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A recombinant murine-like
rotavirus with Nano-Luciferase
expression reveals tissue
tropism, replication dynamics,
and virus transmission
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andSiyuanDing1*

1Department of Molecular Microbiology, Washington University School of Medicine, St. Louis,
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Affairs, Palo Alto, CA, United States, 3Department of Medicine, Division of Gastroenterology and
Hepatology, Stanford School of Medicine, Stanford, CA, United States, 4Department of
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Rotaviruses (RVs) are one of the main causes of severe gastroenteritis, diarrhea,

and death in children and young animals. While suckling mice prove to be

highly useful small animal models of RV infection and pathogenesis, direct

visualization tools are lacking to track the temporal dynamics of RV replication

and transmissibility in vivo. Here, we report the generation of the first

recombinant murine-like RV that encodes a Nano-Luciferase reporter (NLuc)

using a newly optimized RV reverse genetics system. The NLuc-expressing RV

was replication-competent in cell culture and both infectious and virulent in

neonatal mice in vivo. Strong luciferase signals were detected in the proximal

and distal small intestines, colon, and mesenteric lymph nodes. We showed, via

a noninvasive in vivo imaging system, that RV intestinal replication peaked at

days 2 to 5 post infection. Moreover, we successfully tracked RV transmission

to uninoculated littermates as early as 3 days post infection, 1 day prior to

clinically apparent diarrhea and 3 days prior to detectable fecal RV shedding in

the uninoculated littermates. We also observed significantly increased viral

replication in Stat1 knockout mice that lack the host interferon signaling. Our

results suggest that the NLuc murine-like RV represents a non-lethal powerful

tool for the studies of tissue tropism and host and viral factors that regulate RV

replication and spread, as well as provides a new tool to facilitate the testing of

prophylactic and therapeutic interventions in the future.
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Introduction

Rotavirus (RV) is one of the leading causes of severe diarrhea in

infants and young children. Although there are multiple safe and

effective RV vaccines currently available, RV infection still results in

the death of more than 128, 500 children per year (1). Sucklingmice

provide a pathologically relevant small animal model for studying

infection, protection, and immune responses because homologous

murine RVs are a natural mouse pathogen and cause similar

diarrheal diseases as seen in human infants and many other

mammalian species (2, 3). Using this model, we and others have

previously reported an important role of the type I and type III

interferon (IFN) responses as well as local and systemic antibody

responses in controlling RV replication in the host intestine (4–7).

RV predominantly infects the host gastrointestinal tract, in

particular the small intestine. However, whether RV replicates in

extra-intestinal tissues such as the central nervous system, liver,

and respiratory tract remains controversial (8–15). In addition,

although fecal-oral transmission is clearly the primary means of

RV spread, it is technically challenging and labor intensive to

follow the events of virus transmitted to naïve animals prior to

the appearance of diarrheal diseases. Bioluminescent reporter

systems provide extreme convenience and sensitivity to visualize

intra- and inter-host viral dynamics in real time. Although

fluorescent proteins and luciferase enzymes have been widely

used in the studies of a variety of viral infections, including

influenza virus, vaccinia virus, herpes simplex virus type 1,

dengue virus, Sindbis virus, Sendai virus, and adenovirus (16–

25), most recombinant viruses tend to be attenuated, genetically

unstable, and only a few are fully applicable for in vivo imaging.

A plasmid-based RV reverse genetics system has recently

been established and optimized by our labs and others, thereby

enabling the recovery of low-titer recombinant reporter viruses

and hard-to-rescue RV strains (26–29). Intragenic sequence

duplications in NSP1, NSP3 and NSP5/6 gene segments have

been observed in natural RV variants, leading to the production

of viral proteins of unusual length and making them ideal targets

to accommodate foreign gene expression (30–32). NSP5 and

NSP6 are encoded from the same gene segment, thereby

introducing complications for genetic manipulation. NSP3 is

expressed at higher levels than NSP1 in infected cells, rendering

NSP3-based fluorescent proteins brighter and easier to detect

(28). Nano-luciferase (NLuc) is a novel bioluminescent protein

and offers several advantages over the existing platforms (Firefly,

Gaussia, Renilla, etc.), including enhanced stability, smaller size,

and increased luminescence (33). Hence, we take advantage of a

highly efficient RV reverse genetics system that we recently

developed (29) to generate a recombinant murine-like RV D6/

2-2g strain that encodes NLuc from an RV NSP3 gene construct

(rD6/2-2g-NLuc). This virus genome consists of 9 murine RV
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genes and 2 simian RV genes (29) and is not attenuated

compared to the parental D6/2 strain (data not shown). The

NLuc RV is genetically stable, replication-competent,

pathogenic, and transmissible in vivo. Using this powerful

virological tool and a well-established neonatal model of RV

infection, we have begun to investigate several fundamental and

important questions of RV biology including tissue tropism,

replication dynamics, and virus transmission.
Results

Generation of a recombinant NLuc-
expressing murine-like RV

To generate rD6/2-2g-NLuc, we first constructed a T7

plasmid that expresses the NLuc reporter in the RV gene

segment 7 that encodes NSP3 (pT7-NSP3-NLuc). The

monomeric NLuc gene was placed downstream of the NSP3

open reading frame that is followed by a P2A self-cleaving

peptide to permit separate gene expression (Figure 1A). BHK-

T7 cells transfected with T7-NSP3-NLuc produced the NLuc

protein (Figure 1B). We further confirmed by an NLuc substrate

assay that strong luciferase activity was detected in T7-NSP3-

NLuc-transfected cells (Figure 1C). We successfully rescued the

parental murine-like RV rD6/2-2g strain and rD6/2-2g-NLuc

viruses using our optimized RV reverse genetic system (29).

NLuc expression was verified in rD6/2-2g-NLuc-infected

MA104 cells (Figure 1D). The identity of rD6/2-2g-NLuc was

further validated by a unique electropherotype by RNA

polyacrylamide gel electrophoresis analysis (Figure 1E). The

edited dsRNA of RV gene segment 7 migrated slower than the

wild-type gene segment 7 due to the NLuc insertion (Figure 1E).

In addition, we quantified the luciferase activity in rD6/2-2g-

NLuc-infected cells and found that we were able to detect signals

even at the 105 dilution factor (Figure 1F). Taken together, we

successfully generated a murine-like RV NLuc reporter virus

that produces robust luciferase activity in infected cells.
Characterization of rD6/2-2g-NLuc
replication in vitro

We next sought to determine the replication kinetics of rD6/

2-2g-NLuc as compared to the parental rD6/2-2g in vitro. Despite

slightly lower intracellular mRNA levels and virus titers than

those of rD6/2-2g at 24, 48, and 72 hours post infection (hpi)

(Figures 2A, B), rD6/2-2g-NLuc replicated well in MA104 cells

and produced substantial cytopathic effects (data not shown). The

plaque size of rD6/2-2g-NLuc was approximately half of that of
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rD6/2-2g (Figure 2C). We performed serial passage of rD6/2-2g-

NLuc in MA104 cells to assess the genetic stability. Importantly,

luminescence was still highly detectable after 8 passages and we

observed no loss of luciferase signals over time (Figure 2D) and
Frontiers in Immunology 03
the sequences of passage 4 and passage 8 viruses also did not

change (Figure S1), suggesting that the NLuc gene was

functionally maintained in the viral genome and that the

reporter virus is infectious and stable in vitro.
A B

D
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C

FIGURE 1

Generation and validation of a bioluminescent rD6/2-2g-NLuc. (A) A schematic diagram (not to scale) of a genetically engineered pT7 plasmid that
encodes NLuc with nucleotide positions indicated. UTR, untranslated region; P2A, self-cleaving P2A peptide gene of porcine teschovirus-1. (B) BHK-T7
cells were transfected with pT7-NSP3 and increasing amounts of pT7-NSP3-NLuc for 48 hours, and cell lysates were analyzed by western blot. (C) BHK-T7
cells were transfected with pT7 or pT7-NSP3-NLuc plasmids for 48 hours. The luciferase activity was determined by Nano-Glo® luciferase assay. Data are
presented as the average of three experiments and error bars indicate standard error of themean (SEM) (Student t test; *** P < 0.001). (D)MA104 cells were
infected with rD6/2-2g and rD6/2-2g-NLuc viruses (MOI=0.1) for 24 hours, and cell lysates were analyzed by western blot. (E) dsRNA profiles. Viral RNA
was extracted from sucrose cushion-concentrated virus, separated on a 10% polyacrylamide gel, and then stained with ethidium bromide. The dsRNA
segment numbers are indicated and the position of the engineered segment 7 is marked with a yellow arrowhead. (F) Luciferase activity of rD6/2-2g and
rD6/2-2g-NLuc. MA104 cells were infected with 10-fold serially diluted rD6/2-2g or rD6/2-2g-NLuc. Cells were harvested at 48 hpi and the luciferase
activity was determined by Nano-Glo® luciferase assay. Results are expressed as themean luminescence of triplicates and error bars show the SEM (one-
way ANOVAwith Dunnett’s test; ns, not significant, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001).
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Tissue tropism of rD6/2-2g-NLuc in vivo

To leverage the high sensitivity of NLuc and investigate RV

tissue tropism, we orally inoculated five-day-old 129sv pups with

1.3×106 foci forming units (FFUs) of rD6/2-2g-NLuc. We

observed 100% diarrheal development in infected pups at 1

day post infection (dpi) (Figure 3A). The diarrhea occurrence

remained more than 50% from 2 to 5 dpi (Figure 3A). We

euthanized one mouse on each day and harvested different

organs to measure luciferase activities. As expected, we found

strong luciferase signals throughout the lower gastrointestinal

tract. We detected more robust activity in the distal small

intestine (SI) than proximal SI (Figures 3B, C). We also

detected high NLuc activity in the colon and the mesenteric

lymph nodes (Figures 3D, E), suggestive of RV replication at
Frontiers in Immunology 04
these sites. On the other hand, the pancreas and the liver had

weak to non-detectable signals (Figures 3G). These results

suggest that murine-like RV primarily targets the lower

gastrointestinal tract (SI and colon) and does not actively

replicate in extra-intestinal organs such as the liver.
Infectivity and pathogenicity of rD6/2-
2g-NLuc in vivo

To investigate whether we can use rD6/2-2g-NLuc for

studies of intestinal RV infection, we inoculated five-day-old

129sv mice with a low inoculum (3.5 × 103 FFUs) of rD6/2-2g-

NLuc via oral gavage. We observed that 50% of mice developed

diarrhea at 1 dpi and about 80% developed diarrhea by 2 dpi
A B

DC

FIGURE 2

Growth kinetics of bioluminescent rD6/2-2g-NLuc in MA104 cells. (A) MA104 cells were infected with rD6/2-2g or rD6/2-2g-NLuc (MOI=0.01)
in the presence of trypsin (0.5 mg/ml) and harvested at the indicated time points. The viral mRNA level was determined by RT-qPCR assay and
normalized to that of GAPDH. Data are the average of three experiments, error bars indicate SEM (two-way ANOVA test; ns, not significant,
* P < 0.05, ** P < 0.01). (B) Multi-step growth curves of rD6/2-2g-NLuc. MA104 cells were infected with rD6/2-2g or rD6/2-2g-NLuc
(MOI=0.01) in the presence of trypsin (0.5 mg/ml) and harvested at the indicated time points. The viral titers were determined by an
immunoperoxidase focus-forming assay. Data are the average of three experiments, error bars indicate SEM (two-way ANOVA test; ns, not
significant, * P < 0.05, ** P < 0.01). (C) Plaque formation of rD6/2-2g-NLuc. Plaques were generated on MA104 monolayers and detected by
crystal violet staining at 7 dpi. The diameter of at least 25 randomly selected plaques from 2 independent plaque assays was measured by a
bright-field microscope. Error bars indicate SEM (Student t test; **** P < 0.0001). (D) Functional stability of luciferase activity in rD6/2-2g-NLuc
after sequential passage. rD6/2-2g-NLuc was sequentially passaged in MA104 cells. The luciferase activity for passages 3-8 was determined by
Nano-Glo® luciferase assay as described. Results are expressed as the mean luminesce of duplicates. Error bars show SEM. Luminescence from
NLuc substrate from MA104 cells infected with rD6/2-2g were plotted as a reference.
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(Figure 4A). We found high levels of fecal shedding of infectious

RVs from 4 to 10 dpi (Figure 4B). Importantly, we recorded the

bioluminescence signals from day 0 to day 12 post infection and

observed strong luciferase in the abdominal cavity as early as 1

dpi using the in vivo imaging system (IVIS) (Figure 4C). The

luminescence intensity was up to 106 p/sec/cm2/sr and remained

high until 7 dpi (Figure 4D). To evaluate the stability in vivo, we

sequenced the shed virus in the collected feces at 8 dpi. No

mutations were seen in the gene segment 7 (Figure S2). These

results demonstrate that the reporter virus provides extreme

sensitivity and temporal resolution of intra-intestinal RV

infection several days prior to the detection of RV shedding in

the fecal specimens.
Frontiers in Immunology 05
Characterization of RV transmission by IVIS

To further quantitatively track RV transmission, an important

but under-studied aspect of RV biology, we co-housed 6 infected

and 6 uninfected littermates in the same cage. Compared to the RV-

inoculatedmice (Figure 4A), diarrhea was first observed in the naïve

animals at 4 dpi and reached over 80% at 7 dpi (Figure 5A).We also

quantified RV fecal shedding by an FFU assay. The originally

uninoculated mice had detectable virus shedding briefly between

6 to 8 dpi (Figure 5B), albeit at a similar level as the infected mice

(Figure 4B). Remarkably, we observed strong luminescence as early

as 3 dpi (Figures 5C, D), preceding the first appearance of clinical

symptoms at 4 dpi and fecal shedding at 6 dpi. These data indicate
A B

D E F

G

C

FIGURE 3

Bioluminescence of rD6/2-2g-NLuc in the intestines and the systemic sites in wild-type 129sv mice. (A) Five-day-old wild-type 129sv pups (n=5)
were orally infected with 1.3 × 106 FFUs of rD6/2-2g-NLuc and diarrhea was monitored till 5 days post infection. (B–G) Five-day-old wild-type
129sv pups were orally infected with 1.3 × 106 FFUs of rD6/2-2g-NLuc, then euthanized at indicated days post infection. Bioluminescence from
indicated tissue homogenates was determined by Nano-Glo® luciferase assay. Luminescence from NLuc substrate of uninfected mice tissues
were plotted as a reference.
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that RV transmission readily occurred 3 days after co-housing and

that rD6/2-2g-NLuc is a highly sensitive and convenient tool for

following RV infection and spread in real time in vivo.
RV infection of Stat1 knockout mice

To determine whether IVIS enables to study the role of host

factors in RV intestinal replication, which is enhanced in

immunodeficient mice, we orally infected five-day-old Stat1
Frontiers in Immunology 06
knockout (KO) mice with 3.5 × 103 FFUs of rD6/2-2g-NLuc, at

the same dose as in wild-type 129sv mice (Figure 4). We

observed that about 30% of mice developed diarrhea at 1 dpi

and 100% developed diarrhea from 2 until 6 dpi (Figure 6A). As

expected, Stat1 KO pups had high levels of fecal shedding of

infectious virus particles at 1 to 3 dpi (Figure 6B), much earlier

than that observed in the wild-type animals (Figure 4B).

Moreover, IVIS revealed that the luminescence intensity was

significantly increased (approximately 10-fold higher, up to 107

p/sec/cm2/sr) with the lack of host interferon signaling
A B

D

C

FIGURE 4

Infectivity and pathogenicity of rD6/2-2g-NLuc in vivo. (A) Five-day-old 129svmice (n=6) were orally inoculated with 3.5 × 103 FFUs of rD6/2-2g-NLuc.
The diarrhea rate wasmonitored from 1 to 12 days post infection. (B) Viral shedding in stool samples was detected by an FFU assay and normalized to the
feces weight. (C) Representative images of rD6/2-2g-NLuc infected pups (1 to 12 days). The bioluminescent signal is expressed in photons per second per
square centimeter per steradian (p/sec/cm2/sr). (D)Quantification of the luminescence in (C). The dashed line indicates the upper limit of detection.
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(Figures 6C–E). Collectively, these results demonstrate the utility

and effectiveness of rD6/2-2g-NLuc in objectively reflecting RV

replication and studying host immunity in vivo.
Discussion

Reporter viruses prove to be important tools for visualizing and

monitoring viral replication dynamics in vitro and in vivo.

Although the plasmid-based RV reverse genetics system was
Frontiers in Immunology 07
reported in 2017 and several fluorescent and luminescent

protein-encoding RVs (primarily in the backbone of simian RV

SA11 strain) have been described (26–28), murine viruses are

difficult to rescue, precluding further manipulation and

heterologous expression of foreign genes. In this study, we take

advantage of a more efficient RV reverse genetics system that we

recently developed (29) and generate amurine-like rD6/2-2g-NLuc

strain. This virus was genetically and functionally stable even after 8

passages (Figures 2D, S1, and S2). The combinatorial use of rD6/2-

2g-NLuc reporter virus and IVIS enabled the detection of RV
A B

D

C

FIGURE 5

Transmission rD6/2-2g-NLuc in vivo. (A) Five-day-old 129sv mice were co-housed with 6 infected (3.5 × 103 FFUs of rD6/2-2g-NLuc) and 6
uninfected littermates in the same cage. The diarrhea rate was monitored from 1 to 12 days post infection. (B) Viral shedding in stool samples
was detected by an FFU assay and normalized to the feces weight. (C) Representative images of naive pups (1 to 12 days). The bioluminescent
signal is expressed in photons per second per square centimeter per steradian (p/sec/cm2/sr). (D) Quantification of the luminescence in (C). The
dashed line indicates the upper limit of detection.
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replication in different organ systems (Figure 3). It is noteworthy

that we found strong luciferase signals in the colon (Figure 3D).

There is controversy in the literature regarding RV infection of the

large intestine including cecum and colon (34–38). With the

limitation that we cannot distinguish real infection of colon

epithelium from NLuc activities originating from infected shed

but still alive cells, our data suggest a strong possibility that RV also

replicates in the colon. It is also interesting that we transiently

detected strong luciferase signals in the mesenteric lymph node
Frontiers in Immunology 08
(Figure 3E), composed predominantly of hematopoietic cells.

Furthermore, our system allowed us to assess RV transmission to

uninoculated co-caged littermates (Figure 5) and to study the effect

of host factors and signaling pathways on RV intestinal replication

in vivo (Figure 6), which is easily extendable to the role of other host

innate and adaptive antiviral signaling in RV infection,

pathogenesis, and transmission.

Given the modular nature and small size of the NLuc

reporter construct, this approach is broadly applicable to the
A B

D E

C

FIGURE 6

Characterization of rD6/2-2g-NLuc infection in Stat1 KO 129sv mice. (A) Five-day-old Stat1 KO 129sv mice (n=9) were orally inoculated with
3.5× 103 FFUs of rD6/2-2g-NLuc. The diarrhea rate was monitored from 1 to 12 days post infection. (B) Viral shedding in stool samples was
detected by an FFU assay and normalized by to feces weight. (C) Representative images of rD6/2-2g-NLuc infected Stat1 KO pups (1 to 12 days).
The bioluminescent signal is expressed in photons per second per square centimeter per steradian (p/sec/cm2/sr). (D) Quantification of the
luminescence in (C). The dashed line indicates the upper limit of detection. (E) Statistical analysis of area under the curve (AUC) comparing data
in Figure 4D and (D). Error bars show the SEM (one-way ANOVA test; * P < 0.05, ** P < 0.01).
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studies of other RV isolates and other enteric viruses (murine

norovirus, enterovirus D68, etc.). The replication of simian RVs

is severely limited in immunocompetent suckling mice. To that

end, we can rescue NLuc reporter in the backbone of simian RV

RRV strain, which we expect to be attenuated in 129sv mice but

to cause a lethal biliary disease in Stat1 deficient or intra-

peritoneally inoculated newborn mice (39). We can apply

traditional virological approaches (reassortment with gene

swapping and/or deletion) to examine the relative contribution

of individual RV gene products in intestinal replication and

transmission. Another interesting aspect is that the host genetic

background dictates RV pathogenicity. Compared to 129sv

pups, diarrhea in C57Bl/6 pups is highly attenuated. Thus, one

could use NLuc virus to desegregate RV replication from

diseases and help dissect the role of RV-encoded products in

this process.

Finally, reporter viruses have emerged as powerful tools in

small-molecule compound screening (40, 41), antibody

identification (17), and vaccine efficacy analysis (42). We

envision that our NLuc reporter RV and IVIS will provide a

rapid, non-lethal and real-time quantitative means to assess viral

replication, spread and facilitate the rationale design and

development of novel antiviral therapeutics and new-

generation safe and efficacious RV vaccines, to be tested in

pre-clinical small animal models.
Material and method

Cell culture and viruses

MA104 cells (ATCC CRL-2378) were cultured in Medium

199 (M199, Sigma-Aldrich) supplemented with 10% heat-

inactivated fetal bovine serum (FBS), 100 I.U. penicillin/ml,

100 µg/ml streptomycin and 0.292 mg/ml L-glutamine

(complete medium). The BHK-T7 cell line (43) was provided

by Dr. Ursula Buchholz (Laboratory of Infectious Diseases,

NIAID, NIH, USA) and cultured in completed DMEM

supplemented with 0.2 mg/ml of G-418 (Promega). MA104

N*V cells were cultured in complete M199 in the presence of

3 mg/ml puromycin and 3 mg/ml of blasticidin (In vivoGen, San

Diego, CA).

The recombinant RV strains used in this study include rD6/

2-2g and rD6/2-2g-NLuc and were propagated in MA104 cells.

Prior to infection, all RV inocula were activated with 5 mg/ml of

trypsin (Gibco Life Technologies, Carlsbad, CA) for 30 min

at 37°C.
Plasmid construction

The murine D6/2 rescue plasmids: pT7-D6/2-VP2, pT7-D6/

2-VP3, pT7-D6/2-VP4, pT7-D6/2-VP6, pT7-D6/2-VP7, pT7-
Frontiers in Immunology 09
D6/2-NSP1, pT7-D6/2-NSP2, pT7-D6/2-NSP3, and pT7-D6/2-

NSP5 were prepared as described previously (29) while pT7-

SA11-VP1 and pT7-SA11-NSP4 were originally made by Dr.

Takeshi Kobayashi (Research Institute for Microbial Diseases,

Osaka University, Japan) (26) and obtained from Addgene. The

C3P3-G1 plasmid (44) was kindly provided by Dr. Philippe H

Jaïs. To generate pT7-D6/2-NSP3-Nluc (accession number:

ON738554), which encodes a full-length Nluc gene (GenBank:

KM359774.1) and the self-cleaving P2A peptide gene of porcine

teschovires-1, the P2A-Nluc gene cassette was amplified by PCR

and inserted between nucleotides in the NSP3 gene via Gibson

assembly (NEBuilder HiFi DNA Assembly kit). Purification of

all the plasmids was performed using QIAGEN Plasmid

Maxiprep kit per the manufacturer’s instructions.
Generation of recombinant rotaviruses

rD6/2-2g was generated using the following pT7 plasmids:

pT7-SA11-VP1 and -NSP4, pT7-D6/2-VP2, -VP3, -VP4, -VP6,

-VP7, -NSP1, -NSP2, -NSP3 and -NSP5 according to the

optimized entirely plasmid-based RG system (29). The pT7-

D6/2-NSP3 plasmid was replaced by the pT7-D6/2-NSP3-Nluc

to generate rD6/2-2g-Nluc. The rescued recombinant RVs were

propagated for two passages in MA104 cells in a 6-well plate, and

then were plaque purified twice in MA104 cells.
Western blot

BHK-T7 cells were transfected with 1µg pT7 vector or 1 and

2 µg pT7-NSP3-NLuc plasmids for 48 hours and MA104 cells

were infected by rD6/2-2g or rD6/2-2g-NLuc at an MOI of 0.1

for 24 h. Then, cells were washed twice with ice-cold phosphate-

buffered saline (PBS; Thermo Scientific) and lysed in RIPA

buffer (150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium

deoxycholate, 0.1% SDS, 50 mM Tris/HCl, pH 8.0)

supplemented with 1× protease inhibitor cocktail (Thermo

Scientific) for 30 min at 4°C. After that, cell debris was

removed by centrifugation at 12,000 × g for 10 min at 4°C.

Samples were resolved in precast SDS-PAGE gels (4 to 15%;

Bio-Rad) and transferred to a nitrocellulose membrane

(0.45 mm; Bio-Rad). The membrane was incubated with

blocking buffer (5% bovine serum albumin [BSA] diluted in

PBS supplemented with 0.1% Tween 20) for 1 h at room

temperature. Then, the membrane was incubated with anti-

NLuc mouse monoclonal antibody (Promega; catalog no.

N7000; 1 µg/ml) diluted in SuperBlock blocking buffer, 4 °C

overnight, anti-RV VP6 mouse monoclonal antibody (Santa

Cruz Biotechnology; sc-101363; 1:1,000), and anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rabbit

monoclonal antibody (CST; catalog no. 2118; 1:1,000) diluted

in 5% BSA, 4 °C overnight, followed by incubation with anti-
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mouse IgG (CST; catalog no. 7076; 1:5,000) or anti-rabbit IgG

(CST; catalog no. 7074; 1:5,000) horseradish peroxidase (HRP)-

linked antibodies at room temperature for 1 h. The antigen-

antibody complex was detected using Clarity Western ECL

substrate (Bio-Rad) and the ChemiDoc MP imaging system

according to the manufacturer’s manuals.
Assessment of genetic stability

The rD6/2-2g-NLuc was serially passaged five times after the

plaque purification. To this end, MA104 cell monolayers in 6-

well plates were infected with recombinant rD6/2-2g-NLuc at an

MOI of 0.1. After three days post-infection, infected cells were

frozen and thawed twice, and then lysates were clarified by

centrifugation. Cellular lysates were serially passaged four times

(until passage 8) through sequential infection of MA104 cells at

MOI of 0.1 for 72 h. The NLuc gene of viral stocks (P4–P8) was

tested by luciferase assay and RT-PCR. For RT-PCR, the total

RNA of the recombinant rD6/2-2g NLuc (P4-P8) and rD6/2-2g

was extracted by TRIzol and reverse transcribed to cDNA using

SuperScript III First-Strand Synthesis System (Thermo Fisher)

according to manufacturer instructions. NSP3 gene was

amplified by the PrimeSTAR® HS DNA Polymerase (Takara)

following the manufacturer’s guides. Finally, PCR products were

separated by 1% agarose gel electrophoresis, stained by ethidium

bromide, and visualized by a gel documentation system

(Axygen). A separate set of purified NSP3 fragments from D6/

2-2g NLuc P4 and P8 were sent for Sanger sequencing. The

forward and reverse primers used for D6/2 NSP3 amplification

we r e 5 ′ -GGCATTTAATGCTTTTCAG-3 ′ and 5 ′ -
GGTCACATAATGCCCCTATAG -3′, respectively.
RT-qPCR

The total RNA of the MA104 cells infected with recombinant

rD6/2-2g and rD6/2-2g-NLuc virus was extracted by TRIzol. Total

RNA was reverse transcribed to cDNA using a high-capacity

cDNA reverse transcription kit with RNase inhibitor (Applied

Biosystems) according to the user guide. Briefly, 0.8 mg of RNA,

2 ml of 10× reverse transcription (RT) buffer, 0.8 ml of 100mM

deoxynucleoside triphosphate (dNTP) mix, 2 ml of RT random

primers, 0.1 ml of RNase inhibitor, 0.1 ml of MultiScribe reverse

transcriptase, and a flexible amount of nuclease-free H2O were

added to the 20 ml reaction mixture. The reverse transcription

thermocycling program was set at 25°C for 10min, 37°C for 2 h,

and 85°C for 5 min. The expression level of housekeeping gene

GAPDH was quantitated by 2× SYBR green master mix (Applied

Biosystems), and NSP5 was quantitated by 2× TaqMan Fast

Advanced master mix (Applied Biosystems). The primers used

in this study were as follows: human GAPDH forward primer, 5′-
GGAGCGAGATCCCTCCAAAAT-3′, and reverse primer, 5′-
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primer, 5′-CTGCTTC AAACGATCCACTCAC-3′, reverse

primer, 5′-TGAATCCATAGACACGCC-3′, and probe, 5′-CY5/
TCAAATGCAGTTAAGACAAATGCAGACGCT/IABRQSP-3′.
The y axis stands for the percentage of NSP5 mRNA levels relative

to GAPDH levels.
Plaque assay

Activated virus samples were serially diluted 10-fold and

added to monolayers of MA104 cells for 1 h at 37°C. Inocula

were removed and replaced with 0.1% (w/v) agarose (SeaKem®

ME Agarose. Lonza) in FBS-free M199 supplement with 0.5 mg/
ml of trypsin. Cultures were incubated for 7 days at 37°C in a 5%

CO2 incubator. Random plaques were picked by pushing the

200 ml tip through the overlay agarose, and then were

propagated in MA104 cells as described above. To quantify the

plaque diameter, cultures at 7 dpi were fixed with 10%

formaldehyde and stained with 1% crystal violet (Sigma-

Aldrich). The diameter of at least 25 randomly selected

plaques from 2 independent plaque assays was recorded using

an ECHO microscope and then, diameters were measured with

the annotation tool of the microscope.
Focus-forming assay

Activated virus samples from cell culture or mouse stool

specimens were serially diluted 2- or 10-fold and added to

confluent monolayers of MA104 cells seeded in 96-well plates

for 1 h at 37°C. Inocula were removed and replaced with M199

serum-free and then incubated for 16 to 18 h at 37°C. Cells were

then fixed with 10% paraformaldehyde and permeabilized with

1% Tween 20. Cells were incubated with rabbit hyperimmune

serum to simian RV RRV strain produced in our laboratory and

previously described (45) and anti-rabbit HRP-linked secondary

antibody. Viral foci were stained with 3-amino-9-ethylcarbazole

(AEC substrate kit. Vector Laboratories) per manufacturer’s

instructions and enumerated visually.
Luciferase assay

MA104 cells seeded in 96-well plates were infected with 50 µL

of 10-fold serial dilution of recombinant RVs at 37°C for 48 h and

freeze-thawed 2 times before 50 µL/well of Nano-Glo Luciferase

Assay Reagent (Promega) was added per manufacturer’s

instructions. After 5 minutes incubation at room temperature,

relative luminosity units were measured (p/sec/cm2/sr) using a

20/20n Luminometer (Turner Biosystems). 100 ml of mouse

tissues homogenates were mixed with 50 ml of Nano-Glo

working substrate solution and processed as described above.
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Purification of RV particles by sucrose
gradient centrifugation

RVs were concentrated by pelleting through a sucrose

cushion as described (46). Briefly, MA104 grown in 12-well

plate were infected at an MOI of 0.01 and harvested at 72 h post

infection (hpi), the viral lysates were freeze-thawed three times,

and viral particles concentrated by ultracentrifugation for 1 h at

30,000 g at 4°C. Viral pellets were resuspended in TNC buffer (10

mM Tris/HCl [pH 7.5], 140 mMNaCl, 10 mM CaCl2), extracted

with genetron and the aqueous phase pelleted through a 40%

sucrose cushion by centrifugation for 1 h at 30,000 g at 4°C. The

pelleted RV was resuspended with 1 mL of PBS with 100mg/L of

Ca2+ and Mg2+ and this suspension was used to perform mouse

infections or to obtain genomic dsRNA profiles.
Electrophoresis of viral dsRNA genomes

Viral dsRNAs were extracted from sucrose cushion-

concentrated RVs with TRIzol (Invitrogen) according to the

manufacturer’s protocol and then mixed with Gel Loading Dye,

Purple (6x), no SDS (NEB). Samples were subjected to PAGE

(10%) for 2h 30 min at 180V and then stained with ethidium

bromide (0.1 µg/mL) for 10 minutes and visualized by the gel

documentation system (Axygen).
Mice infection and phenotypic
characterization

Wild-type 129sv and Stat1KOmice were purchased from the

Jackson Laboratory and Taconic Biosciences and bred locally at

the Washington University in St. Louis (WUSTL) CSRB

vivarium. Wild type 129sv mice were originally purchased from

the Jackson Laboratory and maintained in-house in a breeding

colony. 5-day-old pups were orally inoculated with rD6/2-2g-

NLuc (1.3 × 106 FFU) or PBS. Diarrhea was scored as previously

described (47). On the indicated day animals were sacrificed and

small intestine, colon, mesenteric lymph node, pancreas, and liver

were collected, weighed, homogenized in PBSwithCa2+ andMg2+

and clarified by centrifugation. Homogenized tissues were

subjected to measurements of luciferase activity. Proximal and

distal small intestines samples were collected: proximal samples

were collected at about 2-3 cm from the pyloric sphincter while

distal were collected at about 0.5 cm from the caecum.
IVIS

Wild-type 129sv and Stat1 KO mice were purchased from

the Jackson Laboratory and Taconic Biosciences, respectively,
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(WUSTL) CSRB vivarium. Five-day-old suckling pups were

orally infected with rD6/2-2g-NLuc (3.5 × 103 FFU). Diarrhea

was evaluated from day 1 to day 12 post infection. To perform

IVIS, we firstly weighted the mice, and oral gavage Nano-Glo™

substrate (1/20 dilution in PBS; to make sure 50 µL per mouse, 1/

25-1/57 dilution in PBS) for 3.5 hours and then performed IVIS

(exposure time: 1 second) by using the IVIS Spectrum BL.
Statistical analysis

All statistical tests were performed as described in the

indicated figure legends using Prism 9.0. Statistical significance

was determined using a one-way ANOVA when comparing

three or more groups. When comparing two groups, a Mann-

Whitney test and student’s t test were performed. The number of

independent experiments performed is indicated in the relevant

figure legends.
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SUPPLEMENTARY FIGURE 1

The NSP3 sequences from cell culture passaged viruses. The sequences
of NSP3 of parental virus, P4 and P8 from serial passages subjected to RT-

PCR and Sanger sequencing. The NSP3, P2A, and NLuc junctions
were shown.

SUPPLEMENTARY FIGURE 2

The NSP3 sequences from shed virus of infected mice. The sequences of

NSP3 of parental and virus collected in the stool sample of infected mice
at 8 days post infection were analyzed by RT-PCR and Sanger sequencing.

The NSP3, P2A, and NLuc junctions were shown.
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