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Abstract
We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during 
seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the 
number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adap-
tive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: 
outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps 
on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and 
compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over 
APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase 
of 25–35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 
10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resec-
tion area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series 
is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The 
study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and 
that normalization of the time-series before connectivity analysis is preferred.

Keywords  Multivariate directed functional connectivity · Time-series normalization · Number of connectivity nodes · 
Epilepsy · Intracranial EEG · Granger causality

Introduction

In approximately 15–25% of the epilepsy patients in the pre-
surgical evaluation, intracranial EEG (iEEG) monitoring is 
necessary to obtain additional localization information about 
the seizure-onset zone (SOZ) and eloquent cortex (Carrette 
et al. 2010). Intracranial EEG is recorded with stereo-EEG 
or depth electrodes inserted in the brain’s parenchyma, or 
with strip and grids placed on the top of the cortex. Because 
of the limited spatial sampling of iEEG, a clear hypothesis 
about the EZ must be available prior to electrode implanta-
tion. In clinical practice, the identification of the SOZ from 
iEEG is done visually by the epileptologist. This is a time 
consuming, labor intensive task that requires much expertise 
and suffers from interpreter dependency.

Functional brain connectivity is defined as the study 
of temporal correlations between spatially distinct neuro-
physiological events (Friston et al. 1993). Functional brain 
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connectivity measures have been shown to localize the SOZ 
from iEEG recordings in an objective manner (van Mierlo 
et al. 2014). Multivariate connectivity measures based on 
the concept of Granger causality (Granger 1969), have been 
particularly successful in the context of SOZ localization. 
Granger causal modeling estimates whether a time series is 
useful to predict another. Accordingly, a signal x1 Granger-
causes another signal x2, if the inclusion of the past values 
of x1 help to predict x2 beyond the information present in 
the past values of x2. Granger-causality measures use autore-
gressive (AR) models to parametrize the signal with a set 
of AR coefficients encoding the linear contribution of its 
recent past.

The two most commonly Granger-based measures used to 
localize the SOZ are the Directed Transfer Function (DTF) 
(Kaminski and Blinowska 1991) and the Partial Directed 
Coherence (PDC) (Baccalá and Sameshima 2001). They are 
multivariate estimators of the network connections between 
the EEG signals in the frequency domain, and thus, they 
require multivariate autoregressive (MVAR) models to esti-
mate the present of each signal as a linear contribution of 
the past values of all signals. In 1994 and 1998, Franaszc-
zuk et al. proposed that the SOZ can be localized in tem-
poral lobe epilepsy patients based on visual interpretation 
of the propagation patterns derived from DTF analysis of 
ictal iEEG recordings (Franaszczuk and Bergey 1998; Fra-
naszczuk et al. 1994). More recently, It has been shown that 
nodes with high outflow based on DTF calculations were 
highly correlated with the clinically identified foci in pedi-
atric patients with neocortical epilepsy (Wilke et al. 2010a) 
and with Lennox-Gastaut syndrome (Jung et al. 2011). Fur-
thermore, it has been shown that EZ estimation using DTF 
analysis mapped better the surgical resection area in patients 
with successful surgical outcome than those with unsuccess-
ful outcome (Kim et al. 2010). Using the PDC, Baccalá et al. 
(2004) showed that correct epileptogenic focus localization 
was obtained by analyzing strongly connected subgraphs of 
scalp EEG and that the EZ can be localized from stereo-EEG 
in patients with epilepsy secondary to type II focal cortical 
dysplasia (Varotto et al. 2012).

All the above methods assumed stationary EEG signals 
in the analyzed window and therefore did not track the 
evolution of the connectivity pattern over time. Further-
more, time-varying methods allow modeling non-station-
ary signals such as the onset of a seizure. Two methods 
have been proposed for multivariate time-varying connec-
tivity analysis: the short time DTF (SDTF) (Ding et al. 
2000), where the DTF is calculated in a short time sliding 
window, and the adaptive (time-varying) DTF (ADTF) 
or PDC (APDC) (Astolfi et al. 2008; Wilke et al. 2008) 
based on Kalman-filter AR models. Mullen et al. (2011) 
used the first approach to analyze the connectivity between 
ICA components of ictal iEEG epochs, showing a shift 

in connectivity during the seizure. Wilke et al. (2010b) 
used the second approach to investigate the ability of the 
time-varying ADTF coupled to graph analysis measures 
to identify critical network nodes during the interictal 
states and compared this with the critical nodes identified 
with the DTF and graph analysis during ictal and resting 
interictal periods. They found that one graph measure, the 
betweenness centrality, correlated with the resected area 
in patients who were rendered seizure-free after surgery 
for all three investigated periods: ictal, resting interictal 
and interictal spikes. Furthermore, the gamma band was 
identified as the most important band to be studied because 
the betweenness centrality in this band correlated most 
with the resected area. In a previous study, we applied the 
ADTF coupled to outdegree to estimate the SOZ based on 
connectivity pattern changes/propagation in 8 patients ren-
dered seizure-free by surgery, and found correspondence 
between these estimates, the visual iEEG analysis by the 
epileptologist, and the resected regions (van Mierlo et al. 
2013). Furthermore, the obtained time-varying connectiv-
ity patterns were consistent in each patient over multiple 
seizures. For a more extensive overview of studies that 
localized the epileptogenic focus using functional con-
nectivity we refer the readers to (van Mierlo et al. 2014).

Some important limitations apply to these previous 
studies. First, because of computational limitations, all 
previous studies using adaptive AR approaches have been 
applied to a limited number of iEEG channels/connec-
tivity nodes (< 50–60), often selected based on visible 
involvement in the course of a seizure. Second, since the 
mathematical formulation of most AR models used has 
assumed white noise stationary processes with zero mean, 
normalization of iEEG time series by z-scoring has been 
suggested in several studies (Blinowska 2011; Kaminski 
and Blinowska 2014), but is not always done. The behavior 
of connectivity estimations using no or other normaliza-
tion approaches has not been tested so far. Third, a com-
parison of the performance of several APDC and ADTF 
measures and graph theory measures used in the literature 
to localize the SOZ has not been carried out yet.

In this study, we assessed whether localizing the SOZ 
from a high number of iEEG channels is feasible. We 
investigated the influence of incorporating more nodes 
in the functional connectivity analysis. Furthermore, we 
studied how if we should normalize the time-series and 
which functional connectivity measure coupled to which 
graph measures are optimal to localize the SOZ. First, we 
performed simulations to quantify the performance of the 
different connectivity analyses. Second, we mapped the 
SOZ recorded in a high number of iEEG channels in an 
epilepsy patient and compared the obtained SOZ localiza-
tion to the resection that rendered the patient seizure-free.
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Methods

In this section, we describe how we simulated seizures 
recorded with intracranial EEG electrodes. Later, we intro-
duce the pipeline used to calculate the time-varying con-
nectivity pattern and how we can localize the SOZ using 
graph theory measures. Afterwards, we explain how we 
have quantified the performance of the different connectiv-
ity measures coupled with the different graph measures. 
Finally, we describe how we have analyzed a 113-channel 
seizure recorded in a patient.

Simulations

We simulated a seizure as recorded with 128 channels 
iEEG. The simulated iEEG is 5 s long, 2 s baseline fol-
lowed by 3 s seizure. After the baseline duration, the sei-
zure starts at a randomly chosen channel, the SOZ chan-
nel: chanSOZ. The seizure spreads to 31 other randomly 
chosen channels with the following parameters: maxi-
mal spreading from one channel to three other channels, 
random onset delay, i.e. the time a node gets involved in 
the seizure, between 1 and 250 ms and sample delay, i.e. 
the number of samples the signal of the sending node is 
delayed with respect to the receiving node, randomly cho-
sen between 1 and 5 samples. In total, 32 channels will 
show seizure activity. Figure 1 shows a possible seizure 
network and the ictal iEEG signals. The baseline activity 
was modeled by 1/f noise and the seizure activity as a 
time-varying sinusoid with frequency equal to 12 Hz at 
the start of the seizure (at 0 s) and equal to 8 Hz at the 
seizure end (at 3 s) plus its first harmonic (van Mierlo et al. 
2011). This way we want to mimic the rhythmic phase of 
the seizure, i.e. the period with periodic ictal spiking. The 
simulations were inspired by the oscillatory patterns seen 
in a real seizure originating from the temporal lobe (van 
Mierlo et al. 2011). The signal-to-noise ratio (SNR) of 
the seizure activity compared to the baseline activity was 
set to − 5, 0, 5 and 10 dB. The amplitude of the different 
channels was chosen randomly between 25 and 100 mV to 
mimic amplitude changes observed in the iEEG. An over-
view of the parameters used to simulate the iEEG seizures 
is shown in Table 1.

From iEEG to SOZ Localization

The complete pipeline to localize the SOZ from the iEEG 
recordings is introduced below. It comprises three subparts: 
pre-processing, connectivity calculation and graph analysis. 
Below we give a detailed overview of all subparts.

Fig. 1   Example of simulated 64-channel iEEG during a seizure with 
SNR equal to 5 dB. In a the connectivity scheme is shown, b depicts 
the generated iEEG. Node 43 is the simulated SOZ. The seizure first 
spread to node 16 and 18 and later to nodes 12, 41, 53 from node 16 
and to node 25 and 49 from node 18. Afterwards the seizure spreads 
as indicated in a 

Table 1   Simulation parameters

Sampling frequency 200 Hz
Number of channels 128
Number of ictal channels 32
Baseline duration 3 s
Seizure duration 5 s
Sample delay 1–5
Onset delay 1–250 ms
Max number of propagated channels 3
SNR − 5, 0, 5, 10 dB
Seizure signal frequency 12–8 Hz



756	 Brain Topography (2018) 31:753–766

1 3

Pre‑processing

The pre-processing consisted of two steps: a channel selection 
step and a time series normalization step. In the channel selec-
tion step, 32, 64, 96 or all 128 channels were chosen to investi-
gate the effect of adding more nodes to the functional connectiv-
ity analysis. The 32 ictal channels were included in all channel 
selections. In the normalization step, the different options were: 
no normalization, z-scoring of the complete 5 s time series, slid-
ing window z-scoring with a window length equal to 1 s and 
baseline z-scoring, where only the first 2 s are used to calculate 
the mean and standard deviation to perform z-scoring. Due to 
the preprocessing, each simulation resulted in 16 different data-
sets that were processed further as indicated below.

Multivariate Time‑Varying Connectivity Analysis

In this section, we introduce the different time-varying func-
tional connectivity measures that are used to estimate the 
dynamic information flow between the considered signals. 
All measures used in this study are based on the concept of 
Granger causality. A common method to study Granger causal-
ity is to use autoregressive models in which the influence of 
the past of the signals on the present is estimated. The time-
varying bivariate autoregressive (TVAR) model of signal x1 
and x2 can be described as:

where a12, a12, a21 and a22 are the TVAR coefficients and e1 
and e2 the residuals of signals x1 and x2.

The bivariate case can be extended to the multivariate case 
with K channels as follows:

where X(t) is the iEEG matrix, Am(t) are the model coef-
ficients matrix for delay m and E(t) is the residual matrix. 
The coefficients of the TVAR model were estimated using 
a Kalman filter with update coefficient equal to 10−3 and 
Kalman smoothing term equal to 100 (van Mierlo et al. 
2011). To investigate the information flow between the 
nodes in the spectral domain, we apply the Fourier transform 
to the coefficient matrices at each time point t as follows:

(1)

x1(t) =

p∑

m=1

a11,m(t)x1(t − m) +

p∑

m=1

a12,m(t)x2(t − m) + e1(t)
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(3)X(t) =
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where IK is the K times K identity matrix. From the Fou-
rier transform of the coefficient matrices A(f,t) the transfer 
matrix H(f,t) is calculated:

The element Aij(f,t) and Hij(f,t) depict the information flow 
from node j to node i at frequency f and time t. In H(f,t) the 
cascade flow is modeled, while in A(f,t) only the direct flows 
are modeled. This means that if there is a connection from 
node 1 to node 2 and from node 2 to node 3 at frequency f and 
time t, elements A21(f,t) and A32(f,t) will have a high value, 
while H21(f,t) and H31(f,t) will be high.

Different normalizations of the A(f,t) and H(f,t) matrices 
are performed to scale the connectivity values between 0 (no 
connection) and 1 (high connection). Because in the next step, 
we will examine the outflow of the nodes, we use the Adap-
tive Partial Directed Coherence (APDC) and the Adaptive 
Directed Transfer Function (ADTF) normalized with respect 
to the inflow at each time t and frequency f as suggested by 
(Coito et al. 2015; Plomp et al. 2015):

The following normalization holds for both ADTF and 
APDC:

The ADTF and APDC can be integrated in the frequency 
band of interest to estimate the connections over time in the 
considered frequency band, which results in the integrated 
APDC and ADTF (iAPDC and iADTF) and the full-frequency 
APDC and ADTF (ffAPDC and ffADTF):
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The iAPDC, iADTF, ffAPDC and ffADTF are normal-
ized with respect to incoming information flow at each time 
point t. This means that the following normalization holds 
for all measures:

The ADTF measures are able to reveal cascade con-
nections, while the APDC measures reveal the direct con-
nections. The ADTF can be used to identify the origin 
of information flow and the APDC to identify the direct 
connections.

Graph Measures to Localize the SOZ

Two graph measures are calculated for each time-varying 
connectivity measure to localize the SOZ: the outdegree and 
the shortest path length. The outdegree calculates the sum 
of the outflow from one node to all the other nodes, while 
the shortest path length defines the shortest paths from one 
node to another.

The global outdegree was defined as the out-degree dur-
ing the seizure for each node:

here, t1 is the seizure onset and t2 is the seizure end, K is the 
number of channels and Ckj is the connection from node j 
to node k calculated with the above described time-varying 
connectivity measures, meaning that Ckj is equal to iADTFkj, 
ffADTFkj, iAPDCkj or ffAPDCkj. The node with maximal 
global outdegree is chosen as SOZ, because this node has 
maximum outflow during the seizure in the estimated time-
varying network.

The second considered graph measure is the global short-
est path length that is defined as the sum of shortest path 
lengths from one node to all other nodes:

where, σkj is the shortest path length from node j to node k 
in the graph where the edge weights between the nodes were 
set to 1/Ckj. This means that when there is a high connection 
from j to k, the edge weight will be low and therefore the 
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shortest path will be low. The node with the minimal global 
shortest path was identified as the SOZ, because it has the 
overall shortest path to all other nodes.

Evaluation of the Simulations

We use two evaluation measures to evaluate the importance 
of the processing steps, namely the area under the curve 
(AUC) and the number of correctly localized SOZ.

AUC Analysis

For each simulated high dimensional intracranial EEG of a 
seizure, 256 time-varying connectivity matrices were cal-
culated. One for each combination of the following factors:

•	 Channel selection: 32, 64, 96 or 128
•	 SNR: − 5, 0, 5 or 10 dB
•	 Normalization: none, z-score, sliding z-score or baseline 

z-score
•	 Connectivity measures: iADTF, ffADTF, iAPDC or 

ffAPDC

The order of the TVAR model to calculate the connectiv-
ity measures was set to 5, the update coefficient to 0.001 and 
the Kalman smoothing term to 100 (van Mierlo et al. 2011). 
The frequency band of interest was set to 3–30 Hz.

Each estimated time-varying connectivity matrix was 
compared to the true time-varying connectivity matrix of 
the simulation. This was done by calculating the true posi-
tives (TP), false positives (FP), true negatives (TN) and false 
negatives (FN) when comparing the thresholded estimated 
time-varying connectivity matrix with the ground truth. For 
the APDC measures the direct edges of the simulation were 
considered as ground truth, while for the ADTF the cascade 
connections were considered as ground truth. We let the 
threshold range from 0 to 1 in steps of 0.01 to calculate the 
TP, FP, TN and FN. Afterwards we computed the sensitiv-
ity and the precision, also known as the positive predictive 
value.

From the sensitivity and precision values we derived 
the AUC. Afterwards, we performed a univariate ANOVA 
with AUC as dependent variable and four factors: the SNR, 
connectivity measure, normalization and channel selection. 
Bonferroni correction was applied to correct for multiple 
comparisons.

SOZ Localization

Based on each time-varying connectivity measure we local-
ized the SOZ based on the outdegree and shortest path. For 
the 100 simulations we assessed the percentage of correctly 
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identified seizure onset zones. We compared the identified 
SOZ based on the outdegree and on the shortest path length 
with the simulated SOZ (chanSOZ).

High Dimensional Intracranial Recordings 
in Patients

We investigated an ictal epoch recorded with 113 electrodes 
in the University of Texas Health Center at San Antonio. The 
patient had a MRI-positive focal cortical dysplasia type II b 
in the right perisylvian areas. The implantation scheme of 
the electrodes is shown in Fig. 2. An 8 × 8-contact inferior 
frontal grid (IFG, interelectrode distance: 5 mm) overlaid the 
lesion. An additional 2 × 5 superior frontal grid (interelec-
trode distance: 1 cm) and multiple strips were placed around 
IFG and interhemispherically. A 2-contact recording refer-
ence (G) was placed over the anterior mesial portion of the 
right superior frontal gyrus, remote from areas of high cor-
tical irritability. The iEEG was sampled at 500 Hz. Visual 
analysis of the iEEG showed that the lesion was causing the 
epilepsy. Removal of the lesion rendered the patient seizure 
free and the patient has been seizure free since 3 years. The 
intracranial EEG signals of the analyzed seizure and their 
spectrogram can be found in the supplementary material.

Evaluation of the Patient Data

We performed the proposed methods to localize the SOZ on 
the high dimensional iEEG epoch that consisted out of 5 s 
pre-ictal and 30 s ictal activity identified by visual analysis 
of the epileptologist (OL). We analyzed the full 113-channel 
iEEG and two subsets: one containing all 64 grid electrodes 
and one containing 25 electrodes closest to the visually iden-
tified SOZ. This was done to investigate the variation of 
SOZ localization using the proposed method when nodes 
are added to the connectivity analysis. We performed the 
four types of normalization and downsampled the time series 
to 250 Hz. Afterwards we calculated the iADTF, ffADTF, 
iAPDC, ffAPDC in combination with the outdegree and the 
shortest path length to localize the SOZ. The model order 
of the TVAR model was set to 8, update coefficient to 0.001 
and kalman smoothing parameter to 100 (van Mierlo et al. 
2011). The frequency band of interest was 2–30 Hz since 
the harmonic seizure frequency lied within this band. We 
compared the localized SOZ with the surgical resection 
that rendered the patient seizure free and investigated the 
influence of the normalization, the number of nodes and the 
used connectivity measures in combination with the graph 
measure.

Fig. 2   Implantation scheme of the 113 intracranial electrodes in the patient and the subsequent resection (black line on lower left panel and blue 
zone on lower right panel) that rendered the patient seizure-free
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Results

Simulations

AUC Analysis

The statistical analysis of the AUC values revealed that 
the normalization, the channel selection, the SNR and the 
chosen connectivity measures all significantly influence the 
connectivity analysis. The results of the AUC analysis are 
shown in Fig. 3. The ADTF measures have a higher AUC 
than the APDC measures. The differences between inte-
grated and full-frequency variants of the ADTF and APDC 
are less outspoken. We notice an increase in AUC when the 
SNR increases, with a small drop at 10 dB. This is because 
the difference between the baseline and seizure signal is high 
here resulting in non-stationarities that the TVAR model 
cannot easily model. When considering the normalization, 
we see that no normalization results in the worst AUC. 
Z-scoring the whole time series or the baseline provides the 
best results. The number of nodes influences the AUC. The 
more channels are used, the lower the AUC.

SOZ Localization

The AUC tells us how well the time-varying connections are 
estimated, but more importantly, how well can we localize 
the SOZ from the time-varying connectivity matrix using the 
outdegree and shortest path length? The number of correctly 
localized SOZ is shown in Fig. 4.

In panel A the difference between the used connectivity 
measures coupled to the graph measures is shown. It can be 
noticed that the ADTF measures are preferred to localize the 
SOZ. The choice of the graph theory index (outdegree and 
shortest path) and of the connectivity measure (integrated or 
full-frequency) does not seem to play an important role for 
the ADTF. We achieve a mean of 90% correctly localized 
SOZ. For the APDC, the shortest path length is the preferred 
graph measure, achieving a mean of around 35% correct 
SOZ localizations.

In panel B, we zoom in on the results for the ADTF 
because these measures are preferred over the APDC to 
localize the SOZ. We only show the results of the iADTF, 
because the results of the ffADTF are highly similar. We 
notice that the normalization has the biggest influence on 
the results. No normalization results in 60–70% correctly 
localized SOZ, while with normalization (z-scoring, slid-
ing window z-scoring or baseline z-scoring) we achieve a 
mean of approximately 95% correctly localized SOZ. This 
is an increase of 25–35% above what the analysis of un-nor-
malized datasets achieves. We further notice that the num-
ber of correctly localized SOZ increases with the SNR and 
decreases around 10% with the number of nodes involved 
in the analysis as expected. The influence of the number of 
nodes is however much smaller than the normalization.

Patient Recordings

We analyzed 12 datasets of the same seizure: four types of 
normalization and three groups of channels (25, 64 and 113). 
For each dataset we computed the iADTF, ffADTF, iAPDC 

Fig. 3   The AUC results of 100 
seizure onset simulations. The 
blue bars indicate the mean 
value and the red error bars 
show the standard deviation. 
The left and right top panel 
shows the AUC with respect 
to the connectivity measures 
and the SNR, while the left and 
right bottom panel show the 
AUC with respect to normaliza-
tion and number of channels, 
respectively
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and ffAPDC and then used the outdegree and shortest path 
length to localize the SOZ.

The results for the iADTF coupled to the outdegree and 
shortest path are shown in Fig. 5. The results of the ffADTF 
are not shown but are similar. We notice that normalization 
has the biggest effect on the SOZ localization. All types 
of z-scoring led to the same results, namely IFG26-27 was 
identified as SOZ. The number of analyzed channels did not 
affect SOZ localization, meaning that the same SOZ was 
found when 25, 64 or 113 channels were considered. When 
no normalization was performed, a more diffuse SOZ locali-
zation pattern was found both for iADTF coupled either to 
the outdegree or to the shortest path. Here, the highest peaks 
were found for IFG37 and IFG42.

The results for the SOZ localization using the iAPDC are 
shown in Fig. 6. When more channels are added to the analy-
sis, the iAPDC in conjunction with the outdegree or shortest 
path is not able to correctly identify the SOZ. When 64 or 
113-channels are included in the analysis, electrode IFG57 
or SF6 are found as SOZ depending on the normalization. 

Both electrodes do not correspond to the resection that ren-
dered the patient seizure-free. When iAPDC is coupled to 
the shortest path length, its performance in localizing SOZ 
is more consistent when more channels are included in the 
analysis. In conclusion, SOZ localization obtained with 
ADTF analysis coupled to the outdegree or shortest path 
outperforms the APDC analysis.

Discussion

Despite the use of a simple model of the seizure onset, 
our simulations provide insight into the steps to calculate 
directed functional connectivity. The normalization applied 
to the time series is the most important factor influencing 
the SOZ localization results. This is related to the amount of 
spurious connections estimated from low to high amplitude 
signals, because low amplitude signals more easily fit in 
large amplitude signals. Consider a bivariate TVAR model 
where x1 time-series has much higher amplitude than x2. 

Fig. 4   The number of correctly 
localized SOZ in the 100 simu-
lations of a seizure onset. The 
bars indicate the mean value 
and the error bars represent the 
standard deviation. a shows the 
difference between the con-
nectivity measures (ADTF and 
APDC) and the coupled graph 
measures (outdegree and short-
est path). b shows the results 
for the integrated ADTF with 
respect to SNR, normalization 
and number of channels
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Fig. 5   Seizure onset zone localization using the functional con-
nectivity measure integrated ADTF coupled to outdegree (a) and 
shortest path (b) for different number of pre-selected channels (dark 
blue channels are not included) and different normalization of the 
time series. The results show that when normalization is performed 

the SOZ is focally localized in the resected volume and the pattern 
stays consistent when more channels are incorporated in the analysis. 
When the time series are not normalized a more widespread SOZ is 
found. Outdegree and shortest path lead to similar SOZ localization
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Fig. 6   Seizure onset zone localization using the functional con-
nectivity measure integrated APDC coupled to outdegree (a) and 
shortest path (b) for different number of pre-selected channels (dark 
blue channels are not included) and different normalization of the 
time series. The results show that when outdegree is used the SOZ 
is sometimes estimated outside the resection volume. Normalizing 

the time series using sliding z-scoring or baseline z-scoring in com-
bination with shortest path depict the same SOZ as with the iADTF 
analysis (Fig.  5). Outdegree works when a limited number of chan-
nels are incorporated in the analysis, but fails when more channels 
are added. The SOZ pattern is not consistent when more channels are 
investigated
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Given the amplitude difference of the signals, coefficients 
a12,m(t) and a21,m(t) will have a much larger and smaller 
value, respectively, than the other coefficients in Eqs. 1 and 
2. This results in a high connectivity from x2 to x1, which 
is actually spurious. Therefore, normalizing the time series 
before TVAR modeling is one way to solve the scaling issue 
and the resulting erroneous connections. Another way is by 
incorporating the covariance of the corresponding residu-
als in the formulas of the PDC and DTF, resulting in the 
so called generalized PDC and DTF (Baccala et al. 2007).

Beyond normalization, Florin et al. showed that filtering 
and decimation are important pre-processing steps (Florin 
et al. 2010). In principle, no filtering or filtering with a low 
model order is advised. Decimation by a factor greater than 
the minimum time shift between the time series may lead 
to wrong inferences. Florin et al. conclude that multivariate 
causality measures are very sensitive to data preprocessing, 
which we confirmed in our study by showing the sensitivity 
to time series normalization.

The ADTF measures outperform the APDC measures 
to localize the SOZ. This is expected because ADTF mod-
els the indirect connections, and therefore, it indicates the 
origin of information flow, while the APDC models the 
direct connections. The outdegree and shortest path length 
performed equally well for the ADTF. For the APDC, the 
outdegree resulted in a low performance. This is because 
another node down the cascade can have a higher number 
of strong direct connections to other nodes, resulting in a 
higher out-degree. The global shortest path length estimates 
the distance between the node and all the other nodes and 
therefore, nodes from where the seizure originates will have 
smaller shortest path length since they are connected to all 
the nodes down the cascade. Consider the next illustrative 
example. We have a network of seven nodes that are con-
nected as shown in Fig. 7a. The ADTF and APDC results 
are shown in Fig. 7b and c, respectively. Because node 4 has 

most outgoing connections in panel B, it will be depicted as 
SOZ when using outdegree. Calculating the shortest path to 
all other nodes can help to identify the SOZ for the APDC. 
For the ADTF the choice of graph measure is not important 
because it already models the indirect information flow as 
shown in Fig. 7c. Here, we show that both the outdegree and 
shortest path length can be used to localize the SOZ.

In the case of estimating the origin of information flow, 
which is desired to localize the SOZ or the irritative zone, 
ADTF measures are preferred over APDC. However, when 
one want to investigate the entire network or specific links 
between certain brain regions, the APDC is more appropri-
ate. This means that both measures are valuable depending 
on the desired application.

To localize the irritative or seizure onset zone, a simple 
graph measure such as outdegree performs well (Coito et al. 
2015, 2016b; van Mierlo et al. 2013). In these cases the 
use of outdegree suffices because we want to identify the 
source of the spike or seizure and the outdegree enables us 
to find the source where most information flow is coming 
from. To answer more complex research questions, such as 
‘what are critical nodes in the epileptogenic network, which 
nodes behave abnormally?’ the use of more complex graph 
measures, such as shortest path and betweenness centrality, 
is beneficial as has been shown by (Wilke et al. 2010b). 
These and other graph measures allow investigating local 
and global properties of the network, enabling to answer 
more complex questions than what brain region is the driver 
of the recorded activity. The use of a graph measure also 
depends on the connectivity measure that is used to iden-
tify the connections. Investigating the outdegree when the 
edges are calculated using the (A)DTF or the (A)PDC gives 
a completely different picture of the brain, because (A)DTF 
models indirect connections and (A)PDC models only direct 
connections. Therefore, the choice of graph measure and 
connectivity measures depends on the research question one 

Fig. 7   Illustrative example to 
indicate why outdegree does 
not work in combination with 
APDC to localize the SOZ, 
while it does work for ADTF. 
Shortest path analysis can 
correctly localize the SOZ for 
both ADTF and APDC in this 
example
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wants to answer and should be made carefully. Furthermore, 
it could be beneficial to study different graph measures 
simultaneously because they provide complementary char-
acterizing information that allows a more profound analysis 
of the role of each node in the network (Amini et al. 2010).

The presented method localizes the channels most 
involved in the SOZ, but does not tell anything about the 
extent of the SOZ. In Fig. 5 it can be noticed that especially 
two electrodes have high out-degree. However, it is very 
unlikely that the patient would have become seizure free 
by the resection of this small area. The developed method 
indicates which brain region sends most out-going informa-
tion during the seizure, but does not tell anything about the 
extent of the epileptogenic zone. Most likely, the SOZ as 
estimated by our method is comprised in the epileptogenic 
zone. For the method to be used in clinical practice it would 
be of great added value that not only the localization but also 
the extent of the SOZ can be derived from the connectivity 
graph. Further developments in this context, for example 
looking at locally connected subgraphs during the seizure 
onset to define the extent of the SOZ, could accelerate bring-
ing these techniques to the clinical practice.

In clinical practice, the intracranial EEG is visually 
scanned for rapid discharges that are considered a charac-
teristic pattern of the epileptogenic zone in focal epilepsy 
(Alarcon et al. 1995; Allen et al. 1992; Wendling et al. 
2003). Wendling et al. showed that there is desynchroniza-
tion between the different channels during this rapid dis-
charge phase (Wendling et al. 2003). The rapid discharge 
phase is usually followed by ictal spiking during which the 
seizure spreads to many channels. In our study we focused on 
the ictal spiking period to extract the SOZ using functional 
connectivity, because we need the seizure to have spread to 
several channels to be able to use functional connectivity to 
localize were the seizure originated from. Another approach 
to localize the SOZ is the so-called ‘Epileptogenicity index’, 
where spectral and temporal features of the signals, namely 
the occurrence of fast activity and the temporal delay with 
regard to the seizure onset, are used to localize the epilepto-
genic zone. In a recent study, the link between preictal con-
nectivity patterns and the epileptogenicity index was shown 
(Courtens et al. 2016). Based on stereo-EEG measurements 
of 24 seizures, correspondence was found between elec-
trodes with high out-degree and total degree in the 15–40 Hz 
band and those with a high epileptogenicity index. Further 
studies comparing the rapid discharge phase and the func-
tional connectivity patterns derived during different phases 
of the seizure would be of great interest.

In the simulations, signals are delayed from one channel 
to another to mimic propagation. At each channel 1/f noise 
is added that is also propagated to the next channel. This 
allows differentiation of the model where there is indirect 
transmission of information from node 1 to node 3 over node 

2 (1–>2–>3) with the model using direct transmission from 
node 1 to node 2 and node 3 (1–>2 and 1–>3). In future 
studies more realistic simulations of a seizure, for example 
realistic models of coupled neuronal populations (Wendling 
et al. 2010) could be more informative of the behavior of the 
designed method in more realistic simulations. Nevertheless, 
the simple model used in our study is useful to highlight the 
methodological differences between the different connectiv-
ity measures coupled to the different graph measures.

During the simulation, we used the precision instead of 
specificity to quantify the performance, because there are 
many true negatives in the simulation. This means that the 
specificity has a value close to 1, because TN > > FP. A bet-
ter measure to quantify the false positives in this case is the 
precision, because it does not depend on the large amount 
of TN (Saito and Rehmsmeier 2015).

The number of nodes has an influence on the calculated 
connectivity pattern, although this influence is rather small. 
For the patient data, we see that normalization affects the 
results more than adding extra nodes to the analysis. The 
connectivity pattern does not change when more nodes are 
added to the analysis, which indicates the feasibility to ana-
lyze a high number of nodes using Granger-causality. This 
makes large-scale Granger-causality studies feasible and 
obviates the need to preselect nodes when analyzing high-
density intracranial EEG, scalp EEG or MEG time series. 
This is important given the current clinical trend to use high 
density EEG (Michel and Murray 2012), MEG or stereo 
EEG (Alomar et al. 2016) to estimate the functional con-
nectivity pattern.

Despite the fact that the developed methodology can 
localize the SOZ from a high number of intracranial EEG 
recordings, we must keep in mind that iEEG has a limited 
spatial sampling. If the SOZ is not sampled, the developed 
algorithm will not be able to localize it. This means that 
we can only estimate the connectivity pattern between the 
regions that are sampled.

In 2007, Ding et al. suggested to investigate the con-
nectivity pattern in EEG source space, namely between the 
sources estimated from scalp EEG recordings (Ding et al. 
2007). First the EEG signals are projected into source space 
by using EEG source imaging techniques and afterwards the 
connectivity pattern between the source signals is computed. 
Because the method investigates non-zero lag interactions 
in source space using a multivariate autoregressive model, 
it can cope with the problem of source leakage (Brookes 
et al. 2012). This technique has been used to extract whole 
brain connectivity patterns during interictal spikes, interictal 
resting state periods and ictal epoch from high-density scalp 
EEG measurements (Coito et al. 2015, 2016a; Staljanssens 
et al. 2017a) and to localize the seizure onset from ictal 
epoch recorded with standard clinical EEG setup (< 32 elec-
trodes) (Staljanssens et al. 2017b). Until now the brain has 
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been parcellated into a limited number of rather large brain 
regions to estimate the whole brain connectivity pattern. Our 
method enables to estimate whole brain connectivity pattern 
between many brain regions, allowing more detailed parcel-
lation of the brain.

In future work we will estimate the SOZ in a large cohort 
of post-operatively seizure free and non-seizure-free patients 
to quantify the performance of the algorithm. Analyzing 
several seizures per patient would also allow us to test the 
reproducibility of our technique or the variability/extent of 
the SOZ, and its potential relationship with the seizure out-
come. This is necessary before the method can be used in 
clinical practice.

Conclusion

Our study showed that normalizing the time-series is an 
important pre-processing step that should not be overlooked, 
while adding more nodes to the analysis did only marginally 
affect the SOZ localization. This opens the way for high 
dimensional multivariate Granger-based connectivity anal-
ysis. For SOZ localization from intracranial EEG, ADTF 
analysis is more suitable than APDC analysis.
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