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Abstract

a-crystallin, the major constituent of human lens, is a member of the heat-shock proteins family and it is known to have a
quaternary structural transition at Tc~450C. The presence of calcium ions and/or temperature changes induce
supramolecular self-aggregation, a process of relevance in the cataractogenesis. Here we investigate the potential effect of
the bovine a-crystallin’s structural transition on the self-aggregation process. Along all the temperatures investigated,
aggregation proceeds by forming intermediate molecular assemblies that successively aggregate in clusters. The final
morphology of the aggregates, above and below Tc, is similar, but the aggregation kinetics are completely different. The
size of the intermediate molecular assemblies, and their repulsive energy barrier show a marked increase while crossing Tc.
Our results highlight the key role of heat modified form of a-crystallin in protecting from aggregation and preserving the
transparency of the lens under hyperthermic conditions.
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Introduction

Cataract, the opacity of the eye lens, is an age-onset pathology

that affects nearly 50% of the world’s population over the age of 65,

and is the leading cause of blindness worldwide [1]. Pathological

studies of cataractous lenses have revealed that cataracts are

composed of protein aggregates that precipitate in eye lens cells.

The prevalent proteins within the eye lens are the crystallins. Lens

transparency is thought to be maintained by a liquid-like, short

range order present in highly concentrated solutions of these

proteins [2,3]. In mammals, there are three classes of crystallins

denoted a, b, and c of which a-crystallin is the most abundant. a-

crystallin is an oligomeric protein, having a molecular mass of about

80071200kDa, composed of two types of subunits, aA and aB

crystallins, each having a molecular mass of about 20 kDa and aA

crystallins in a ratio of 3 to 1 with respect to aB [4]. The increase in

light scattering in old and cataractous lenses can be ascribed to

alterations in lens crystallins interactions due to age related post-

translational modification of a-crystallin [5–8]. The alterations are

triggered by lens cells exposition to elevated temperatures or other

stress factors like Ca2z ions, that disrupt the liquid-like molecular

order and promote the formation of large scattering particles [9,10],

following pathways that include both changes in the secondary

structure and in the state of assembly [11,12].

To monitor the heat and Ca2z induced changes that occur in

the structural domain of lens-crystallin different techniques like

circular dichroism, fluorescence, Small Angle X-Ray scattering

(SAXS) were used [13,14]. Differential scanning calorimetric

studies on a-crystallin [14] show two endothermic transitions, a

first ranging from 350C to 510C, peaked at Tc~450C and a

second major transition peaked at TII
C ~600C. The transition at

Tc~450C has been found to be biologically relevant [15]. At this

temperature, a-crystallin undergoes a minor change in its tertiary

structure accompanying the exposure of its hydrophobic surfaces

[16,17], whereas its secondary structure is relatively unchanged.

Here we focused on the effects of this structural transition on the

a-crystallin self-aggregation. Several aggregations have been

induced by changing temperature, and therefore, by generating

different heat-modified a-crystallin forms [18]. At temperature

larger than Tc the kinetic pattern of the a-crystallin aggregation

and the structural features of the clusters can be described

according to the reaction limited cluster-cluster aggregation theory

(RLCA) [19]. Aggregation occurs by initially forming the basic

aggregation units, the high molecular weight forms of a-crystallin

(HMW) [20], that successively continue to diffuse, collide and form

rather compact fractal aggregates (df ~2:15). Although the final

morphology of the aggregates is similar, the aggregation kinetics

are completely different below and above Tc, together with the

size of the HMW, and their repulsive energy barrier (DEb). An

abrupt increase in (DEb) reveals a mechanism that markedly

protects from aggregation preserving the transparency of the lens.

Materials and Methods

Preparation and aggregation of a-crystallin
a-crystallin from bovine eye lens was prepared according to

Andreasi et al. [19].

The a-crystallin fractions suspended in 10 mM Tris-HCl buffer,

pH 7.4, were thoroughly mixed and pooled together. The purified

protein was divided into aliquots and kept in the same buffer at

{200C until used. Just before the experiment, the samples were

thawed and centrifuged at 5000g(Eppendorf 5418) for 30min at

40C, and the supramolecular aggregates already formed were

discarded. The supernatant was filtered through a 0:22mm
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Millipore low-retention filter directly into the measuring cuvette.

Protein concentration was determined by using an absorption

coefficient of A0:1%
1cm ~0:81 at 280 nm [21]. Aggregation of a-

crystallin (1.0 mg/ml) was induced by quenching samples at the

desiderated temperature and by the addition of 16mM CaCl2.

Indeed heating provokes the generation of particularly reactive

isoforms of a-crystallin [14], and calcium ions stabilize the

aggregates while they are forming and allow their continuous

growth [9]. The whole set of measurements have been performed

on different aliquots of the same sample. Five aggregations process

for each temperature have been followed.

Dynamic light scattering
Dynamic light scattering (DLS) (24) provides information on the

aggregation kinetics and on the clusters dimension and evolution as

the aggregation proceeds. DLS measurements were performed

during aggregation by using a commercial computer-interfaced

scattering instruments ALV/SLS-5000 system from ALV, Langen,

Germany, equipped with a 50mW HeNe laser operating at

632.8 nm. The beam was focused to a spot (at 1=e2) of *50mm

and the detection of the scattered light was carried out with a mono-

mode fiber coupled to a photomultiplier, both mounted on a

stepping motor-controlled rotating arm. The sample was contained

in a cylindrical cell (8mm inner diameter) immersed in a toluene-

filled index-matching vat whose temperature was controlled with a

resolution of 0:010C. In this instrument, the usable wavevector

range varies from *4:104 to *3:105cm{1. The autocorrelation

function of the photopulses were performed by a 256-channel digital

correlator (ALV-5000). Counts per second were used to measure the

scattered intensity during the aggregation. DLS technique measures

the intensity autocorrelation function g2(t)~SI(t)I(tzt)T=SIT2

where t is the lag time and brackets represent the ensemble average

[22]. The g2(t) can be related to the field autocorrelation function

g1(t) through the Siegert relation g2(t)~1zbg2
1(t) where b is an

instrumental constant (in our set-up b~1). The mathematical form

of g1(t) depends on the physical properties of the investigated

system. For monodisperse particles, the electric field autocorrelation

function decays exponentially following g1(t)~e{Ct,where the

decay rate C depends on the particle translational diffusion

coefficient according to C~Dq2. For a polydisperse sample, g1(t)
is more complex than a single exponential. In this condition, the

derivative of g1 measures the intensity weighted average decay rate

of the clusters:

CI~
Llng1(t)

Lt
Dt~0 ð1Þ

To determine CI experimentally, we fitted the logarithm of the

measured autocorrelation function g1, to a second-order polyno-

mial, according to the cumulant expansion [23]:

lng1(t)~{C1tz
1

2!
C2t2zo(t3) ð2Þ

Where we assumed CI~C1. In aggregating systems, because of

cluster-mass polydispersity, what we actually measure is an

average effective diffusion coefficient that can be expressed as:

DI~
CI

q2
~

Ð?
0

pI (r)
C(r)

q2
dr

Ð?
0

pI (r)dr
ð3Þ

where pI (r) is the normalized intensity-weighted radius distribu-

tion function describing the distribution of the fraction of the

intensity scattered by a particle of hydrodynamic radius r and

decay rate C(r), given by:

C(r)~kTq2=6pgr ð4Þ

where g is the water viscosity and k the Boltzmann constant. The

intensity weighted average effective hydrodynamic radius rI can

be obtained using Stokes-Einstein Relation

rI~kT=6pgDI ð5Þ

The complete distribution of decay rates can also be recovered

by introducing from the relation [22,24]:

g1(t)~

ð?
0

pI (r)e{C(r)tdr ð6Þ

The recovery of the pI (r) distribution, a classical ill posed

problem, can be obtained by performing a regularized Laplace

inversion of the intensity autocorrelation function using the

software CONTIN [25]. In the presence of highly polydisperse

fractal clusters, we also have to account for the volume and for the

inner structure of clusters, therefore we need a complete recovery

of the normalized number-weighted radius distribution function

pN (r) [24]:

pN (r)~pI (r)=P(qr)M2(r) ð7Þ

where M(r) is the mass of a cluster of hydrodynamic radius r and

P(qr) is the scattering form factor of the particle. Finally once

pN (r) is known, the mean hydrodynamic radius can be easily

determined by:

r~

ð?
0

pN (r)rdr ð8Þ

Reaction limited cluster aggregation
A key to the understanding of proteins aggregation is the

behavior of the energy of interaction between two approaching

particles. It has been demonstrated that for a wide variety of

proteins, this can be understood within the Derjaguin-Landau-

Verwey-Overbeek (DLVO) model [26]. The key parameter is the

repulsive energy barrier between two approaching particles. If the

height of this energy barrier Eb is sufficiently large compared to

kBT , the particles will be unable to stick to one another when their

diffusive motion causes them to collide, and the particle will be

stable against aggregation. If Eb is reduced to much less than kBT ,

every collision will result in the particles sticking together, leading

to very rapid aggregation, limited only by the rate of diffusion

induced collisions between the clusters. This regime is therefore

called diffusion-limited colloid aggregation (DLCA) [27–29]. For

DLCA, computer simulation and several different experimental

techniques show that clusters, characterized by a typical fractal

dimension df ~1:8, are essentially monodisperse in that their mass

distribution is bell shaped and peaked around an average mass

value, which grows linearly with time. By contrast, if Eb remains
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comparable to, or larger than, kBT , many collisions must occur

before two particles can stick to one another. In this case, the

aggregation rate is limited by the probability of overcoming the

repulsive barrier P*exp({Eb=kBT) (sticking probability), lead-

ing to much slower aggregation. In this regime, called reaction

limited aggregation (RLCA) [30–32], clusters have a structure

more dense than in the DLCA, and with the typical df ~2:1. In

each case, however, as particles stick together to become clusters,

the clusters themselves continue to diffuse, collide, and aggregate.

Each of these two regimes is characterized by a different time

evolution of the average cluster mass, M, of the shape of cluster-

mass distribution function, and of the fractal dimension of the

resulting clusters. In RLCA regime the average cluster radius is an

exponential function of time [19,30,33]:

r~r0ekaggt, ð9Þ

where r0 is the basic aggregation units and the aggregation rate

kagg is a constant that depends on the sticking probability and

therefore on the repulsive energy barrier [30,34]:

kagg*exp({Eb=kBT) ð10Þ

Clusters formed in the RLCA regime show an extremely high

mass polydispersity, described by a power law, up to a cutoff mass

Mc, after which it decreases exponentially following:

N(M)!M{te{M=Mc ð11Þ

where t is a characteristic exponent (i.e t~1:5 in RLCA) [30–32].

The DLCA and RLCA regimes must be considered universal in

that their features do not depend on the nature of interacting forces

between particles. Spectroscopic and microscopy techniques usually

detect the normalized number-weighted radius distribution func-

tion, pN (r), instead of the cluster-mass distribution function, N(M).
For a direct comparison of the theoretical predictions with

experimental results, we here developed the relation between these

two distributions. To this end let us to recall that by definition,

pN (r)~N(r)=N, where N(r) is the number of clusters of radius r

and N is the total number of clusters (N~
Ð

N(r)dr). Since

N~
Ð

N(M)dM, for fractal clusters we obtain N(r)*N(M)r
df {1

.

In the case of RLCA aggregation we obtain:

pN (r)*r
{½df (t{1)z1�

e{(r=rc)
df ð12Þ

where rc is the cut-off radius of clusters with a mass Mc.

Results

To characterize the extent of the aggregation process, we

performed dynamic light scattering experiments by measuring the

time evolution of the intensity weighted average hydrodynamic

radius of the clusters, rI , determined according to Eq.2, Eq.3, and

Eq.5. The results for samples at different temperatures above

Tc~450C are reported in Fig. 1.

After an initial, fast, increase of rI a second, slower, exponential

growth, is observed.

The first increase of rI is ascribed to the initial conversion of the

protein from the native to the heat- and calcium-induced

conformers that rapidly bind to form high molecular weight

species (HMW) [19]. The second exponential growth, already

investigated in detail [19], is consistent with an RLCA process

where HMWs, of radius r0, after a large number of collisions can

stick together. The time at which appears the crossing between

these two steps it is called tlag.

Fits of Eq.9 to experimental data allow to recover kagg, r0 for

each aggregation process (Table 1). The value of tlag is determined

as the t value where r(tlag)~r0.

All the aggregations, carried out at different temperatures, show

the same behavior. The initially formed basic aggregation units

aggregate forming fractal clusters, accordingly to an RLCA

process characterized by a temperature dependent rate constant

(i.e. higher is the temperature faster is the aggregation rate). The

size of basic aggregation units,instead, is independent on

temperature with an average value of r0(TwTc)~(25:2+1:1)nm.

By decreasing temperature below Tc the time evolution of the

aggregation process undergoes to a dramatic modification (Fig. 2)

and the fitting equation used is slightly modified according to the

expression r~r0ekagg(t{tlag). Basic aggregation units are formed

over a longer time and their average size is smaller

(r0(TvTc)~17:5+0:9) (Tab.1). At times larger than tlag an

exponential increase of the hydrodynamic radius, rI , is still

observed. In order to verify if aggregations below Tc, although

different with respect to those observed at TwTc, are still

consistent with an RLCA process, we investigate the shape of the

cluster-number distribution (pN (r)) that can be recovered directly

from the intensity autocorrelation function [24,33]. In Fig. 3 we

report representative distributions of pN (r) taken at different times

during the aggregation occurred at T~39:610C. Number

weighted radius distributions shift toward higher values with time,

and, more relevant, all distributions appear broad and highly

asymmetric. Fits of Eq.12 to experimental data evidence that, in

agreement with the RLCA aggregation theory, the pN (r) is well

described by a power law up to the cut-off radius, rc, after which it

becomes an exponential distribution. Contextually, the fractal

Figure 1. Time evolution of the average hydrodynamic radius
of the clusters, rI , determined according to Eq.8 and Eq.12.
Results for samples at 470C (squares), 490C (inverted triangles), 510C
(diamonds), 540C (triangles), 560C (circles), all above the characteristic
temperature Tc~450C are reported. Solid lines are Fit of Eq.9 to
experimental data.
doi:10.1371/journal.pone.0018906.g001
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dimension does not vary as aggregation proceeds, keeping an

average value of =(2:10+0:11nm). This peculiar behavior imply

an universal scaling of the number distribution, i.e. pN (r) depends

only on the cut-off radius rc that increases exponentially with time

as rc*et=t0 (see inset of Fig. 3) [30], while is independent on the

detailed nature of the aggregating particle. In Fig. 4 we report the

whole aggregate’s size distribution, recovered from aggregations

occurred at two different temperatures, below (full dots) and above

Tc (open diamonds), when the average radius reach a specific

value (rN~40nm). The overlap of the aggregates’ size distribution

curves before and after the structural transition is a further

evidence that the shape of aggregates’ size distribution is

independent on the size of the aggregating particle (which has

different dimension above and below Tc) as expected for RLCA

aggregations [30].

Therefore above and below Tc the aggregations are well

characterized in the framework of RLCA theory: the final

morphology of the aggregates is similar, but the aggregation

kinetics are completely different.

A closer look of Tab.1, indeed, evidences that the aggregation

rate kagg depends on T both above and below Tc, with an abrupt

change across Tc. This jump of the kagg value is a consequence of

the phase transition [35] and it can be easily visualized in Fig. 5

where the logarithm of kagg against the inverse temperature is

reported. In this plot two different behaviors of kagg can be

identified above and below Tc (the 1/Tc value is indicated by a

dashed line). Fit of eq.10 to experimental data allows to recover

two distinct energy barriers for the aggregation process:

Eb1
~(33,79+1,29) Kcal/mol and Eb2

~(137,6+9,3) Kcal/mol

(below and above Tc respectively). The rate of formation of

HMWs (kHMW ), estimated as tlag%k{1
HMW [36], reveals, instead, a

single Arrhenius behavior along all the temperature range

investigated (inset Fig. 5) showing that the rate of formation of

intermediate aggregation units is independent on the alpha-

crystallin phase transition.

Discussion

a-crystallin is the most abundant lens protein of the mammalian

eye, and its aggregates are the main scattering elements strongly

involved in the process of cataractogenesis. The increase in light

scattering in old and cataractous lenses can be ascribed to

Table 1. a-crystallin aggregation constants.

T(0C) df r0 (nm) kagg(s{1) 1=tlag(s{1)

37:57+0:01 2:07+0:08 17:3+1:2 (3:50+0:53)10{5 (7:65+2:03)10{6

38:44+0:01 2:12+0:18 17:8+1:1 (4:02+0:32)10{5 (1:00+0:20)10{5

39:61+0:01 2:11+0:09 16:4+1:1 (4:86+0:36)10{5 (1:43+0:56)10{5

41:29+0:01 2:20+0:18 18:6+2:0 (6:66+0:69)10{5 (2:13+0:63)10{5

47:44+0:01 2:31+0:21 19:2+0:1 (4:25+0:05)10{6 (5:26+1:87)10{5

50:64+0:01 2:06+0:05 23:6+0:6 (1:11+0:04)10{5 (7:14+1:17)10{5

51:94+0:01 2:10+0:10 28:7+1:4 (3:01+0:07)10{5 (8:47+3:11)10{5

54:28+0:01 2:12+0:07 26:2+1:0 (1:22+0:07)10{4 (1:47+0:52)10{5

56:38+0:01 2:15+0:05 25:2+5:6 (3:69+0:86)10{4 (2:86+0:66)10{4

doi:10.1371/journal.pone.0018906.t001

Figure 2. Time evolution of the average hydrodynamic radius
of the clusters, rI , determined according to Eq.8 and Eq.12.
Results for samples at 370C (inverted triangles), 390C (triangles), 410C
(circles), 430C (squares), all below the characteristic temperature
Tc~450C are reported. Solid lines are Fit of Eq. r~r0ekagg(t{tlag) to
experimental data.
doi:10.1371/journal.pone.0018906.g002

Figure 3. Representative distributions of pN (r) taken at
different times (t = 136000 s black squares, t = 146300s open
circles, t = 149000 s black triangles, t = 154000 s open dia-
monds) during the aggregation occurred at T~39:610C . Fit to
the Experimental data (solid lines) according the equation
pN (r)*r{½df (t{1)z1�e{(r=rc)

df
are reported. pN (r) depends only on the

cut-off radius Rc that increases exponentially with time according to
the relation Rc*et=t0 (inset), while is independent from the detailed
nature of the aggregating particle as confirmed by the fractal
dimension that does not vary as aggregation proceeds, keeping an
average value of 2:10+0:11.
doi:10.1371/journal.pone.0018906.g003
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alterations in lens crystallins interactions due to age related post-

translational modification of a-crystallin [5–8]. The alterations are

triggered by lens cells exposition to elevated temperatures or other

stress factors like Ca2z ions, that disrupts the liquid-like molecular

order and promote the formation of large scattering particles

[9,10].

Supramolecular structure of crystallins substantially varies both

in lenses of different vertebrate species and in various parts of the

same lens [37], therefore the understanding of the aggregation

mechanism and the fractal clustering could be an important tool to

characterize lens ageing and crystallin function.

Here we monitor changes in the a-crystallin’s aggregation

process induced by the thermal structural transition (Tc~450C).

At all the temperatures investigated supramolecular aggregation

of a-crystallin could be described according to the reaction limited

cluster-cluster aggregation theory. Aggregation of the Ca2z and

heat-modified proteins occurs initially by rapidly forming the first

clusters or basic aggregating units, corresponding to HMW

[20,38]. After that clusters themselves continue to diffuse, collide,

and aggregate. As the aggregation proceeds, clusters with different

masses are formed and stick each other. The average cluster size of

aggregating HMWs increases exponentially in time and their

fractal dimension *2:15 indicates that aggregates sample all the

possible mutual configurations before they stick together.

The radius of the HMW is r0*18nm, and r0*25nm, below

and above Tc, respectively. This difference highlights a substantial

alteration in the packing of a-crystallin subunits. Accordingly,

HMW molecular weight increases 2:7 times and HMW concen-

tration decreases by the same factor. A lower HMW concentration

reduces the probability of collision decreasing the rate of formation

of aggregates. Nevertheless, modifications in subunit’s packaging

do not affects the kinetic of formation of the HMWs (see inset of

Fig. 5).

The aggregation rate, instead, undergoes to an overall abrupt

change when crossing Tc. Above Tc, the energy barrier that must be

crossed to create larger particles is *100Kcal=mol higher than below

Tc. Accordingly, the probability that an activated state occurs along the

aggregation process results kagg(T~47,99)=kagg(T~41:29)^15
times lower than above Tc. Therefore, the formation of large scattering

particles in old and cataractous lenses is inhibited at high temperature

by the structural transition that occurs at Tc. As already pointed out,

there is an effective inhibition only of the aggregation step: the rate of

aggregation of HMW changes steeply at Tc, whereas the rate of

formation of HMW is unmodified at Tc.

Therefore, the change in tertiary structure occurring at the

endothermic phase transition at Tc~450C [16,17], triggers a

major reorganization of a-crystallin subunits in the HMWs. A

smaller number of more stable HMW particlesis formed, and

accordingly the aggregation is inhibited.

Lens crystallin is particularly recessive to deleterious effects from

elecromagnetic radiations that are known to be a potential risk

factor for cataract and other eyes diseases. Indeed, its aqueous

content favors radiation absorption and the very weak vascular-

ization makes difficult to stand fast temperature increases [39].

In this context, the natural self-protective mechanism that we

report preserves the lens from premature opacification throughout

the lifespan of the organism [40], abruptly reducing the formation

of aggregates in the lens fiber cells under hyperthermic conditions,

such as those determined by extended exposure to microwaves or

other electromagnetic radiation emitted by cell and cordless

phones, wireless communications, monitors and even high voltage

lines [41–45].

Figure 4. Aggregate’s size distributions, recovered from
aggregations occurred at T = 37C (full dots) and at T = 51C
(open diamonds) below and above Tc, when the average
radius reach a specific value (rN ~40nm). The overlap of the
aggregates size distribution curves before and after the structural
transition is an evidence that the shape of size distribution of
aggregates depends only on the cluster-cluster interaction potential
(i.e DLVO in our case) while temperature simply modulate the extent of
aggregation.
doi:10.1371/journal.pone.0018906.g004

Figure 5. Logarithm of kagg against inverse temperature. Two
different behaviors can be identified above and below Tc (1/Tc value is
indicated by a dashed line). Fit of eq.10 to experimental data allows to
de termine two di f ferent values of the barr ier ener gy:
Eb1

~(33,79+1,29)Kcal/mol and Eb2
~(137,6+9,3) Kcal/mol for the

two kinds of aggregation process (below and above Tc respectively). The
rate of formation kHMW of HMWs, estimated measuring tlag%k{1

HMW ,
reveal a normal Arrhenius behavior with temperature (inset), revealing
that the same abrupt change doesn’t involve the first aggregation step.
doi:10.1371/journal.pone.0018906.g005
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