-
sis plays an important role in malignant cell transfor-
mation, growth, invasion, metastasis, and therapeutic 
responses. GSDMD and gasdermin E (GSDME) are two 
key effectors of pyroptosis. Wang et al. [7] reported that 
GSDMD expression was decreased in gastric cancers, 
and the downregulation of GSDMD could markedly 
promote the proliferation of tumors through cell cycle-
related proteins accelerating S/G2 phase cell transition. 
GSDME can enhance immune responses to tumors such 
as triple-negative breast cancer by activating pyrop-
tosis. Reduced GSDME expression is associated with 
decreased breast cancer survival, suggesting that GSDME 
might be a tumor suppressor in breast cancer [8]. One 
of the main characteristics of pyroptosis is the release 
of immunogenic cellular content and inflammatory 
cytokines, both of which are closely associated with the 
tumor microenvironment. Wang et al. [9] suggested that 
pyroptosis-induced inflammation triggers robust anti-
tumor immunity and can synergize with the checkpoint 
blockade. All findings combined indicate that the role 
of pyroptosis in cancers varies among different tumor 
cells. In HCC, a recent study revealed a mechanism of 
action for sorafenib, eliciting macrophage pyroptosis that 
enhances NK-cell effector function and ultimately effec-
tive HCC cell killing [10]. Prognostic signatures based on 
PRGs were established for lung adenocarcinoma, ovarian 
cancer, and thyroid cancer [11–13]. However, the prog-
nostic value of PRGs in HCC has not been studied exten-
sively. In this study, we investigate the expression profiles 

of PRGs between normal liver tissue and HCC. Subse-
quently, clustering subtypes and risk models based on 
PRGs are established to improve prognostic risk stratifi-
cation. The relationships between clustering subgroups, 
risk models, immune cell infiltration, and immune 
checkpoint genes are also analyzed to further explore the 
effect of PRGs on the tumor immune microenvironment 
(TIME).

Materials and methods
Data acquisition
The RNA-sequencing (RNA-seq) data of 371 HCC 
samples and 50 adjacent normal tissues, clinical char-
acteristics, and survival information of liver hepatocel-
lular carcinoma (LIHC) patients were obtained from the 
UCSC Xena database (https://​xenab​rowser.​net/​datap​
ages/). Three-hundred sixty-four histologically diagnosed 
LIHC patients with both expression profiles and survival 
information were included for further analysis. The RNA-
seq data and survival information of 233 HCC samples 
in ICGC-LIRI-JP (liver cancer, RIKEN, Japan) cohort as 
the external validation cohort were downloaded from the 
International Cancer Genome Consortium (ICGC) data 
portal (https://​icgc.​org/). All datasets used in this study 
are publicly available.

Extraction of pyroptosis‑related genes
A total of 30 pyroptosis-related genes were obtained from 
prior reviews [8, 12, 14–17], which are shown in Table 
S1. The expression differences of 30 PRGs between HCC 
cancer tissue and adjacent normal tissue were compared 
by the Wilcoxon rank-sum test. Univariate cox regression 
analysis was performed to evaluate the prognostic signifi-
cance of the 30 PRGs.

Consensus clustering
On the basis of the expression profiles of 11 prognostic 
PRGs, we clustered the patients into two subgroups by 
the R package “ConsensusClusterPlus” [18]. The clus-
tering was performed using the following settings: 100 
iterations, resample rate of 80%, K-means method, and 
Euclidean distance.

Differential gene expression and functional enrichment 
analysis
The differentially expressed genes (DEGs) between the 
two clusters were identified using the R package “limma” 
[19]. Genes with a |log2 fold change (log2FC)| ≥ 1 and an 
adjusted p-values < 0.01 were considered as the selection 
criteria of DEGs. Gene ontology (GO) analysis and gene 
set enrichment analysis (GSEA) were carried out to func-
tionally annotate genes that are differentially expressed in 
different clusters by using the R package “clusterProfiler” 
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[20]. The hallmark gene sets retrieved from the molecular 
signatures database (https://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp) were used for the GSEA.

Mutation analysis
Somatic mutation data (MuTect2 pipeline) of LIHC 
patients were downloaded using the “TCGAbiolinks” R 
package [21]. Afterward, the somatic mutation data of 
different clusters were analyzed, visualized, and com-
pared by using the “maftools” R package [22]. TMB was 
defined as the number of somatic mutations in the cod-
ing region per megabase. TMB was compared using Wil-
coxon rank-sum test between the two clusters.

Establishment and validation of the PRG risk signature
LASSO Cox regression analysis was performed to elimi-
nate 11 prognostic PRGs positively correlated with each 
other to avoid overfitting. Subsequently, stepwise mul-
tivariate regression analysis was conducted to further 
screen prognostic genes by using the lowest Akaike infor-
mation criterions (AIC) value. Ultimately, a PRG risk sig-
nature involved four prognostic PRGs was established. 
The risk score was calculated as follows: risk score = coef 
(gene 1) × expr (gene 1) + coef (gene 2) × expr (gene 2) 
+ coef (gene 3) × expr (gene 3) + coef (gene 4) × expr 
(gene 4), where “coef” indicates the coefficient of gene 
derived from the multivariate Cox analysis and “expr” is 
the gene expression level. The LIHC patients were classi-
fied into high-risk score group and low-risk score group 
based on median risk score as the cutoff value in TCGA 
group. We used Kaplan-Meier survival analysis to com-
pare the survival outcomes between the high-risk and 
low-risk groups. The receiver operating characteristic 
curves (ROC) were utilized to assess the specificity and 
sensitivity of the model as well as the accuracy at 1, 2, and 
3 years by “timeROC” package [23]. The accuracy of the 
PRG risk signature was then evaluated in the ICGC-LIRI-
JP cohort.

Correlation of PRG risk score with tumor immune 
infiltration levels
The immune score was calculated using the ESTIMATE 
algorithm through the R “estimate package” [24]. The 
immune cell infiltration was estimated by CIBERSORT 
algorithm [25]. The algorithm was based on leukocyte 
gene signature matrix (LM22) gene signature and 1000 
permutations. Only samples with a p-value < 0.05 were 
included to perform the subsequent analysis. Correlation 
analysis between PRG risk score and the immune infiltra-
tion levels in HCC was conducted with Pearson correla-
tion coefficients.

Independence of the PRGs model
Multivariate and univariate Cox regression analysis were 
conducted to assess whether the risk score was an inde-
pendent variable considering other clinical characteris-
tics (age, gender, TNM stage, and grade) in the patients 
with HCC. A nomogram-integrated PRG risk score, age, 
TNM stage, and grade were established to predict the 
probable 1-, 2-, and 3-year survival of the patients. The 
concordance index (C-index) and calibration curves were 
applied to evaluate the concordance between predicted 
survival outcomes and practical outcomes.

Statistical analysis
All statistical analysis was performed using the R soft-
ware (R version 4.0.2). P < 0.05 represents statistical 
significance.

Results
Expression profile and prognostic value of PRGs in HCC
We first compared the expression of the 30 PRGs in 
hepatocellular carcinoma tissues and normal liver tis-
sues using The Cancer Genome Atlas Liver Hepatocel-
lular Carcinoma (TCGA-LIHC) database. In total, 22 
PRGs were differentially expressed between tumor tis-
sues and adjacent nontumorous tissues. Among these 
genes, 10 genes (AIM2, IL1B, IL6, NLRC4, NLRP3, 
NLRP6, NLRP7, TNF, GZMB, and MEFV) were signifi-
cantly downregulated, and 12 genes (CASP3, CASP8, 
GPX4, GSDMB, GSDMC, GSDMD, DFNA5, NLRP1, 
NOD1, NOD2, PLCG1, and PYCARD) were signifi-
cantly upregulated in HCC tissues (Fig. 1A). The correla-
tion matrix of the expression of the 30 PRGs is shown in 
Fig. 1B. Most of the genes were positively correlated with 
each other. We then explored the prognostic value of the 
30 PRGs using univariate Cox regression analysis, and 
11 of them (CASP3, CASP6, CASP8, GPX4, GSDMC, 
DFNA5, NLRC4, NLRP6, NOD1, NOD2, and PLCG1) 
were identified as significantly associated with the sur-
vival outcomes of LIHC patients (Fig. 1C). NLRP6 served 
as a protective factor for prognosis with a hazard ratios 
less than 1, whereas the rest of the prognostic PRGs was 
all risk factors with hazard ratios greater than 1. These 
results demonstrated that the expression profile of PRGs 
in HCC significantly differed from normal liver tissue, 
and that PRGs might play an important role in the prog-
nosis of LIHC patients.

LIHC classification pattern based on the prognostic PRGs
To explore the correlation between the expression of the 
11 prognostic PRGs and LIHC subtypes, we performed 
an unsupervised consensus clustering analysis with all 
364 LIHC patients. The clustering variable (k) = 2 was 
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demonstrated to be the most appropriated selection form 
k = 2 to 10, and we divided the 364 LIHC patients into 
two clusters, namely cluster 1 (n = 185) and cluster 2 (n 
= 179) (Fig. 2A, Fig. SA–S1C). Principal component anal-
ysis (PCA) was conducted to test the difference between 
cluster 1 and cluster 2. Figure 2B shows that the two clus-
ters were well separated from each other. The Kaplan-
Meier curve indicated that patients in cluster 2 had a 
significantly worse OS (p < 0.001) than patients in cluster 

1 (Fig. 2C). The clinicopathological features between the 
two clusters were then compared using the chi-squared 
test. Cluster 1 was associated with a low WHO grade (p 
< 0.05) and had a longer overall survival time (p < 0.01) 
compared with cluster 2 (Fig.  2D). The expression pat-
tern of the 11 prognotic PRGs also varied significantly 
between the two clusters. Nine of the ten poor-prognos-
tic genes (CASP3, CASP6, CASP8, GSDMC, DFNA5, 
NLRC4, NOD1, NOD2, and PLCG1) were enriched 

Fig. 1  Expression landscape and prognostic value of PRGs in HCC. A The expressions of 30 pyroptosis-related genes (PRGs) in 50 normal liver tissues 
and 371 hepatocellular carcinoma tissues. B Spearman correlation analysis of the 30 PRGs in HCC. C Results of the univariate Cox regression analysis 
regarding OS in the TCGA cohort. *p < 0.05, **p < 0.01, and ***p < 0.001
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in cluster 2, while the only favorable-prognostic gene 
(NLRP6) was upregulated in cluster 1 (Fig. 2 D and E).

Distinct immune cell infiltration and immune checkpoint
The immune microenvironment plays crucial roles 
in the pathogenesis of HCC [26]. Pyroptosis is a pro-
inflammatory programmed cell death characterized 
by release of the immunogenic contents. We further 
explored the association of pyroptosis with the HCC 

immune microenvironment. The immune scores of 
the two clusters were estimated using the ESTIMATE 
algorithm. The immune score of cluster 2 was signif-
icantly higher than that of cluster 1 (Fig.  3B). Subse-
quently, the enrichment levels of 22 types of immune 
cells between cluster 1 and cluster 2 were compared. 
Cluster 1 showed higher infiltration levels of CD4 
naive T cells, gamma delta T cells, activated NK cells, 
monocytes, and resting mast cells, whereas cluster 2 

Fig. 2  Identification of two subtypes of HCC in the TCGA cohort and differential characteristics between two subtypes. A Consensus clustering 
matrix for k = 2. B Principal component analysis of the gene-expression profiles in the TGGA HCC cohort. C Kaplan-Meier curves of overall 
survival (OS) for patients with HCC in clusters 1 and 2. D Heatmap and clinicopathologic characteristics of clusters 1 and 2. E The expressions of 11 
prognostic PRGs in clusters 1 and 2. *p < 0.05, **p < 0.01, and ***p < 0.001
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was more correlated with regulatory T cells (Tregs), 
M0 macrophages, M2 macrophages, resting dendritic 
cells, and neutrophils (Fig.  3A). The expression pro-
files of immune checkpoint genes, which play a key 
role in immune modulation, were also examined. The 
expression levels of PD-1, PD-L1, and CTLA-4 were 
all significantly upregulated in cluster 2 in compari-
son with cluster 1 (Fig.  3 C–E). Taken together, these 
results demonstrated that PRGs could indeed divided 
LIHC patients into two molecular subtypes with sig-
nificantly different clinicopathological features, sur-
vival outcomes, and immune microenvironments.

Functional analysis of DEGs
To better illuminate the underlying molecular differ-
ences between the two clusters, we identified the DEGs 
between cluster 1 and cluster 2 and annotated their func-
tions using GO and GSEA analysis. With an adjusted 
cutoff value of p < 0.01 and |log2(fold change)| > 1, 3935 
DEGs were identified. Among them, 3885 genes were 
upregulated, and 150 genes were downregulated in clus-
ter 2 compared with cluster 1 (Fig. S2A). GO analysis 
indicated that the DEGs were related to terms including 
extracellular matrix organization, extracellular struc-
ture organization, positive regulation of cell activation, 
phagocytosis, and immune-related binding (Fig.  4A). 
The GSEA analysis showed that hallmarks of cancer 

Fig. 3  Landscape of immune cell infiltration and immune checkpoint genes in clusters 1 and 2. A The infiltration levels of 22 immune cell types in 
clusters 1 and 2. B Immunoscore in clusters 1 and 2. C–E The expressions of PD-1 (C), PD-L1 (D), and CTLA4 (E) in clusters 1 and 2. *p < 0.05, **p < 
0.01, and ***p < 0.001
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progression—such as epithelial mesenchymal transition 
(normalized enrichment score [NES] = 1.704, adjusted 
p-values < 0.001), G2M checkpoint (normalized enrich-
ment score [NES] = 1.478, adjusted p-values < 0.001), 
angiogenesis (normalized enrichment score [NES] = 

1.513, adjusted p-values < 0.001), and E2F targets (nor-
malized enrichment score [NES] = 1.457, adjusted i-val-
ues < 0.001)—were significantly enriched in cluster 2 
(Fig. 4B).

Fig. 4  Functional analysis and somatic mutation characterization between two subtypes. A GO analysis of differentially expressed genes between 
clusters 1 and 2. B GSEA showed that hallmarks of cancer progression are differentially enriched in cluster 2. C and D Oncoplots of the top 10 
mutated genes in clusters 1 (C) and 2 (D). E Forest plot of the differentially mutated genes between clusters 1 and 2. *p < 0.05, **p < 0.01, and ***p 
< 0.001
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Genetic mutation landscapes of the two clusters
With rapid technological advances in genetics, the 
importance of the mutational profile of tumors, for 
both prognostic and predictive values, is being increas-
ingly understood. We compared the tumor mutation 
burden (TMB) of the two clusters and found that the 
TMBs were not significantly different between the two 
clusters (Fig. S2B). Subsequently, the somatic mutation 
characterization of the two clusters was investigated. 
As shown in Fig.  4C, the top five genes with the high-
est mutation frequencies in cluster 1 were CTNNB1 
(31%), TTN (23%), TP53 (17%), MUC16(15%), and 
ALB (12%), while those in cluster 2 (Fig. 4D) were TP53 
(42%), TTN (26%), CTNNB1 (18%), MUC16 (17%), and 
LRP1B (10%). CTNNB1, DYNC2H1, TEP1, LAMA3, 
ATP8A1, RASA1, DUSP27, C3, and HECW2 were found 
to be highly mutated in cluster 1 compared with cluster 
2, while TP53, TSC2, ZNF208, PTPN14, ZFHX4, and 
DNAH10 were found to be highly mutated in cluster 2 
(Fig. 4E). These above functional enrichment analysis and 
mutational profile analysis indicated that the two clusters 
based on PRGs were also distinctively different in molec-
ular basis and mutation characterization, which in turn 
affected their clinical characteristics and outcomes.

Construction and validation of a risk model based 
on prognostic PRGs
To construct a prognostic gene model, 11 prognostic 
PRGs identified by univariate Cox analysis were further 
filtered by LASSO Cox regression analysis and stepwise 
multivariate regression analysis (Fig. S3 A–C). Four 
prognostic PRGs—GPX4, NLRP6, NOD2, and CASP8—
were identified. A prognostic model was established 
to evaluate the survival risk for each patient as follows: 
PRG risk score = 0.3570335 × expression of GPX4 + 
(−0.1181711) × expression of NLRP6 + 0.1128816 
× expression of NOD2 + 0.3197166 × expression of 
CSAP8. Afterwards, 364 LIHC patients were divided into 
high- and low-risk groups based on the median PRG risk 
score. We then investigated the correlation between the 
cluster groups and risk groups. As shown in Fig. S3D, the 
high-risk group was made up of 145 (79.67%) cluster 2 
patients and 37 (20.33%) cluster 1 patients, whereas the 
low-risk group included 137 (75.27%) patients in cluster 1 
and 45 (24.73%) patients in cluster 2. This result indicated 
that the risk groups dichotomized based on PRG risk 
score were largely consistent with clustering subgroups 
based on the expression of the 11 prognostic PRGs. The 

distribution of the risk scores, OS, OS status, and expres-
sion profiles of the four PRGs-based signatures is dis-
played in Fig.  5A. As shown in Fig.  5 A and B, patients 
in the high-risk group exhibited shorter OS times (p < 
0.001) and higher mortality. The heatmap (Fig.  5A) and 
boxplot (Fig. S4A) indicated that risky PRGs, includ-
ing GPX4, NOD2, and SCAF11, were highly enriched in 
the high-risk group, whereas the expression levels of the 
protective gene NLRP6 were significantly enriched in the 
low-risk group. We also performed ROC curve analysis 
to evaluate the predictive accuracy of our risk model. In 
the TCGC database, the AUCs for the PRG signatures 
at the 1-, 2-, and 3-year OS were 0.749, 0.669, and 0.648, 
respectively (Fig.  5C). We then verified our prognostic 
model using an independent verification dataset from the 
ICGC database. The risk score for each of the 232 LIHC 
patients from the ICGC was calculated using the same 
formula in the TCGA dataset, and patients were divided 
into high- and low-risk groups based on the median risk 
score. A similar result was observed between the ICGC 
and TCGA cohorts, where the high-risk group exhib-
ited shorter OS times (p = 0.0018) and higher mortality 
(Fig.  5 D and E). The three risky PRGs and one protec-
tive PRG were also significantly enriched in the high-risk 
group and low-risk group, respectively (Fig. 5D and Fig. 
S4B). In the ICGC cohort, the AUCs of the PRG signature 
corresponding to 1, 2, and 3 years of survival were 0.631, 
0.714, and 0.736, respectively (Fig.  5F). Taken together, 
our prognostic model showed a relatively high accuracy 
in predicting the prognosis of LIHC patients.

The risk signature correlated with the clinical 
characteristics and the immune landscape of HCC
We evaluated the relationship between the PRG risk 
scores and clinical characteristics. As shown in the heat-
map, the difference in T stage (p < 0.05), TNM stage (p < 
0.05), grade (p < 0.001), and overall survival (p < 0.001) 
between the high- and low-risk groups was significant 
(Fig.  6A). Tumor-infiltrating immune cells (TIICs) play 
essential roles in cancer development and are closely 
associated with clinical outcomes. We assessed the pro-
portions of different TIICs and explored the correlation 
between the PRG risk score and TIICs. Figure  6 B–D 
demonstrates that the PRG risk score was positively cor-
related with the infiltration levels of Tregs and M2 mac-
rophages but negatively correlated with the infiltration 
levels of resting mast cells. Moreover, we investigated 
the relationship between the PRG risk score and the 

Fig. 5  Construction and validation of prognostic PRG signature. A and D Distribution of risk score, OS, OS status, and heatmap of the four 
prognostic PRGs in the TCGA group (A) and ICGC group (D). B and E Kaplan-Meier curves of overall survival (OS) for patients with HCC divided by 
risk score in the TCGA group (B) and ICGC group (E). C and F Time-dependent ROC curves measuring the predictive value of the risk score in the 
TCGA group (C) and ICGC group (F)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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expression of immune checkpoints. Figure 7 A–F shows 
that the PRG risk score had a significant positive corre-
lation with the expression of common immune check-
points and their ligands, namely anti-programmed cell 
death protein 1 (PD-1) and its ligand programmed cell 
death ligand 1/2 (PD-L1/2) and anti-cytotoxic T-lympho-
cyte-associated antigen-4 (CTLA-4) and its ligand CD86/
CD80. The expression of novel immune checkpoints, 

including lymphocyte activation gene-3 (LAG-3), T-cell 
immunoglobulin and mucin-domain containing-3 (TIM-
3), T-cell immunoglobulin and ITIM domain (TIGIT), 
B7H3, Galectin-9, and V-domain Ig suppressor of T cell 
activation (VISTA), was also significantly associated with 
the PRG risk score (Fig.  8G–L). Taken together, these 
results suggested that the PRG risk score is significantly 
associated with the clinical characteristics, the landscape 

Fig. 6  Prognostic risk scores correlated with clinicopathological characteristics and immune cell infiltration. A Heatmap and clinicopathologic 
characteristics of high- and low-risk groups. B–D correlation between the PRGs risk score and infiltrating levels of T cells regulatory (Tregs) (B), 
macrophages M0 (C), and mast cells resting (D). *p < 0.05, **p < 0.01, and ***p < 0.001
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Fig. 7  Prognostic risk scores correlated with expression levels of immune checkpoint genes. A–L: PD-1 (A), PD-L1 (B), PD-L2 (C), CTLA-4 (D), CD86 
(E), CD80 (F), LAG-3 (G), TIM-3 (H), TIGIT (I), B7H3 (J), Galectin-9 (K), and VISTA (L). *p < 0.05, **p < 0.01, and ***p < 0.001
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of immune cell infiltrations, and the expression levels of 
immune checkpoint genes in LIHC patients.

The risk signature is an independent prognostic factor 
for patients with HCC
Univariate and multivariate Cox regression analyses were 
carried out to assess whether the risk signature was an 
independent prognostic predictor for OS in the TCGA 
cohort. As described in Fig.  8A, the results of the uni-
variate Cox regression analysis showed that T stage (HR: 
2.462, 95% CI :1.695–3.577, p < 0.001), M stage (HR: 
3.740, 95% CI: 1.183–11.819, p = 0.025), TNM stage 
(HR: 2.440, 95% CI: 1.682–3.540, p < 0.001), and the PRG 
risk score (HR: 2.712, 95% CI:1.863–3.948, p < 0.001) 
were significantly associated with the prognosis of LIHC 
patients. After multivariate Cox regression analysis, only 
the PRG risk score (HR: 2.637, 95% CI: 1.771–3.925, p < 
0.001) remained an independent predictor for the prog-
nosis of LIHC patients. To facilitate the use of our PRGs 

prognostic model, we established a nomogram compris-
ing the PRG risk score and clinical characteristics for 
predicting LIHC prognosis. By comparison with clinical 
characteristics, the PRG risk score showed predominant 
predictive ability in the nomogram (Fig.  8B). A calibra-
tion plot demonstrated ideal consistency compared with 
the ideal model, indicating that the nomogram has stabil-
ity for predicting LIHC patient prognosis in clinical prac-
tice (Fig. 8C). The C-index of the established nomogram 
for OS prediction was 0.695 (Fig. 8D). These results col-
lectively verified that our PRG risk signature could reli-
ably serve as an independent prognostic factor for LIHC 
patients.

Discussion
Pyroptosis is a novel form of programmed cell death trig-
gered by certain inflammasomes. Studies have found that 
pyroptosis plays a dual role in the proliferation, invasion, 
and metastasis of tumors. On the one hand, pyroptosis 

Fig. 8  Construction of a predictive nomogram. A Univariate and multivariate Cox regression of OS for clinical characteristics and PRG risk score 
in HCC. B Nomogram to predict the 1-year, 2-year, and 3-year overall survival rate of LIHC patients. C Calibration curves of the nomogram for 
predicting the probability of OS at 1, 2, and 3 years. D ROC curves of the nomogram
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can promote inflammatory cell death of cancer and 
inhibit the proliferation and migration of cancer cells. On 
the other hand, inflammatory mediators IL-1 and IL-18, 
released by the activation of pyroptosis, can promote 
the progression of various cancers [27]. The expression 
level of GSDME was significantly increased in esophageal 
squamous cell carcinoma (ESCC) tissues than in normal 
esophageal tissues and was significantly correlated with a 
better prognosis in patients with ESCC. In GSDME high-
expressed ESCC cell lines, the serine/threonine protein 
kinase PLK1 inhibitor BI2536 combined with cisplatin 
can increase chemosensitivity by inducing GSDMD-
mediated pyroptosis [28]. The expression of GSDMD 
was significantly upregulated in non-small cell lung can-
cer (NSCLC), and higher GSDMD expression is associ-
ated with invasive features, including more advanced 
tumor-node-metastasis stages and larger tumor sizes 
[29]. Apoptosis, another form of caspase-mediated cell 
death, has been found to be extensively involved in the 
tumorigenesis and development of HCC. Inhibition of 
HIF1A-AS1, a long noncoding RNA (lncRNA) overex-
pressing in HCC tissues, could enhanced starvation-
induced apoptosis in HCC cell [30]. A prognostic model 
involved apoptosis-related genes with impressive prog-
nostic predictive power was also established in HCC [31]. 
Furthermore, numerous prognostic genes and prognostic 
signature for HCC have been reported by many studies 
[32–35] and further evaluated by some meta-analysis 
[36, 37]. However, the relationship between pyroptosis 
and HCC is not fully understood. Most studies regard-
ing pyroptosis in human HCC have found pyroptosis 
plays an antitumor role in HCC. For example, Wei et al. 
[38] reported that the expression of NLRP3 was either 
completely lost or significantly downregulated in human 
HCC, and that the deficiency correlated significantly with 
poor pathological differentiation and advanced stages, 
indicating that the NLRP3 inflammasome was involved 
in the progression of HCC. One distinct characteristic 
which separates pyroptosis from other kinds of cell death 
is the activation of caspase-1. Chu et al. [39] observed a 
significantly decreased expression of caspase-1 in HCC 
tissues from patients and found that activation of cas-
pase-1-dependent pyroptosis shows therapeutic potential 
against HCC. In this study, we first studied the mRNA 
levels of 30 PRGs in HCC samples and adjacent nor-
mal tissues and found that 22 PRGs were differentially 
expressed. In detail, the expression levels of AIM2, IL1B, 
IL6, NLRC4, NLRP3, NLRP6, NLRP7, TNF, GZMB, and 
MEFV were decreased, while the expression levels of 
CASP3, CASP8, GPX4, GSDMB, GSDMC, GSDMD, 
DFNA5, NLRP1, NOD1, NOD2, PLCG1, and PYCARD 
were increased in HCC samples compared with normal 
tissues. These results indicated that pyroptosis might 

be extensively involved in HCC tumorigenesis. Univari-
ate Cox regression analysis was performed to assess the 
prognostic value of the 30 PRGs and found that 11 PRGs 
were significantly associated with overall survival. Based 
on the expression profiles of the 11 prognostic genes, 
LIHC patients were classified into two clusters with dis-
tinct survival outcomes and clinicopathological features. 
Patients in clusters 2 were more likely to have a shorter 
survival time, higher WHO grade, and higher immune 
score. Further analysis revealed that cluster 2 had 
increased levels of immune checkpoint genes. The CIB-
ERSORT algorithm was used to calculate the proportion 
of different types of tumor-infiltrating immune cells. The 
result showed that compared with cluster 1, immune cells 
that promote tumor proliferation, therapeutic resistance, 
and metastasis, such as M2 macrophages, regulatory T 
cells, and neutrophils, were enriched in cluster 2 [40–42]. 
These results suggest a significant correlation between 
PRGs and tumor-immune infiltration.

Certain gene mutations in HCC are closely related to 
the survival outcomes and vary significantly between dif-
ferent subgroups of HCC. TERT promoter mutations, the 
tumor protein p53 (TP53), and WNT pathway oncogene 
catenin beta 1 (CTNNB1) are the most frequent somatic 
genetic alterations in HCC [43]. Several studies have 
shown that HCCs with mutations in CTNNB1 display a 
particular phenotype with well-differentiated tumors and 
better prognostic outcomes. HCCs with TP53 mutation 
and an absence of CTNNB1 mutation display aggres-
sive tumor characteristics and worse prognosis [44]. We 
found that our subgroups based on PRGs had signifi-
cantly different mutational profiles. In cluster 1, which 
had a longer overall survival time, 31% of patients had 
mutations in CTNNB1, and 17% had mutations in TP53. 
In cluster 2, which had worse prognosis, 42% of patients 
had mutations in TP53, and 18% of patients had muta-
tions in CTNNB1.

Our study constructed a prognostic gene model based 
on four prognostic PRGs (GPX4, NLRP6, NOD2, and 
CASP8) and generated a PRG risk score for each LIHC 
patient. Glutathione peroxidase 4 (GPX4) is an essential 
regulator of ferroptosis, and an antitumor effect of GPX4 
inhibition-induced ferroptosis has been found in a vari-
ety of cancers, such as breast, kidney, and colorectal can-
cers [45–47]. Recent studies have suggested that GPX4 
also functions as an important gateway to pyroptosis. 
Kang et al. [48] found that GPX4 is upregulated in innate 
immune cells to counter-regulate GSDMD-N-mediated 
pyroptotic cell death, thereby preventing lethal systemic 
inflammation. Guerriero E. reported a significantly over-
expression of GPX4 in HCC compared with nontumor 
tissues, and this overexpression was associated with 
an increased malignancy grade [49]. However, another 
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study found that GPX4 suppressed the formation and 
progression of HCC by inhibition of angiogenesis and 
tumor cell proliferation as well as by immune-mediated 
mechanisms [50]. In our study, multivariate Cox regres-
sion analysis showed that GPX4 was a risky gene with 
an HR larger than 1 (HR = 1.45, 95% CI = 1.14–1.85), 
and GPX4 expression levels were significantly upregu-
lated in the high-risk group compared with those in the 
low-risk group. NLR family pyrin domain containing 6 
(NLRP6) is a member of the NLR (nucleotide-oligomer-
ization domain-like receptor) family that patrols the 
cytosolic compartment of cells to detect pathogen- and 
damage-associated molecular patterns [51]. Wang et  al. 
[52] demonstrated that NLRP6 was downregulated in 
approximately 75% of primary gastric cancer cases and 
functioned as a negative regulator of gastric cancer. In 
another study, NLRP6 was found to perform essential 
functions in the regulation of tissue repair necessary for 
protection against chemically induced injury [53]. Sev-
eral studies have suggested a protective role of NLRP6 
in a variety of liver diseases, such as liver cirrhosis, liver 
injury, acute liver failure, and alcoholic hepatitis [54–57]. 
However, the relationships between NLRP6 and HCC 
remain largely unknown. In our study, we found that 
NLRP6 was one of the pyroptosis-related prognostic bio-
markers in HCC and was likely to serve as a protective 
factor against HCC. Further in vivo and in vitro studies 
should be performed to elucidate the role of NLRP6 in 
HCC. Nucleotide-binding oligomerization domain 2 
(NOD2) is a member of the family of pattern recogni-
tion receptors (PRRs) that can initiate potent immune 
response against pathogens [58]. Ma et al. [59] reported 
that NOD2 deficiency promoted hepatocarcinogenesis, 
while overexpression of NOD2 in HCC cells inhibited 
tumorigenesis and reversed resistance to chemotherapy. 
However, a recent study by Zhou et  al. [60] suggested 
an opposite role for NOD2 in the development of HCC. 
Zhou et  al. showed that NOD2 was overexpressed in 
HCC samples and closely correlated with poor prog-
nosis of LIHC patients. Loss of hepatic NOD2 attenu-
ated the tumorigenesis of DEN/CCl4-induced HCC in 
hepatocyte-specific Nod2-knockout mice. We found that 
NOD2 was a cancer-promoting gene, as it was enriched 
in the high-risk group and associated with poor prog-
nosis among LIHC patients. Given these contradictory 
results, further studies will be needed to understand the 
relationship between NOD2 and the development of 
HCC. Caspase-8 (CASP8) has long been considered as an 
initiator of the extrinsic apoptotic pathway [61]. Recent 
studies have suggested that CASP8 also cleaves and acti-
vates GSDMD, inducing pyroptosis in response to activa-
tion of the extrinsic apoptosis signaling pathway [62]. An 
increasing number of studies have confirmed that CASP8 

is associated with tumor growth and invasion, angiogen-
esis, metastasis, therapeutic resistance, and poor clinical 
outcomes [63, 64]. In our research, we found that CASP8 
was upregulated in the high-risk group and was prognos-
tic for poor survival.

The prognostic value of the PRG risk model was evalu-
ated in patients with LIHC and validated in the external 
ICGC cohort. The risk score obtained from the risk sig-
natures effectively classified the patients with LIHC into 
high- and low-risk groups. The OS of the patients in the 
high-risk group was shorter than that of the patients 
in the low-risk group in the TCGA cohort. Consistent 
results were also obtained in an independent ICGC vali-
dation cohort. The risk groups classified by the risk score 
were largely consistent with the classification based on 
the expression profile of prognostic PRGs. These results 
indicated that the risk signature based on PRGs may help 
to improve the clinical assessment of patients, optimize 
medical intervention, and identify potential therapeutic 
targets for different subgroups.

Accumulating evidence has revealed that immune infil-
trates in tumor microenvironment play a significant role 
in the prognosis of HCC. SNRPC, PKB, and DCK have 
been discovered to significantly correlate with patient 
outcomes and immune cell infiltration in hepatocellular 
carcinoma [65–67]. We further explored the relation-
ship between the PRG risk score and tumor-infiltrating 
immune cells. The PRG risk score was positively corre-
lated with Tregs and M2 macrophages but negatively 
correlated with the infiltration levels of resting mast 
cells. Notably, the expression levels of several immune 
checkpoint-related genes, including PD-1, PD-L1, PD-L2, 
CTLA-4, CD86, CD80, LAG-3, TIM-3, TIGIT, B7H3, 
Galectin-9, and VISTA, were all significantly enriched 
in the high-risk group and correlated with the risk score. 
Taken together, we speculated that overexpression of 
immune checkpoint and tumor-promoting immune cells 
impaired the efficacy of the antitumor immune response, 
thus leading to the unfavorable prognosis in the high-risk 
group. Immunotherapy is a promising treatment option 
for HCC, and its efficacy is significantly influenced by the 
HCC immune microenvironment [68]. Given its close 
association with the HCC immune microenvironment, 
our PRG risk signature may serve as a useful tool to strat-
ify LIHC patients into different immune subtypes and 
predict the sensitivity to immunotherapy.

Univariate and multivariate Cox regression analysis 
showed that the risk score was an independent prognos-
tic factor for LIHC patients. We integrated risk score, 
TNM stage, grade, age, and gender to construct a nom-
ogram, and we found a good agreement between the 
actual OS and predicted OS at 1, 2, and 3 years. These 
results indicated that the PRG signature combined with 
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commonly available clinical characteristics might be a 
promising prognostic tool for LIHC patients.

Our study has a few limitations. First, our study is based 
on the TCGA public database and only verified by the 
ICGC public database. Second, given the high heteroge-
neity of HCC, relatively few tumor samples are included 
in our research. Furthermore, only protein-coding genes 
were explored in the present study. However, it has been 
established that noncoding RNAs, such as lncRNA and 
microRNAs, also play essential role in tumorigenesis, 
progression, and immunity of HCC. For example, Xue 
et  al. reported that lncRNA ZEB1-AS1 inhibited HCC 
progression through miR-23c [69]. In another study, a 
prognostic signature and a nomogram integrating three 
lncRNAs were constructed for HCC patients [70]. Fur-
ther studies that integrated multicenter datasets and dif-
ferent types of RNA genes are needed to test the results. 
Thirdly, our research should be further explored by both 
in vitro and in vivo experiments to elucidate the precise 
roles of pyroptosis in HCC.

In conclusion, our study showed that pyroptosis is 
heavily involved in HCC. Most of the PRGs were differ-
ently expressed between normal and HCC tissues. Fur-
ther comprehensive bioinformatics analysis identified 
HCC subtypes based on PRG signatures. The survival 
outcomes, clinical characteristics, genomic alterations, 
and immune microenvironment differed significantly 
between the subgroups. The risk score generated by 
the PRG signature is closely correlated with the infiltra-
tion levels of immune cells and the expression profile of 
immune checkpoint genes.
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