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Probing and predicting ganglion
cell responses to smooth electrical
stimulation in healthy and blind
mouse retina

Larissa Hofling'%3*, Jonathan Oesterle3, Philipp Berens(®3>: & GUnther Zeck®%**

Retinal implants are used to replace lost photoreceptors in blind patients suffering from retinopathies
such as retinitis pigmentosa. Patients wearing implants regain some rudimentary visual function.
However, it is severely limited compared to normal vision because non-physiological stimulation
strategies fail to selectively activate different retinal pathways at sufficient spatial and temporal
resolution. The development of improved stimulation strategies is rendered difficult by the large space
of potential stimuli. Here we systematically explore a subspace of potential stimuli by electrically
stimulating healthy and blind mouse retina in epiretinal configuration using smooth Gaussian white
noise delivered by a high-density CMOS-based microelectrode array. We identify linear filters of retinal
ganglion cells (RGCs) by fitting a linear-nonlinear-Poisson (LNP) model. Our stimulus evokes spatially
and temporally confined spiking responses in RGC which are accurately predicted by the LNP model.
Furthermore, we find diverse shapes of linear filters in the linear stage of the model, suggesting diverse
preferred electrical stimuli of RGCs. The linear filter base identified by our approach could provide a
starting point of a model-guided search for improved stimuli for retinal prosthetics.

Sensory neural prostheses attempt to replace nonfunctional elements of sensory organs and thereby to restore
access to sensory information. For example, cochlear implants, which have been in clinical use for many years,
replace the sensory receptors of the auditory system and can significantly improve auditory function and quality
of life of implanted patients'. Likewise, retinal implants aim to replace the function of the sensory receptors of
the visual system, the photoreceptors, in retinopathies such as retinitis pigmentosa. While there are different
approaches to retinal implants in terms of implantation site and technical realizations (subretinal®*; epiretinal®;
suprachoroidal®), all use short rectangular pulsatile stimuli to activate the remaining retinal neurons. Patients
implanted with a retinal prosthesis experience benefits in mobility and navigation and some regain rudimentary
but useful visual functions like the capability to identify, localize and discriminate objects®’.

Despite this success, there are a number of shortcomings in implant-aided vision, many of which are due
to the fact that the electrical stimuli are very different from the physiological signals in the retina, which are
much slower and smoother than the pulsatile electrical stimuli®-'?. Incidental activation of axons passing the
stimulation target (e.g. a single retinal ganglion cell (RGC)) severely limits spatial resolution'*-'%, while desen-
sitization of retinal neurons to repetitive electrical stimulation impedes high temporal resolution!’~°. Acuity of
prosthesis-mediated vision therefore reaches only a fraction of healthy visual acuity, leaving patients legally blind
despite wearing a retinal implant®®. Another reason why bionic vision comes short of natural vision is that the
image processing mechanisms of the intricate retinal network cannot be triggered selectively by retinal implants;
pulsatile stimuli do not separately activate channels like the ON and the OFF pathway*"*%.

Different approaches have been suggested to tackle these problems. Placing the stimulation electrodes in dif-
ferent positions within the retina and varying the pulse durations confers control over which retinal elements are
activated by pulsatile electrical stimulation®. The activation of axons of passage can be avoided by increasing the
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stimulus duration, thus improving spatial resolution of implant-aided vision'. Varying the shape of the stimu-
lation waveform can increase the charge-efficiency?* and the selectivity of the stimulus with respect to cell type
and mode of activation****. Cells in the different layers of the rabbit retina preferentially respond to increasing
frequencies of sinusoidal stimulation as one moves from the outer nuclear to the ganglion cell layer**. ON and
OFF RGCs respond in different phases of low-frequency sinusoidal stimulation; however this phase-preference
was assigned to activation of photoreceptors. The clinical relevance of sinusoidal stimulation thus appears to be
limited®. Varying stimulus parameters such as shape, repetition rate, duration and charge allowed to identify
stimulus regimes that maximize the response ratio of ON and OFF RGCs?’~*!,

However, the insight gained by such heuristic searches for optimal stimulus parameters is limited to a small
area of the parameter space. One way to more exhaustively look for optimal stimuli for a given sensory modality
is white noise analysis*>~*%. This concept has been successfully applied to stimulation with the natural stimulus
modality in different sensory systems, such as visual stimulation in the visual system*, whisker deflection in the
vibrissal system in rats®, but also to artificial, electrical stimulation in the visual system*>*’. Recently, white noise
composed of biphasic electrical current pulses with amplitudes drawn from a Gaussian distribution was used to
map the spatiotemporal electrical receptive fields of rat retinal ganglion cells. Subsequently fit linear-nonlinear
models accurately predicted RGC responses to electrical stimulation®®?. Linear filters of mouse RGCs could
also be recovered with a spatially uniform white noise stimulus consisting of normally distributed subthreshold
voltage pulses*®>*!. The results of these studies demonstrate the feasibility of the white noise analysis approach in
electrical stimulation. However, these studies sampled subspaces of the stimulus space, varying pulse amplitude,
but not duration or frequency. As white noise analysis can only identify the stimulus that is optimal within the
space of provided stimuli, one should try to sample a space that is most likely to contain the true optimal stimulus.

Therefore, we developed and applied a smooth electrical Gaussian white noise current stimulus to cover a
space of stimuli that more closely approximate the time scale of physiological signals in the retina. This smooth
stimulus simultaneously probes the preferences of RGCs with respect to amplitude, polarity and frequency of
an electrical stimulus. Using a high-density CMOS-based microelectrode array for stimulation, we were able
to reliably activate RGCs in both wild-type mouse retina (wt) and retina from the rd10 mouse model of retinal
degeneration. We estimated linear filters of cells using two approaches to fitting a linear-nonlinear-Poisson (LNP)
model: spike-triggered averaging (STA) and maximum likelihood estimation (MLE). Probing the light responses
of RGCs in wt retina allowed us to relate electrical filter shapes to light response profiles. The LNP model accu-
rately predicted RGC responses to electrical stimulation, demonstrating that it captures aspects of retinal pro-
cessing of electrical stimuli relevant for response generation. The model may be useful for guiding the search for
stimuli that improve spatial and temporal resolution of prosthetic-aided vision. The linear filters described here
provide a starting point for this search.

Results

Simultaneous electrical stimulation and recording using a high-density CMOS-MEA. We used
a smooth electrical current stimulus applied by a high-density CMOS-microelectrode-array (hdCMOS-MEA
5000) to stimulate ex-vivo flatmount preparations of wild-type and photoreceptor-degenerated retina in epiretinal
configuration. Our setup allowed us to simultaneously and continuously electrically stimulate on an arbitrary
subset of the 1024 stimulation electrodes and record on 4225 recording electrodes (Fig. la,e,f). After the smooth
stimulation waveform was removed from the recording, spike-sorting allowed to analyse the retinal ganglion cell
responses to the stimulus at the level of individual cells (Fig. 1b-d). We evaluated the retinal response in wild-
type retina (n = 3, wt) and blind retina (n = 5, rd10) to electrical stimulation by computing the temporal linear
electrical filters of the RGCs in a model-based approach.

Reliable RGC responses to smooth electrical Gaussian white noise stimulation. Retinal ganglion
cells in healthy and blind mouse retina responded reliably to stimulation with smooth electrical Gaussian white
noise (Fig. 2b,e). For some cells, firing patterns were nearly identical across trials (Fig. 2b, fourth and fifth row
(wt); and e, second row from below (rd10)); others were more variable in their response (Fig. 2b, fifth row from
below (wt); and e, third row (rd10)). We quantified the reliability of the RGC response to the electrical stimulus
by computing a reliability index, RI (see Methods). In wt retina, the majority of RGCs (N = 53/84, 63%) were
entrained to the stimulus with a RI larger than a threshold of 0.15 (Fig. 2d). In rd10 retina, a smaller percentage of
cells were above threshold (N = 26/126, RI > 0.15, Fig. 2g); however, the levels of reliability among
above-threshold cells were comparable between rd10 and wt retina. A simulation of lateral and vertical current
spread, taking into account different retinal thickness in wt and rd10 retina, showed that the effect of this differ-
ence in thickness on stimulation intensity was negligible (see Fig. le,f).

One major challenge in bionic vision is the selective activation of different information channels such as the
ON and the OFF channel*>*. In order to be able to evaluate whether RGCs belonging to these retinal processing
pathways are differently affected by our stimulus, we classified RGCs from healthy retina as ON, OFF or ON-OFF
based on their light response. We presented light flashes (0.5 s OFF, 0.5 s ON; see Methods and Fig. 2a) and
recorded the RGC responses to light stimulation. Of the cells that could be identified across recordings with light
and electrical stimulation (47/84), 10 cells increased their spiking during incremental light stimuli (ON response,
Fig. 2a, rows 1-3, row 6), 23 increased their activity during light decrements (OFF response, Fig. 2a, row 4, last five
rows), and the remaining 14 cells had no clear preference for ON or OFF stimuli (ON-OFF or unknown, Fig. 2a,
row 5). Only one of the 10 cells with ON response passed the reliability criterion of RI > 0.15 during electrical
stimulation (see Fig. 2a,b, row 6), while 19/23 cells with OFF response and 8/14 cells with ON-OFF response
responded reliably to electrical stimulation.
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Figure 1. Simultaneous stimulation and recording of RGCs using a hd CMOS-MEA (a) Schematic of soma
location (black dots) and axon traces (black lines) of RGCs as measured by the stimulation and recording
software, and configuration of active stimulation areas (dark gray squares) in one example recording. The retina
(here from bl6 mouse) was flat-mounted on a hd CMOS-MEA (gray background). The horizontal white line
illustrates how the distance of a cell’s soma from the closest stimulation area was determined. The inset shows
the grid of stimulation electrodes (large elements, labelled S) and recording electrodes (small elements, labelled
R). In most recordings, only a subset of the stimulation electrodes were active (i.e. delivering the stimulation
current). The black dashed line indicates the path from the center of the stimulation area to the edge along
which current density was simulated (see panel (e)). Cell activity was recorded simultaneously on recording
electrodes. (b) Expected current density of the smooth electrical Gaussian white noise stimulus, calculated as
the derivative of the voltage command (see Methods, Eq. (1)). (c) Raw recording signal upon stimulation with
the stimulus shown in (b). The stimulus causes an artefact in the raw recording orders of magmtude larger than
the signal of interest, the spikes, indicated by red arrows. (d) Signal after filtering with a 2" order band-pass
Bessel filter between 1000 and 9500 Hz and artefact subtraction. The artefact is removed from the signal and
spikes are clearly detectable. (e,f) Simulation of the current density at different heights above the stimulation
electrodes in wt (black) and rd10 (gray) retina in the subfield and fullfield condition, respectively (see Methods).
The solid lines represent simulated current at a height of 20 yim, corresponding to the ganglion cell layer®”%, and
dashed lines represent simulated current at a height of 90 yum, approximately corresponding to the inner nuclear
layer. The extent of the stimulation area is indicated by the line parallel to the x-axis. The distance of the path
from the center to the edge was measured at a 0° angle (dashed black line in inset in panel (a)).

The reliability of the RGC response demonstrates that smooth electrical Gaussian white noise can efficiently
activate RGCs in healthy and blind mouse retina. The different percentages of activated cells in wt and rd10 retina
can be explained by a larger spatial extent of the sensitivity to electrical stimulation in wt compared to rd10 retina.

Localized response to local electrical stimulation. Previous studies have investigated the spatial extent
of the electrical receptive field (spatial eRF), i.e. the area in which electrical stimulation evokes a response in a cell.
In healthy rat retinas, eRF with diameters of about 250 pm have been reported, while the eRF in blind rat retinas
was found to span about 200 pm in diameter®. Recent studies in healthy and blind mouse retina found eRF diam-
eters of around 400 pm for RGCs in healthy mouse retina, and diameters of around 350 pm for RGCs in blind
mouse retina****, These eRF sizes were found upon network-mediated activation of RGCs in response to subret-
inal stimulation with pulsatile stimuli. A different study investigated how the activation threshold of rabbit RGCs
depends on the distance between the RGC and the stimulation electrode upon epiretinal electrical stimulation®.
The threshold was found to increase with distance; this increase was much steeper for direct activation compared
to network-mediated activation.

Here, we investigated the spatial extent of the sensitivity of RGCs to smooth electrical stimulation applied
epiretinally in wt and rd10 retina by stimulating subfields of the electrode array and analyzing how RGC responses
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Figure 2. RGC responses to light flashes and smooth electrical stimulation. (a) Raster plots of the responses of
RGCs from wt mouse retina to a fullfield light flash stimulus. The time course of the stimulus is indicated in the
first row, and light onset is marked by a red vertical line in every raster plot. Not every cell was recorded both
during electrical and light stimulation. (b) Raster plots of the responses of RGCs from wt mouse retina to an
excerpt from the smooth electrical Gaussian white noise stimulus (stimulus shown in the first row). Numbers
next to each row indicate the reliability index RI of the cell’s response to electrical stimulation. (c) Reliability
Index as a criterion for reliability of the response is plotted against distance to the edge of the closest active
stimulation electrode. Black horizontal line indicates reliability threshold RI > 0.15 for inclusion in further
analysis. Different markers indicate ON, ON-OFF and OFF cells, determined by their Bias Index as described in
the Methods section. (d) Histogram of the reliability indices of wt RGCs. (e) to (g) same as (b) to (d) but for
RGCs from rd10 retina. Different markers in (f) indicate cells recorded in the subfield and fullfield condition
(see Methods).

vary with distance from the stimulation areas. A simulation of the lateral current spread at different heights above
the active stimulation electrodes shows that the stimulation in the subfield condition is indeed locally confined
(Fig. le; see Methods). Simulated current density drops with distance from the center of the stimulation area; it
does so more steeply at the level of the RGCs compared to the level of the INL. Simulated stimulation intensity is
comparable between subfield and fullfield condition at the RGC level, whereas it is stronger in the fullfield con-
dition at the INL level (Fig. 1e,f).

We found that the reliability of the RGC response to the electrical stimulation decreased with increasing dis-
tance from the closest active stimulation electrode (Fig. 2¢,f). In wt retina, the majority of cells within a radius of
200 pm of an active stimulation electrode were entrained to the stimulus (RI > 0.15). Cells outside this radius did
not respond robustly to the stimulus (RI < 0.15). This is largely in agreement with eRF sizes reported previously
in studies using subretinal pulsatile stimulation. We hypothesized that the small fraction of ON cells responding
to electrical stimulation was due to the fact that by chance, the recorded ON cells were located further away from
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active stimulation electrodes. However, this was not the case; ON cells were recorded at distances from 0 to
~200 pm from the closest active stimulation electrode (Fig. 2c).

In contrast, RGCs from rd10 retina responded only in the fullfield condition (Fig. 2f, crosses), or if they
were located directly adjacent to or above an active stimulation area in the subfield condition (Fig. 2f, dots; see
Methods). Specifically, 23 of 35 (65.7%) RGCs from rd10 retina responded reliably in the fullfield condition, while
3 of 4 cells located at zero distance from the stimulation electrodes in the subfield condition responded reliably to
electrical stimulation. RGCs located further away from the stimulation electrodes did not respond to the stimulus
(total number of cells in subfield condition: 91). Thus, the spatial extent of the effect of our stimulus is very local-
ized in rd10 retina and more spread out in wt retina. This difference in spatial extent suggests that different mech-
anisms underlie the RGC response to smooth electrical stimulation in healthy compared to blind mouse retina.

Temporal electrical linear filters of RGCs. We computed temporal electrical linear filters by fitting a
linear-nonlinear-Poisson model using two different methods, spike-triggered averaging (STA) and
maximum-likelihood-estimation (MLE). We did this for all cells which responded reliably to the stimulus (relia-
bility index RI > 0.15,N = 53/84 in wt retina, N = 26/126 in rd10 retina). While filters of RGCs from rd10 retina
were all monophasic negative (Fig. 3m,n), filter shapes of RGCs from wt retina were more variable (Fig. 31,j).

To quantify the difference between the filter shapes found in wild-type retina, we performed a hierarchical
clustering on the projection of the filters onto three principal components (PC). For STA filters, the first three
PCs (3d-f) jointly explained 95% of the variance (PC1: 72.1%, PC2: 18.1%, PC3: 5.1%). For the MLE filters,
the first five PCs were needed to explain 95% of the variance; we projected onto PC1, PC3 and PC4, explain-
ing 69.1%, 9% and 3% variance, respectively (Fig. 4d,e,f), leaving out PC2. We did this because the variance
explained by PC2 (12.4%) was mostly due to variance between different recordings, which was not of interest
here (Fig. 4i-k).

We identified two distinct clusters for both STA and MLE filters based on the dendrogram generated by the
hierarchical clustering algorithm (see Figs. 3g and 4g). These two clusters were separated along the axis of the first
PC, and one of them could be split into two sub-clusters that were separated along the axis of the second (STA)
or third (MLE) PC. The clusters corresponded to three filter shapes, monophasic negative (green, Figs. 3 and
4a), monophasic positive (red, Figs. 3 and 4b) and biphasic (violet, Figs. 3 and 4c). Assignment to clusters agreed
between the STA and the MLE filter estimates for all except one cell. The estimates of the filters of the reliably
responding example cells from wt retina (Fig. 2b rows 4-12) fall into these three categories (Fig. 3i,j). Filters from
rd10 retina were all monophasic negative (Fig. 3m,n, using the same example cells as in Fig. 2e). The acausal com-
ponents observed in some filters are likely due to remaining correlations in the stimulus that could not be entirely
removed by the whitening procedure (see Methods and Supplementary Fig. 1).

In order to compare the filters of RGCs from wt and rd10 retina, we projected the LNP estimates of the filters
from rd10 RGCs (Fig. 3g, gray dots) onto the LNP PCs obtained from wt retina. The densely grouped projections
in the lower part of the plot corresponds to projections of flat filters from non-responsive cells, while the more
spread-out upper group corresponds to projections of filters from responsive cells (Fig. 3g, insets). Visual com-
parison of the filter shapes suggests that, while filters from rd10 RGCs do not fall into one of the three clusters
found in wt, they are more similar to monophasic negative and biphasic than to monophasic positive wt filters
(Fig. 3i,j,m,n). The pattern of clustering described above confirms this observation.

We calculated the latencies of the (positive and/or negative) peaks of the STA and MLE filters of wt and rd10
RGCs relative to the spike (see table 1). In wt retina, the latencies of the peaks of monophasic positive filters were
around 2 ms longer than the latencies of the peaks of monophasic negative filters. For cells with biphasic filters,
the spike occurred within 1 ms of the negative peak of the filter, preceded by 3 to 8 ms by the positive peak. For
the monophasic negative filters of RGCs from rd retina, the spike occurred within less than 2 ms of the peak of the
filter, comparable to the negative peak latencies observed for biphasic filters in wt retina.

Electrical linear filters vary with light response profiles of RGCs. Different RGC types, such as ON
and OFF or sustained and transient types, constitute different information channels sending a preprocessed ver-
sion of the visual scene to the brain***’. Preserving this first decomposition of the visual input into different
information channels by separately activating RGCs of different types would significantly improve implant-aided
vision*®. We therefore investigated whether there was a relationship between the light response profiles of RGCs
from wt retina and their electrical linear filters. We characterized RGCs in terms of their preference for light
polarity (ON, ON-OFF or OFF), and in terms of their response duration (transient, intermediate or sustained) by
calculating a Bias Index and a Transiency Index (see Methods). We found transient and intermediate OFF and
ON cells as well as sustained and intermediate ON-OFF cells (Fig. 5a). Transient OFF cells had biphasic or mono-
phasic positive filters (Fig. 5f,h), while intermediate OFF cells and sustained ON-OFF cells had monophasic
negative filters (Fig. 5g,d). Most ON cells did not respond reliably to the electrical stimulus (RI < 0.15) and could
therefore not be assigned to a cluster based on their electrical linear filter. Electrical linear filters of most ON cells
were rather noisy (Fig. 5b,e) due to their poor response to the stimulus; however, some ON cells had filters with a
discernible negative deflection at spike time (Fig. 5¢). The observed pattern suggests a difference in preferred
electrical stimulus between RGCs with transient and sustained light responses.

LNP model accurately predicts RGC responses to electrical stimulation. We predicted the firing
rates of RGCs from wt and rd10 mouse retina using the STA and the MLE fit of the LNP model (see Methods,
Fig. 6a,b (wt); Fig. 7a,b (rd10)). The models were fit on 80% of the data (4 s of the stimulus), and the parameters
recovered from this fit were used for the prediction of the remaining 20% of the data (1 s of stimulus). For RGCs
from wt retina, prediction performance P", evaluated as the correlation between true and predicted firing rate
(Methods, Eq. (24)) ranged from 0.05 to 0.67 for the STA fit and from 0.1 to 0.7 for the MLE fit of the model
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Figure 3. Hierarchical clustering of RGC electrical temporal filters estimated by STA. (a—c) Electrical temporal
filters of all reliably responding RGCs from wt retina recovered from the STA fit of the LNP model, displayed
separately for the three clusters identified by the hierarchical clustering algorithm. Thin lines are individual cell
filters, thick lines indicate the average filter for one cluster. (d,e,f) 1st, 2nd and 3rd principal component (PC)
recovered from principal component analysis of the ensemble of temporal filters from all cells. (g) Dendrogram
showing the separation of consecutively joined clusters along the clustering metric (distance in euclidean
space). (h) Scatter plot of the projections of the temporal filters onto the 1st and 2nd PCs (shown in (d,e)).
Colors indicate cluster assignment. Grey dots indicate the projections of filters of RGCs from rd10 retina,
projected onto the same PCs. The lower inset shows the filters of all 7d10 RGCs whose filter projections are
negative in PC2; the upper inset shows the filters of all rd10 RGCs whose filter projections are positive in PC2.
The black arrow marks the cell for which the assignment to clusters did not agree between STA and MLE
estimate of the filters. (i) STA estimates of the filters of example RGCs from wt retina shown in Fig. 2b (rows
4-12, same order), with cluster assignment indicated by color. (j) Same as (i), but for MLE estimates of the
filters. (k) Stacked histogram of the distribution of reliability indices (RIs) for all cells with RI > 0.15, color-
coded according to cluster assignment. (1) Distribution of distance to the edge of the closest active stimulation
area of all responsive cells (RI > 0.15), color-coded according to cluster assignment. (m) STA estimates of the
filters of example RGCs from rd10 retina shown in Fig. 2e (same order). (n) Same as (m), but for MLE estimates
of the filters.

(Fig. 6¢,d). The MLE fit performed slightly better than the STA fit (mean (P);“;A = 0.46 £+ 0.15, mean

(P) ﬁLE = 0.48 £ 0.15), and both models performed better for cells with monophasic negative and biphasic filter

shapes compared to cells with monophasic positive filter shapes (Table 2 and Fig. 6e).
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Figure 4. Hierarchical clustering of RGC electrical temporal filters estimated by MLE. (a—c) Electrical temporal
filters of all RGCs from wild-type retina recovered from the MLE fit of the LNP model, displayed separately for
the three clusters identified by the hierarchical clustering algorithm. Thin lines are individual cell filters, thick
lines indicate the average filter for one cluster. (d,e,f) 1st, 3rd and 4th principal component (PC) recovered from
principal component analysis of the ensemble of temporal filters from all cells. (g) Dendrogram showing the
separation of consecutively joined clusters along the clustering metric (distance in euclidean space). (h) Scatter
plot of the projections of the temporal filters onto the 1st and 3rd PCs (shown in (d,e)). Colors indicate cluster
assignment. Different markers (filled circle, cross and diamond) indicate cells recorded in different sessions. The
black arrow marks the cell for which the assignment to clusters did not agree between STA and MLE estimate of
the filters. (i,j) 1st and 2nd PC recovered from principal component analysis of the ensemble of temporal filters
from all cells. (k) Scatter plot of the projections of the temporal filters onto the 1st and 2nd PCs (shown in (i,j)).
Colors indicate cluster assignment. Different markers (filled circle, cross and diamond) indicate cells recorded
in different sessions. Note that the 2nd PC separates filter projections of cells from different recordings, but does
not separate the red and the violet cluster.

We hypothesized that there was a positive relationship between the prediction performance of the LNP model
and the reliability of a cell’s response, indicated by its reliability index RI. Indeed, the performance of the model
was generally better for more reliable cells (Fig. 6f). However, there were differences in model performance
between cells with different filter shapes that could not be explained by differences in their response reliability;
model performance was worse for cells with monophasic positive filters than for cells with monophasic negative
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-3.7,[-6.1, —1.3]
monophasic neg. (green, N = 35)
—3.3,[-5.4,0.2]
—5.5,[—6.2, —4.1]
monophasic pos. (red, N =11)
—4.7, [-6.6, —3.2]
0.2, [—0.1, 0.7] —5.2,[~7.7, —4.5]
biphasic (violet, N = 9)
—0.3,[—0.9,0.2] -3.1,[-7.3, —2.9]
—0.6, [—1.2,0.3]
rd10 (N = 28)
0.0, [—0.6,0.8]

Table 1. Peak latencies of filters The median and the range of the peak latencies relative to spike time for STA
filters (top) and MLE filters (bottom). Negative values indicate that the peak occurred before the spike.
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Figure 5. Electrical linear filters vary with light response profiles of RGCs. (a) Distribution of cells according to
their light response profile. Color codes for cluster assignment of a cell based on its electrical linear filter. Grey
dots indicate cells which were not included in the clustering due to below-threshold response reliability in the
electrical stimulation condition (RI < 0.15). Bias Index quantifies the polarity of the light response from OFF
(—1) through ON-OFF (around 0) to ON (1); Transiency Index quantifies duration of the response to a cell’s
preferred light stimulus from sustained (0) to transient (1). (b-h) Example cells with different light response
profiles, indicated in (a) by larger dots. Upper plot in each panel shows a raster plot of the cell’s light response in
4-10 repetitions of the light step stimulus. Light onset is indicated by a vertical red line. Lower plot in each panel
shows the cell’s electrical linear filter as estimated by STA in the LNP model; color coding as in panel a. Vertical
line indicates spike time. The timescale bar corresponds to 200 ms in the upper plot, and to 6 ms in the lower
plot.

filters, even when the cells were equally reliable in their response. Thus, the difference in model performance must
either be due to differences in the quality of fit of the linear stage, the nonlinear stage, or a combination of both.
To disentangle the effects of the linear and the nonlinear stage on model performance, we compared the accuracy
of only the linear stage to that of the full model in predicting the firing rate. The linear stage of the LNP model can
be used to predict the firing rate by computing the dot product between the linear filter and the stimulus, without
applying the static nonlinearity. The prediction performance of the linear stage was then determined in analogy
to the full model (see Methods). Differences in performance between RGCs with monophasic negative and bipha-
sic filters on the one hand and RGCs with monophasic positive filters on the other hand already emerged at the
linear stage (Fig. 6g, x-dimension). The prediction performance further diverged when applying the nonlinearity
(Fig. 6g, y-dimension); compared to the linear prediction, the nonlinear prediction was significantly better for
RGCs with monophasic negative filters (Wilcoxon signed-rank test, p = 3.67 x 1077, a = 0.05) and for RGCs
with biphasic filters (Wilcoxon signed-rank test, p = 0.01, = 0.05), but not for RGCs with monophasic positive
filters (Wilcoxon signed-rank test, p = 1, = 0.05). Thus, differences in model performance between cells are a
cumulative effect of differences in the reliability of the cells’ response, but also of differences in the quality of the
fit of the linear stage as well as the nonlinear stage.

Different filter shapes are the result of different response patterns that are elicited by the stimulus. Interestingly,
both model fits also predict differences in response patterns between cells with different filter shapes (Fig. 6¢,d,
highlighted region). As noted before, linear filters of RGCs from rd10 retina were most comparable to
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Figure 6. Model prediction of firing rates in wt retina. (a) Linear filters of three example cells from different
clusters, derived from the STA fit (solid lines) and from the MLE fit (dashed lines); displayed at different scales
in arbitrary units. To create the firing rate prediction, the filter response of the stimulus snippets with these
filters was computed, and then the nonlinearity was applied. (b) Nonlinearity of the STA model; the
nonlinearity of the MLE was the standard sigmoid function. (c) True firing rate, binned into 1 ms bins (black
histogram) and the firing rate prediction of the STA fit of the model (colored traces) for three example cells; the
highlighted region shows differential responses of cells with different types of filters, which are correctly
predicted by the model. Decimal numbers in upper right corner indicate the performance of the model for that
specific cell. (d) Same as (c) for the MLE fit of the model. (e) Prediction performance of the MLE fit plotted
against the prediction performance of the STA fit; colors indicate cluster assignment. Small black dots represent
RGCs that did not pass the reliability criterion of RI> 0.15, but are shown here for completeness. (f) Prediction
performance of the STA fit plotted against reliability index. Colors indicate clusters assignment. Small black dots
asin (e). (g) Prediction performance of the STA fit of the full LNP model plotted against the prediction
performance of only the linear stage of the LNP model. Colors indicate cluster assignment. Small black dots as
in (e).

monophasic negative and biphasic filters of RGCs from wt retina (Fig. 3h,i,m and Fig. 7a). Likewise, patterns of
model performance were similar in rd10 RGCs and wt RGCs with monophasic negative and biphasic filters.
For RGCs from photoreceptor-degenerated retina, the performance of the STA fit of the model ranged
from 0.35 to 0.66 ((P)4!) = 0.52 =+ 0.08); again, the MLE fit performed slightly better (range 0.39 to 0.71,
(PY419 — 0.58 + 0.09, Fig. 7c—e). These performance values are very similar to those obtained for RGCs with
monophasic negative filters from wt retina. Furthermore, the relationship between reliability of the response and
LNP performance (Fig. 7f), as well as the relationship between linear stage performance and full model perfor-
mance (Fig. 7g) in rd10 retina were similar to these relationships for RGCs with monophasic negative and bipha-

sic filters from wt retina (Fig. 6f,g).

Discussion
Retinal implants represent a promising treatment option for patients suffering from degenerative retinal diseases
like retinitis pigmentosa or macular degeneration, but clinical efficacy remains limited due to non-physiological
and therefore suboptimal stimulation strategies. The goal of this study was to investigate the response properties
of retinal ganglion cells to a novel electrical stimulus that comes closer to the physiological signals in the retina.
Identifying an electrical stimulus that is both physiologically plausible and technically feasible might significantly
improve clinical outcomes in patients wearing retinal implants.

We electrically stimulated retinal ganglion cells in wild-type and photoreceptor-degenerated mouse retina
with smooth Gaussian white noise currents and used a model-based approach to estimate linear filters of the
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Figure 7. Model prediction of firing rates in rd10 retina. (a) Linear filters of three example cells, derived from
the STA fit (solid lines) and from the MLE fit (dashed lines); displayed at different scales in arbitrary units. To
create the firing rate prediction, the filter response of the stimulus snippets with these filters was computed, and
then the nonlinearity was applied. (b) Nonlinearity of the STA model; the nonlinearity of the MLE was the
standard sigmoid function. (c) True firing rate, binned into 1 ms bins (black histogram) and the firing rate
prediction of the STA fit of the model (blue traces) for three example cells. Decimal numbers in upper right
corner indicate the performance of the models for that specific cell. (d) Same as (c) for the MLE fit of the model.
(e) Prediction performance of the MLE fit plotted against the prediction performance of the STA fit. Small black
dots represent RGCs that did not pass the reliability criterion of RI> 0.15, but are shown here for completeness.
(f) Prediction performance of the STA fit plotted against reliability index. Small black dots as in (e). (g)
Prediction performance of the STA fit of the full LNP model plotted against the prediction performance of only
the linear stage of the LNP model. Small black dots as in (e).

STA fit performance

0.52 &+ 0.09, [0.32, 0.67]
0.21 £ 0.11, [0.05, 0.41]
0.49 + 0.06, [0.39, 0.58]

MLE fit performance

0.54 £ 0.09, [0.35,0.70]
0.25 + 0.11, [0.10, 0.42]
0.54 + 0.06, [0.45, 0.63]

monophasic negative (green, N = 34)

monophasic positive (red, N = 11)

biphasic (violet, N = 8)
wtall (N = 53)
rd10 all (N = 26)

0.46 + 0.15, [0.05, 0.67) 0.48 + 0.15, [0.10, 0.70]

0.52 + 0.08, [0.35, 0.66] 0.58 + 0.09, [0.39,0.71]

Table 2. Prediction performance of the LNP model (STA and MLE fit) Prediction performance (mean =+ s.d.,
[range]) of the STA fit and the MLE fit, measured as the correlation coefficient C,; (see Methods) between
predicted and true firing rate at a resolution of 1 kHz, evaluated separately for the three identified clusters
among wt filters, as well as for rd10 filters.

RGCs. The estimates of the linear filters could be clustered into three different groups based on their shapes and
constituted the linear stage of a linear-nonlinear-Poisson model, which accurately predicted retinal ganglion cell
firing probability. We demonstrate that physiologically plausible electrical stimuli can be used to activate retinal
ganglion cells in both wild-type and photoreceptor-degenerated retina; furthermore, the LNP model could be
used to find stimuli that maximize the response in cells with one class of filters while minimizing the response in
cells with a different class of filter.

System identification approaches to estimate preferred stimuli of neurons are always limited to finding the
preferred stimulus within the subspace that is spanned by the presented stimuli; if the true preferred stimulus
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is not in this subspace, it can only be approximated by the most closely matching stimulus within the subspace
that was sampled®>*’. Our smooth electrical stimulus broadly, but certainly not exhaustively, samples stimulus
space, simultaneously probing different stimulus dimensions like frequency, amplitude and polarity. However, the
stimulus is low-pass filtered at 100 Hz, posing a limitation on our sampling of frequency space; we cannot exclude
that the true preferred electrical stimuli of RGCs are of higher frequency. The linear filters shown here should
therefore be interpreted as the preferred electrical stimuli of RGCs within the subspace sampled by our stimulus.

One of the main goals in retinal prosthetics is the selective activation of different information channels in
the retina, most prominently the ON and OFF channels. One way of achieving this goal are cell-type specific
preferred electrical stimuli, like it is the case for light stimulation of healthy RGCs***’. Indeed, investigating
network-mediated electrical activation of rat RGC, ON cells were found to prefer anodic-first biphasic pulses,
and OFF cells to prefer cathodic-first pulses, but the difference in preference was small*. Antagonistic polarities
of electrical filters in wild-type mouse ON and OFF cells have been reported as well*'; however, the clinical appli-
cability of these filters as stimuli is limited as they most likely arose due to photoreceptor activation®.

In this study, we found three different classes of RGC filters in response to smooth electrical stimulation in
wild-type, and one class of filter in photoreceptor-degenerated mouse retina. The most numerous of the three classes
of RGC filters in wt, the monophasic negative filter, reflects RGC activation by cathodic currents. This is in agree-
ment with previous findings showing that RGCs are preferentially activated by cathodic currents in epiretinal con-
figuration, irrespective of whether the mode of activation is direct or through the network. Anodic currents also
activate RGCs in epiretinal configuration, but at higher thresholds. Indeed, less RGCs had monophasic positive fil-
ters reflecting activation by anodic currents, and these cells also responded less reliably to electrical stimulation (see
Figs. 3k and 6e-g). This suggests that at the given stimulation intensity, RGCs with a preference for anodic currents
were activated just above threshold. Considering the reported preference of OFF cells for cathodic-first pulses®, it is
surprising that we find biphasic filters with opposite polarity (anodic-first) in OFF cells.

We investigated whether the different classes of electrical filters relate to light response profiles of RGCs in
the healthy mouse retina. We found only few reliably responding ON cells, suggesting the conclusion that our
stimulus more selectively activates OFF and ON-OFF cells. However, a large fraction of cells responding reliably
to the electrical stimulus could not be identified in the light condition and could therefore not be characterized
in terms of their light response profiles. As these reliably responding RGCs might by ON, ON-OFF or OFF, we
can not conclude that our stimulus more selectively activates one or the other cell type. However, among the OFF
cells, RGCs with sustained and transient light response preferred different shapes of electrical stimuli, suggesting
that they could be selectively activated by stimuli derived from their respective filters.

While we found different classes of filters in wt retina, we found only one type of filter in rd10 retina, which
might cast doubt on the clinical relevance of our findings. Specifically, if our electrical stimulus activated RGCs in
healthy retina via photoreceptors, and the different filter shapes were due to network mechanisms between pho-
toreceptors and bipolar cells*!*, selective activation of different pathways would not be achievable in blind retina.
Therefore, identifying which retinal elements in the vertical pathway (photoreceptors, bipolar cells or RGCs) are
activated by our stimulus is highly relevant. One way of determining the mode of activation is by using pharma-
cological blockers®'. We did not perform experiments with pharmacological agents, but the temporal and spatial
properties of the RGC responses, i.e. latency and spatial spread, can still inform us about the origin of the
response. Because our stimulus is time-continuous, we cannot directly compute the response latency as the time
difference between stimulus delivery and response. Instead, we used the latencies of the filter peaks relative to the
spike time as a proxy for response latency. The filter peak latencies (see Table 1) are much shorter than the
response latencies >20 ms usually reported for photoreceptor-mediated activation of ganglion cells in rabbit and
rat retina. It is therefore unlikely that the RGC responses in wt retina were due to activation of photoreceptors.
Rather, the latencies of both positive and negative monophasic filter peaks fall in the range usually reported for
bipolar cell activation?*?*5!. Also, wt RGCs with (negative or positive) monophasic filters responded within a
radius of 200 pm of stimulation electrodes, congruent with reports of the spatial extent of sensitivity to electri-
cal stimulation in mouse retina upon network-mediated stimulation*-46°!. Spatial integration over presynaptic
inputs might lead to indirect activation of RGCs at distances of up to 2200 pm from the stimulating electrodes.
The comparably more shallow drop in current density outside of the active stimulation area at the level of the INL
(relative to the level of the RGCs) (Fig. 1e) might facilitate this mode of activation at larger distances to the stim-
ulating electrodes.

Conversely, the short latencies of the negative peak of biphasic filters in wt and monophasic filters in rd10
retina suggest that these filters arose due to direct ganglion cell activation'*%. Also, RGCs with this type of linear
filter were only found at a cell-electrode distance of 0 pm (see Fig. 2f and 31). A possible explanation for this find-
ing is that these cells were activated directly and just above threshold, and that the stimulation intensity at the
ganglion cell layer was too weak at larger cell-electrode distances to surpass this threshold (see Fig 1e). One factor
that could lead to a more focal activation in rd10 retina compared to wt retina might be previously reported ele-
vated activation thresholds in rd10 retina®. However, recent studies found a large variability in direct activation
thresholds in degenerated retina® and no clear difference in thresholds for direct and indirect activation between
wt and rd10 retina*>>*. Taken together, the temporal properties of biphasic filters in wt retina and filters in rd10
retina suggest that these were the result of direct retinal ganglion cell activation, while both monophasic filter
shapes found in wt retina likely reflect RGC responses due to bipolar cell activation. It is therefore conceivable
that different retinal elements are activated in wt and rd10 retina by smooth electrical stimulation at the given
intensity: bipolar and ganglion cells in wild-type retina, and only ganglion cells in photoreceptor-degenerated
retina.

If wt RGCs with monophasic positive and negative filters were indeed activated through the network as hypoth-
esized above, then the short latencies of filter peaks in this study would indicate an improvement in temporal
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precision of network-mediated electrical activation of RGCs by the use of smooth over pulsatile electrical stimu-
lation. Epiretinal stimulation of wild-type mouse retina with subthreshold pulsatile Gaussian white noise yielded
biphasic filters with peak latencies roughly 2 orders of magnitude longer than the filters described here***!. Filters
estimated from network-mediated rat RGC responses to photovoltaic stimulation were about 10 times slower°.
Comparing to direct estimates (as opposed to the proxy of filter peak latencies) of network-mediated response laten-
cies found using pulsatile stimulation, the peak latencies of filters reported here are roughly 2-5 times shorter and
less variable®>>¢,

Our stimulus could prove clinically relevant in several different ways. First, it could be used to directly acti-
vate individual RGCs in a spatially confined manner, avoiding axonal stimulation which causes the occurrence
of elongated phosphenes experienced by patients wearing a retinal implant™. In this case, however, differential
activation of retinal pathways could probably not be achieved by using selective stimulus waveforms, but would
have to occur through targeted stimulation of identified RGCs?>**%°. Second, the short and precise latencies found
here are a result of fast and precise RGC responses to electrical stimulation. Thus, a stimulus derived from the
filters described here, implemented in a retinal prosthesis, might confer greater control over temporal activation
patterns and thus help to overcome problems such as fading'®.

Finally, our model predicts differences in electrically evoked responses of cells with different filter shapes (see
Fig. 6¢,d, highlighted region) and might therefore be used to identify stimuli that will maximize the response
of cells with one type of filter while minimizing the response in cells with a different type of filter®. Identifying
such stimuli might potentially provide a tool for selective activation of certain cell types. However, different filter
shapes were so far only identified in wild-type retina, likely upon network-mediated activation. One factor affect-
ing the possibility to activate RGCs via the network is the degree of degeneration of the retina. In this study we
report findings from rd10 retina at different advanced stages of degeneration (mice aged 80 to 209 days). In earlier
stages of degeneration, however, the network remains intact in the rd10 model of retinal degeneration as well as
in patients suffering from retinitis pigmentosa***'-%*. Future studies should therefore investigate how the degree
of degeneration affects RGC responses to our stimulus, and whether remaining intact circuitry can indirectly
activate RGCs in degenerating retina upon smooth electrical stimulation.

In conclusion, future work will reveal to what extent the stimulus and modelling approach presented here will
improve stimulation protocols for retinal prostheses in terms of spatial and temporal resolution and cell-type
specificity of the stimulation.

Methods

All experimental procedures were carried out in compliance with §4 of the German law on animal protection
and were approved by the Regierungsprésidium Tiibingen (Registration No.: 35/9185.82-7). All the experiments
were performed in accordance with the ARVO statement for the use of animals in ophthalmic and visual research.

Retina preparation. Ex vivo retina from five B6.CXB1-Pde6brd10/] (rd10) mice (2 females, 3 males; age
between post-natal days 80 and 209 (p80 and p209) and from three C57BL/6] (wt) mice (2 female, 1 male; age
between p87 and p274) was used. Animals were dark-adapted for approximately 30 minutes before the experi-
ment, anaesthetised with carbondioxide and euthanized by cervical dislocation. Both eyes were then enucleated,
the retina was isolated and dissected in Ames’ buffer under dim red-light conditions to prevent bleaching of
remaining photoreceptors (further details have been described previously*#¢*). A retinal portion of ca. 1-2 mm?
was placed on a CMOS-based microelectrode array in epiretinal flat-mount configuration. Before each use, the
microchip was cleaned with Terg-a-zyme (Sigma Aldrich, Z273287 dissolved in bidistilled water) and then coated
with Poly-L-lysine (Sigma Aldrich, P2636, 1 mg/ml dissolved in bidistilled water). The recording chamber (2 mI)
was perfused with warm, carbonated Ames’ buffer (Sigma Aldrich, A1420, 36 °C, pH 7.4) at a flow rate of 4mm—iln.

High-density CMOS-based microelectrode array (hd CMOS-MEA). Stimulation and recording of
retinal ganglion cell activity were performed with a high-density CMOS-based microelectrode array (CMOS
MEA 5000, Multi Channel Systems MCS GmbH, Reutlingen, Germany). The MEA comprised 1024 capacitive
stimulation electrodes and 4225 recording electrodes on an area of 1 mm? (see Fig. 1). Each stimulation electrode
extended over an area of 688 yim? with 0.5 um spacing between stimulation electrodes. The stimulation electrodes
were made of a titanium nitrite and were covered by a native oxide layer which insulated the metal from the elec-
trolyte in the recording chamber. The pitch (center-to-center spacing) between two recording electrodes was 16
pm. The stimulation software (https://www.multichannelsystems.com/products/cmos-mea-control) allowed to
define arbitrary stimulation areas by choosing a stimulation electrode to be active or inactive independently for
each stimulation site (see Fig. 1a). The resolution of the Digital-to-Analog Converter was 16 bit. Details of the
CMOS-based MEA have been reported previously®>.

Electrical stimulation. We designed an electrical stimulus consisting of Gaussian white noise low-pass fil-
tered at 100 Hz with a 5" order Butterworth filter (Fig. 1b). The electrical stimulus was applied using the hd
CMOS-MEA 5000 (see Fig. 1a). Applying voltages to the stimulation electrodes of the chip evokes capacitive
currents in the electrolyte. The stimulation current density is proportional to the time derivative of the electrode
voltage and scales with the specific electrode capacitance c:

av
c

stim E (1)
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Therefore, in order to obtain a certain current i;,, the integral function of the desired current has to be
applied to the chip as voltage command. For our electrical Gaussian white noise stimulus, this was achieved by
generating f - T samples (where f is the sampling frequency and ¢ is the total stimulus duration) from a stand-
ard normal distribution, and then calculating the cumulative sum over these samples. To reduce the drift in the
random walk that is generated by this process, a reflection limit L, 4, , was introduced: whenever adding a new
sample to the cumulative sum would raise the absolute value of the cumulative sum above the reflection limit
Lo = 10, the step’s sign was inverted. This yielded a sequence of values (in arbitrary units) describing a random
walk, which was then low-pass filtered at 100 Hz with a 5% order Butterworth filter and rescaled to generate a
voltage command V., .. that respects the safe input limits of the stimulus generator,[0V < V. < 2.5V].
The introduction of the reflection limit reduces the power of the stimulus in the low frequency regime; apart from
that, power spectral density of the resulting signal is relatively flat up to a frequency of 100 Hz and then drops off
(Fig. 8b; note that frequencies <4 Hz are not shown to improve visibility).

The stimulus applied in the experiments described here was generated using the parameters f = 10 kHz,
T =5sandL,g,, = 10 (AU). The stimulation current was measured as described before*>>>. The maximal cur-
rent density achieved with these parameters and the available chips wasi,, ~ 1.5 m—’z. Absolute current magni-
tude depended on the area of the active stimulation sites; for most recordingscén subset of the stimulation
electrodes was chosen (see Fig. 1a), while for one recording of rd10 retina, the whole array was stimulated. These
conditions are referred to as subfield and fullfield condition, respectively. Active electrodes in the subfield condi-
tion were chosen such as to cover areas with good contact between retina and CMOS-MEA as reflected by RGC
activity detected on the recording electrodes.The same Gaussian white noise stimulus was played on all active
electrodes throughout all conditions and experiments. We pool across conditions and set the distance of RGCs to
stimulation electrode to 0 for all cells in the fullfield condition.

Simulation of current density. We simulated the current density in the retina with the finite-element
method using the software COMSOL Multiphysics ®. We modeled the retina as a cylinder with a radius of 1 mm
and varied its height to simulate wt retina (height of 200 pm) and rd10 retina (height of 100 pm). All other param-
eters were identical in the simulations for wt and rd10 retina. A second cylinder with the same radius and a height
of 1 mm was stacked on top to model the surrounding electrolyte. On the bottom of the retinal cylinder we cen-
trally placed 5x 5 or 32 x 32 electrodes to simulate subfield and fullfield stimulation conditions, respectively. The
stimulation electrodes were modeled to be flat with shapes identical to the experimentally used electrodes (see
Fig. 1a, inset). The comparably large and remote reference electrode was modeled by setting the top of the electro-
lyte cylinder to an electrical potential of zero. For the stimulation electrodes we assumed a homogeneous surface
current density of 1.5 ’L‘z. All other boundaries were assumed to be perfect insulators with a normal current

density of 0. The electrical resistivities of the retina and the electrolyte were assumed to be homogeneous and
isotropic with values of 1000Q2 - c¢m and 652 - cm, respectively'®. We modeled rectangular stimulation areas of
different sizes (5x 5 and 32 x 32) and computed the norm of the current density for different lateral distances to
the center of the stimulation area between 0 and 400 pm in steps of 0.2 um. Due to the shapes and placements of
the electrodes on the chip, the current density at a fixed lateral distance varies with angle. Therefore, we also com-
puted the current density for each lateral distance at angles between 0 and 90° in steps of 0.2°. The current density
was then averaged across all angles. This was done for a vertical distance to the stimulation electrodes (height) of
20 pm (approximately ganglion cell layer®”¢®) and 90 um (approximately inner nuclear layer) (see Fig. le,f). For
further details on the simulation, please see Oesterle et al.*.

Light stimulation. To probe the light response of RGCs in wild-type retina, we presented full-field light
flashes repeated 4 to 10 times. Light stimuli were generated by a selected LED (pE 4000 coolLED, peak wavelength
470-490 nm) and were flashed on for 500 ms, then turned off for 500 ms, thus creating a 1 Hz flicker. The light
stimuli were projected onto a custom-made digital mirror display (u-Matrix, Rapp Optoelectronic GmbH)
mounted on an upright microscope (Olympus, BX51WI). The digital mirror display was focused onto the back-
side of the microscope objective.

Light response analysis. The light response profile of RGCs from wt retina was quantified by calculating a
Bias Index (BI) and a Transiency Index (TI)*. The Bias Index is calculated as

BI = RON — ROFF
Roy + Ropp (2)

where Ry and Ry are the total number of spikes fired by a cell in the first 300 ms after light onset and light
offset, respectively, summed across all repetitions. The Bias Index ranges from -1 for OFF cells through 0 for
ON-OFF cells to 1 for ON cells. RGCs with BI < —0.25 are termed OFF cells, RGCs with —0.25 < BI < 0.5are
termed ON-OFF cells and RGCs with BI > 0.5 are termed ON cells. The thresholds were chosen based on the
distribution of BIs in the RGC population recorded here. The Transiency Index is defined as

1 - (Rprej> (3)

where (R, zdenotes the average normalized histogram (binsize 50 ms) in the 500 ms window following a cell’s
preferred light stimulus (light onset or light offset). TI ranges from 0 (sustained; maximum firing rate maintained

throughout duration of preferred stimulus) to1 — # (transient; only fires in the first bin after stimulus
numoerofoins
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Figure 8. LNP model: Stimulus whitening and filter estimation by spike-triggered averaging. (a) Example
segment of the original stimulus in grey, and the corresponding segment of the whitened stimulus in black. (b)
Power spectral density (PSD) of the original (grey) and whitened (black) stimulus. While the PSD of the original
stimulus declines at frequencies >100 Hz due to filtering, this effect is undone by whitening. (c) The
autocorrelation function of the original (grey) and the whitened (black) stimulus at time lags of up to 20 ms. The
temporal extent of the autocorrelation of the whitened stimulus is much reduced compared to the original. (d)
For every spike of a RGC (black vertical lines), a segment of the whitened version of the stimulus, spanning 20
ms before and 10 ms after the spike, is added to the spike-triggered ensemble (STE). (e) The spike-triggered
average (black trace) is computed by averaging across all elements of the STE (the STE elements from panel (a)
are shown as thin gray lines). Gray shaded area indicates &1 standard deviation of the STE. Vertical black line
indicates time of spike. (f) The elements of the full stimulus ensemble, consisting of all 300 sample long stimulus
snippets taken 10 samples apart, are projected onto the linear filter of a cell and binned to yield a histogram
(empty bars). The same is done for the elements of the STE (black histogram). (g) The nonlinearity (black dots)
is estimated as the ratio between the histogram of the projected elements of the spike-triggered ensemble to the
histogram of the projected elements of the full stimulus ensemble (black and the empty histograms from panel
(), respectively) and fit by a sigmoidal (Eq. (14)) or exponential (Eq. (15)) function (black trace, here
sigmoidal).

onset; herel — — = 0.9). For ON-OFF cells, the TI is defined as the mean between the TI for the OFF phase of
the stimulus and1 the TI for the ON phase of the stimulus.

Artefact reduction and preprocessing. In the raw recording, spiking activity is masked by large artefacts
caused by the stimulation current, making spike sorting and further analysis impossible (Fig. 1b,c). Therefore, a
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series of data preprocessing steps was performed to remove the stimulation artefact. First, the raw traces of each
recording electrode were band-pass filtered between 1000 and 9500 Hz with a 2" order Bessel filter. Then, because
the time courses of the stimulation current and the artefact recorded on the sensors are aligned”, the contribution
of the stimulation artefact to the raw trace could be estimated by computing the dot product between the applied
stimulus S and the raw tracer,, , (r,,,,, S are N-dimensional column vectors), normalized to the dot product of the

raw
stimulation waveform with itself:

-
f — rrdWS .
s's (4)
To remove the contribution of the stimulation artefact in the raw recording, the stimulus trace (Fig. 1b) was
then subtracted from the raw recording (Fig. 1¢), multiplied by the factor f:

rpre = Traw 7f' S. (5)
In the resulting signal, spikes are clearly separated from the background signal and no longer masked by the
stimulation artefact (Fig. 1d). Spike sorting was performed on this signal using the spike sorter based on convolu-
tive independent component analysis”', implemented in the MultiChannel Systems CMOS-MEA-Tools Software
(https://www.multichannelsystems.com/software/cmos-mea-tools, version 2.1.0).

Evaluating reliability of RGC responses to electrical stimulation. In order to quantify how reliably
RGCs respond across repetitions of the same stimulus, we computed a Reliability Index (RI). To compute the RI,
individual RGC responses from 4 repetitions were binned into 2 ms wide bins, resulting in a histogram H. The
same was done for the remaining 5t repetition, yielding a histogram k. Then the correlation coefficient between
the two histograms was computed. This was repeated for all possible combinations of H and k, and the RI was
computed as the average across the resulting correlation coefficients:

RI= (S
A/ CarCn (6)
where C denotes the covariance matrix of the histogram h of cell responses during four repetitions of the stimulus
and the histogram  of the cell responses during the fifth repetition, and angular brackets () denote the mean
across all (five) possible combinations of H and h. A value of 1 indicates perfect reliability (identical response
pattern in all repetitions), while a value close to 0 indicates no reliability in the response to the stimulus. Based on
visual inspection of the distribution of the RIs of wild-type RGCs, we included RGCs in the analysis if their RI was

larger than 0.15 (see Fig. 2d). This threshold was compatible with the distribution of RIs of RGCs from rd10 retina
(see Fig. 2g).

Fitting a linear-nonlinear-Poisson model to electrically evoked RGC responses. We modeled
RGC responses to electrical stimulation with a Linear-nonlinear-Poisson (LNP) model*. The LNP model assumes
that the firing rate of a neuron in response to a stimulus s, at time ¢ can be modelled as an inhomogeneous Poisson
process with instantaneous firing rate

B = Nik's,) @)

where kTst denotes the dot product of the cells linear filter and the stimulus at time t, and N denotes a static
nonlinearity.

We used two different approaches to fit the LNP, spike-triggered averaging with subsequent estimation of the
nonlinearity, and maximum-likelihood estimation of a generalized linear model (GLM) with logit link function.

LNP model: Filter estimation by spike-triggered averaging. The spike-triggered average®*” (STA) is calculated by
averaging over the spike-triggered stimulus ensemble (STE), which is the collection of all stimuli that were fol-
lowed by a spike within a defined time window (here1 ms). For a discrete time shift 7; before the spike the STA is
given as

v(n) = lz:S(tk - %)
=

(8)
with
N the number of spikes, s(¢) the value of the stimulus at time £, 7; the time shift relative to the spike.
A cell’s linear temporal filter is then defined as the vector
V= (WTha)s V(Ty_1)s - (7)) 9)

The spike-triggered average was calculated 20 ms into the past and 10 ms into the “future” relative to the spike, i.e.

Twax = —20msand 7, = 10 ms. The duration of the filters presented here is thus 30 ms, equivalent to 300 stimulus

samples.
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The stimulus was low-pass filtered at 100 Hz (see Methods) and therefore has a non-zero autocorrelation at
time shifts <10 ms (see Fig. 8c). These autocorrelations affect the shape of the filters computed by spike-triggered
averaging”. To reduce the effect of the autocorrelations on the filters, the STA was calculated using whitened
stimulus "snippets”. For the whitening procedure’, the 50 000 samples (5 s) long continuous stimulus was sliced
into snippets of 300 stimulus samples, taken 10 samples apart (1 ms). This yielded a stimulus ensemble containing
4701 stimulus snippets, and the covariance matrix was computed based on this ensemble. The square-root of the

pseudo-inverse of the resulting covariance matrix, C2,, was computed, and each stimulus snippet was whitened

by multiplying with Cs;én:
1
5" = Cuds, (10)
with
s; € R stimulus “snippets” of 300 frames each C,2 € R¥OO30 e pseudoinverse of the stimulus covari-

stim
ance matrix C;,,.

The pseudoinverse is obtained from the eigendecomposition of the stimulus covariance matrix

K<M

Catim = Z Aee
Y (11)

by keeping the eigenvectors e; € R, but inverting and taking the square root of the L < K largest eigenvalues
A; and setting the remaining eigenvalues to zero:

1

L

_ Yl

= E A; Zege
i=1

The whitened stimulus used for spike-triggered averaging (Fig. 8a,d) was reconstructed by concatenating the
resulting whitened stimulus snippets and smoothing the edges with a hanning window.

The nonlinearity F was estimated as the ratio between the histograms of the projection of the STE onto the
cells linear filter and the projection of the raw stimulus ensemble onto the cells linear filter® (Fig. 8f,g):

I

G
(12)

7 — Hrp
Hg (13)

Hgpp denotes the histogram of projected stimulus snippets from the spike-triggered ensemble (STE) and H
denotes the histogram of projected stimulu