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Prenatal exposure to sodium valproate (VPA), a widely used anti-epileptic drug, is related

to a series of dysfunctions, such as deficits in language and communication. Clinical and

animal studies have indicated that the effects of VPA are related to the concentration

and to the exposure window, while the neurobehavioral effects of VPA have received

limited research attention. In the current study, to analyze the neurobehavioral effects of

VPA, zebrafish at 24 h post-fertilization (hpf) were treated with early chronic exposure to

20µM VPA for 7 h per day for 6 days or with early acute exposure to 100µM VPA for

7 h. A battery of behavioral screenings was conducted at 1 month of age to investigate

social preference, locomotor activity, anxiety, and behavioral response to light change. A

social preference deficit was only observed in animals with chronic VPA exposure. Acute

VPA exposure induced a change in the locomotor activity, while chronic VPA exposure

did not affect locomotor activity. Neither exposure procedure influenced anxiety or the

behavioral response to light change. These results suggested that VPA has the potential

to affect some behaviors in zebrafish, such as social behavior and the locomotor activity,

and that the effects were closely related to the concentration and the exposure window.

Additionally, social preference seemed to be independent from other simple behaviors.

Keywords: sodium valproate, zebrafish, behavior, social preference, locomotor activity, anxiety

INTRODUCTION

Zebrafish, a vertebrate animal, offers several advantages for analyzing neurobehaviors (Wang et al.,
2014). To start with, its strong reproductivity and small size make it possible to test detailed dose-
response and window-response relationships with low costs in terms of time and money. Next,
zebrafish develop rapidly. The neural tube is formed at 12 hpf (Hjorth and Key, 2002; Chapouton
andGodinho, 2010) and zebrafish develop into free-swimming larvae at 48 hpf (Kalueff et al., 2013),
which makes it convenient and time-saving to do research in this model. In addition, zebrafish
share similar brain structures with mammals. The counterparts of many brain regions found in
the developing mammalian brain are also observed in the developing zebrafish brain including the
cortex, hippocampus, amygdala, habenula, thalamus, and cerebellum, which makes the zebrafish
an ideal model to study neuropsychological diseases (Wullimann and Mueller, 2004; Mueller
et al., 2008; Wullimann, 2009). Furthermore, zebrafish also exhibit numerous simple and complex
neurobehaviors, including spontaneous swimming, startle responses, and learning (Farrell et al.,
2011; Tierney, 2011; Ingebretson and Masino, 2013; Kalueff et al., 2014). Multiple simple behaviors
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have been detected and analyzed as early as 5 days post-
fertilization (dpf), such as the locomotor activity, thigmotaxis,
and the startle response (Liu et al., 2016), while complex
behaviors such as learning, memory, and social behaviors can
be detected later (Engeszer et al., 2004; Wong et al., 2010;
Miller and Gerlai, 2012; Fernandes et al., 2016). Finally, some
behavioral assays for complex behaviors are easier to perform
in zebrafish, such as shoaling (Maaswinkel et al., 2013; Mahabir
et al., 2013). Therefore, zebrafish represents an animal model
that is beneficial for understanding the mechanisms that underlie
various behaviors.

Social behaviors, such as the preference to be close to and
mimic conspecifics, are common to humans (Xiao et al., 2014),
many other mammals (Ferrari et al., 2006) and non-mammalian
vertebrates (Engeszer et al., 2004, 2007; Mooney, 2014). Zebrafish
are a highly social species. Adult zebrafish exhibit a range of
social behaviors, such as shoaling, schooling and aggression
(Green et al., 2012; Miller and Gerlai, 2012; Jones and Norton,
2015), while larval zebrafish do not obviously exhibit those social
behaviors. Social preference, preferring to be near conspecifics, is
a foundation of other complex social behaviors, such as shoaling
and schooling. Compared to shoaling and schooling, the assay
for social preference is very simple and convenient. Thus, social
preference has been studied as social behaviors commonly. SCH-
23390, a D1-receptor antagonist, has been demonstrated to
significantly reduce social preference in adult zebrafish (Scerbina
et al., 2012). In addition, ibogaine-treated zebrafish displayed
altered preference to conspecifics and altered shoaling behavior
(Cachat et al., 2013). Furthermore, oxytocin (OT) and arginine-
vasopressin (AVP) have been shown to increase social preference
in zebrafish (Braida et al., 2012).

Valproic acid, a short-chain branched fatty acid, is an
antagonist of sodium and calcium channels and has been
used clinically in the treatment of epilepsy and bipolar
disorder. However, clinical research has clearly demonstrated

FIGURE 1 | Experimental procedure. This experiment consisted of drug

exposure and behavioral testing. (A) Chronic exposure to 20µM VPA occurred

for 7 h (starting at 10:00 a.m.) every day from 1 to 6 dpf and behavioral tests

were performed at 1 month of age. (B) Acute exposure to 100µM VPA was

applied for 7 h at 1 dpf, and behavioral tests were performed at 1 month of age.

that VPA administration during pregnancy is accompanied by
many risks, such as congenital malformations and other birth
defects, developmental delay, reduced cognitive function, and
more recently, increased risk of autism (Roullet et al., 2013).
Additionally, the effects of VPA on behaviors have been studied
in animal models. First, administration of VPA to BALB/C mice
on postnatal day 14 induced increased locomotor activity and
anxiety and decreased social behaviors (Pragnya et al., 2014). Rats
receiving VPA on the embryonic day12.5 (E12.5) exhibited lower
sensitivity to pain and higher sensitivity to nonpainful stimuli,
as well as locomotor and repetitive/stereotypic-like hyperactivity
combined with lower exploratory activity, increased anxiety, and
decreased number of social behaviors (Schneider and Przewlocki,
2005; Schneider et al., 2007, 2008; Markram et al., 2008). Further,
zebrafish exposed to VPA (48µM) during the first 48 h of
development displayed increased locomotor activity and anxiety

FIGURE 2 | Behavioral testing procedures. The procedures for the

behavioral tests of locomotor activity, thigmotaxis, and behavioral response to

light change consisted of four steps: a 20min acclimatization phase, the first

light phase (minutes 0–10), a dark phase (minutes 10–20), and the second

light phase (minutes 20–30) (A). The tests of the above behaviors were

performed in a dish (diameter of 90mm). The inner and outer zones were

delineated as shown above. The width of the outer zone was set at 13mm to

the border of the dish (B,C). The social preference was tested in a rectangular

chamber. The fish being tested was placed in area “a,” and six companion

zebrafish were placed in area “b” (D). “a” was the test area (70 × 42mm) and

was equally divided into one proximal zone and one distal zone (E).
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at 6 dpf, increased anxiety and impaired social behavior at
70 dpf, and decreased anxiety at 120 dpf (Zimmermann et al.,
2015). Bailey et al. exposed zebrafish to VPA at a series of
concentrations (0.5, 5, 15, 30, and 50µM) from 4 to 5 dpf and
found that zebrafish treated with 15µMVPA exhibited increased
locomotor activity at 6 dpf and that zebrafish treated with 5µM
VPA exhibited impaired social behaviors in adulthood (Bailey
et al., 2015). The neurobehavioral effects of VPA have been
studied in animal models, and the results were dependent on
the concentration and the exposure procedure. To clarify the
relationship between the neurobehavioral effects of VPA and
the exposure concentration and the exposure procedure, more
research work are needed.

In the current work, two different exposure procedures were
taken into consideration to analyze the neurobehavioral effects of
VPA. Early chronic exposure to VPA at a low concentration and
early acute exposure to VPA at a high concentration were studied.
Both simple and complex behaviors weremeasured, including the
locomotor activity, behavioral response to light change, anxiety,
and social preference.

MATERIALS AND METHODS

Animals
Zebrafish eggs were obtained by randommating between sexually
mature zebrafish (AB strain) and were kept with blue egg water
in dishes. Collected eggs were inspected under a dissection
microscope at 6 hpf, and those developing normally were
selected. Eggs were randomly grouped into different exposure
conditions (described below in Section Chemical Exposure) after
24 hpf and were raised in a transparent pc fry incubator at 28.5

◦

C
under a 14:10-h light:dark cycle (lights on at 08:00 a.m.). Larvae
were allowed to develop under these conditions until 7 dpf. Then,
the larvae were transferred to system water in 3 L tanks and
fed with Paramecium caudatum. The larvae were moved into
the commercial circulating rack system (ESEN EnvironScience)
as soon as the establishment of fairy shrimp-eating behavior
and were maintained until 1 month of age. The pH and
the salt concentrations of the system water were monitored

automatically, and they were also inspected periodically and
manually. All of the animal experimental procedures complied
with local and international regulations. All of the protocols were
approved by the institutional animal care committee, Children’s
Hospital of Fudan University.

Chemical Exposure
Valproic acid sodium salt (P4543-10G, Sigma-Aldrich)
was dissolved in a 500mM stock solution with sterilized
water and stored at −80

◦

C. Before the experiments, VPA
working solution was freshly diluted from stock solution to
appropriate concentrations with zebrafish system water before
the experiments.

Chronic exposure: beginning at 24 hpf, 60 larvae were exposed
to 20µMVPA in the transparent pc fry incubator for 7 h per day
for 6 days.

Acute exposure: beginning at 24 hpf, 60 larvae were exposed
to 100µMVPA for 7 h.

Larvae in each group were inspected daily under a
dissection microscope during exposure, and larvae with arrested
development or obvious malformations were excluded.

At the end of exposure, fish were carefully rinsed three times
with fresh system water before transferring to normal rearing
condition. See Figure 1 for a summary of the experimental
design.

Behavioral Assessment
Behavioral tests were carried out with juvenile zebrafish at
1 month of age in dishes or rectangular chambers. All the
experiments were performed 2 h after the beginning of the
light cycle and 2 h before the beginning of the dark cycle. The
experiments were arranged in a way that all groups were equally
presented in dishes or rectangular chambers to avoid any inter-
treatment variations due to differences in experiment timing
during the day. The dish or rectangular chamber was then placed
into a ZebraBox (ViewPoint Life Sciences) equipped with a
recorder to record video of the juvenile zebrafish activities. The
procedures for the behavioral tests are shown in Figure 2.

FIGURE 3 | Effects of chronic or acute exposure to VPA on social preference of zebrafish at 1 month of age. The percentage of distance moved in the

proximal zone during the first 10-min light phase was plotted in (A) and the percentage of time spent in the proximal zone during the first 10-min light phase (B) was

plotted in (B). The data are presented as the mean ± SEM, n = 32 animals per group. Statistical markers: *p < 0.05; significantly different from the controls.
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Locomotor Activity
The quantification of zebrafish locomotor activity was achieved
using the tracking mode of ZebraLab software with recorded
videos. The videos of zebrafish were taken at 25 fps, and were
pooled into 1min time bins. Only the total distance traveled in
the dish was obtained for analysis of the locomotor activity.

Thigmotaxis
A round center arena that occupied half of the area of the dish
was defined in each dish (Figure 2B). Thigmotaxis was presented
as the percentage (%) of the total distance moved (TDM) in
the outer zone of the test apparatus as previously described by
Schnörr et al. (2012). The percentage of TDM in the outer zone
was obtained by multiplying this ratio by a factor of 100, as
depicted in the formula below. This calculation was performed
to correct for individual differences in locomotor activity, as
recommended by Bouwknecht and Paylor (2008).

Thigmotaxis
(% TDM in outer zone)

=

[

TDM outer

TDM outer+ inner

]

× 100

Social Preference
A rectangular chamber was divided into “a” and “b” areas by a
transparent barrier, so that animals in area “a” can see animals in
area “b” (Figure 2D). The fish under test was placed in area “a,”
and a six companion zebrafish were placed in area “b.” During
analyses, area “a” was equally divided into one proximal zone
and one distal zone (Figure 2E). Social preference was presented
as the percentage (%) of the TDM or the percentage (%) of the
total time spent (TTS) in the proximal zone of the test area. The
percentage of TDM and TTS in the proximal zone was obtained
by multiplying this ratio by a factor of 100 as depicted in the
formula below. This calculation was performed to correct for
individual differences in the locomotion activity.

Social preference
(% TDM in
proximalzone)

=

[

TDM proximal

TDM distal+ proximal

]

× 100

Social preference
(% TTS in

proximalzone)
=

[

TTS proximal

TTS distal+ proximal

]

× 100

Data Presentation and Statistics Analysis
Data are presented as the mean ± SEM. Statistical analyses and
graphs were performed using GraphPad Prism software (version
5.0).

One-way ANOVA followed by Dunnett’s multiple-
comparison post-hoc tests was employed to compare the
VPA-treated groups with the controls to assess the effects of VPA
on the locomotor activity, thigmotaxis, and social preference,
and a probability level of 5% was used as the minimal criterion of
significance.

Student’s t-tests (two-tailed) were performed to analyze the
behavioral changes in response to light change within each
concentration group (light vs. dark). The minimal criterion of
significance was set at 5%.

FIGURE 4 | Effects of chronic or acute exposure to VPA on the

locomotor activity of zebrafish at 1 month of age. Distance moved per

minute in alternating 10-min blocks of light and dark. The control group (filled

circles) was plotted with chronic exposure to 20µM VPA (open circles) and

acute exposure to 100µM VPA (open circles) in (A,B), respectively. The

shaded part in each panel represents the dark phase, and the non-shaded

part in each panel represents the light phase. Average distance moved during

the first 10-min light phase was plotted in (C). The data are presented as the

mean ± SEM, n = 32 animals per group. Statistical markers: *p < 0.05;

significantly different from the controls.

RESULTS

Effects of Chronic or Acute Exposure to
VPA on Social Preference
To test behaviors at 1 month of age, the concentration and the
exposure window were set to maintain a fatality and deformity
rate of <50%. Two different but related parameters were defined
to study social preference in zebrafish. One is the percentage (%)
of the TDM in the proximal zone of the test area (%TMD in the
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proximal zone) and the other one is the percentage (%) of the
TTS in the proximal zone of the test area (%TTS in the proximal
zone). As shown in Figure 2E, the tested area “a” was divided into
proximal and distal zones of equal size. Therefore, if no social
preference was observed, %TMD in the proximal zone and %TST
in the proximal zone would account for 50% of the activity in
the whole area. It was obvious that in the non-treated groups,
zebrafish demonstrated a clear social preference, as the %TMD
in the proximal zone and %TST in the proximal zone were much
more than 50% (Figure 3). Additionally, multiple comparisons
in One-way ANOVA indicated that compared with the controls,
chronic exposure to 20µM VPA significantly decreased the
%TMD in the proximal zone and %TTS in the proximal zone,
while acute exposure to 100µM did not significantly affect
these parameters [F(2, 116) = 5.332, Dunn’s Method, p < 0.05;
F(2, 116) = 5.091, Dunn’s Method, p < 0.05]. The results
suggested that chronic exposure to 20 µM VPA significantly
impaired social preference, while acute exposure to 100µMVPA
did not.

Effects of Chronic or Acute Exposure to
VPA on the Locomotor Activity
The distance moved by zebrafish in each 1min time bin
during a 30min period within the entire arena (petri dish,
90mm in diameter) was plotted against the progression of
the experiment, and the different VPA treatment groups were
compared individually with the control group (Figures 4A,B).
During the first light period, compared with the control group,
increases in locomotor activity were observed in both VPA-
treated groups, and the increases induced by acute VPA exposure
were higher than those induced by chronic VPA exposure.
During the subsequent dark period, the locomotor activity of
both the controls and the VPA-treated groups remained at a
relatively low level. During the second light period, the locomotor
activity of the controls and the VPA-treated groups was similar to
that in the corresponding groups during the first light period.

Detailed analysis was carried out to precisely evaluate
the effects of the different VPA exposure procedures on the
locomotor activity (Figure 4C). Average distance moved per
minute by juvenile zebrafish during the first 10 min of the
light condition was used to analyze the change in locomotor
activity. As depicted above, multiple comparisons in One-
way ANOVA indicated that compared with the controls, VPA
exposure resulted in the increase of the locomotor activity, but
only the acute exposure to 100µM VPA produced a significant
increase [F(2, 105) = 2.759, Dunn’s Method, p < 0.05].

Effects of Chronic or Acute Exposure to
VPA on the Thigmotaxis
The percentage (%) of the TDM in the outer zone of the test
apparatus (%TMD in the outer zone) was measured as the level
of thigmotaxis. %TMD in the outer zone in each 1 min time bin
by zebrafish during the 30 min measurement period was plotted
against the progression of the experiment, and the different VPA
treatment groups were separately compared with the controls
(Figures 5A,B). First, %TMD in the outer zone in all groups

FIGURE 5 | Effects of chronic or acute exposure to VPA on thigmotaxis

of zebrafish at 1 month of age. Distance moved in outer zone (%) in

alternating 10-min blocks of light and dark. The control group (filled circles)

was plotted with chronic exposure to 20µM VPA (open circles) and acute

exposure to 100µM VPA (open circles) in (A,B), respectively. The shaded part

in each panel represents the dark phase, and the non-shaded part in each

panel represents the light phase. Average distance moved in the outer zone

(%) during the 10-min dark phase was plotted in (C). The data are presented

as the mean ± SEM, n = 32 animals per group. Statistical markers: *p < 0.05;

significantly different from the controls.

was >50%, suggesting that zebrafish in both control groups
and VPA-treated groups exhibited thigmotaxis. During the first
10min light phase, VPA-treated zebrafish demonstrated a level of
thigmotaxis similar to that of the controls and all of them retained
in a high level of thigmotaxis. During the beginning of the 10min
dark phase, VPA-treated zebrafish exhibited a level of thigmotaxis
similar to that of controls, while during the latter part of the
10min dark phase, compared with the controls, chronic exposure
to 20µM VPA resulted in a relatively low level of thigmotaxis,
while acute exposure to 100µMVPA resulted in a relatively high
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level of thigmotaxis. During the last 10min light phase, VPA-
treated zebrafish showed a high level of thigmotaxis similar to
that of controls.

In addition, to analyze the effect of VPA on thigmotaxis,
%TMD in the outer zone in the entire 10min dark phase
was calculated (Figure 5C). Multiple comparisons in One-way
ANOVA indicated that compared with the controls, neither
of the two VPA exposure procedures significantly affected the
thigmotaxis [F(2,105) = 1.080, Dunn’s Method, p= 0.3435].

Effects of Chronic or Acute Exposure to
VPA on the Zebrafish Responses to
Sudden Changes in Light
The locomotor activity response of juvenile zebrafish to
a sudden change in light was assessed as well. When
the illumination suddenly switched from light to dark, the
locomotor activity of controls and VPA-treated groups decreased
immediately (Figures 4A,B). During the 10min dark period,
zebrafish continued to show low locomotor activity. When the
illumination switched from dark to light, the locomotor activity
of control groups andVPA treated groups increased immediately,
and the activity level after the light change was similar to that
observed during the first light period.

As described above, sudden changes in lighting introduced
changes in the locomotor activity in both the controls and the
VPA-treated groups, and the response patterns were similar.
Then, the locomotor activity during the 10 min dark period was
analyzed to evaluate the effect of VPA exposure on zebrafish
response to sudden changes in lighting. The locomotor activity
during the dark period was normalized to the average locomotor
activity during the first light period (Figure 6). Student’s t-
tests (two-tailed) indicated that compared with that in the
controls, zebrafish with chronic exposure to 20µMVPA showed
a noticeable but not significant decrease in locomotor activity
[F(35, 35) = 1.728, p = 0.1103], and the relatively low locomotor
activity was maintained during the entire 10min dark phase,
whereas zebrafish with acute exposure to 100µM VPA showed
locomotor activity similar to that of the controls.

DISCUSSION

In this study, two VPA treatment procedures, early chronic
exposure to a low dose and early acute exposure to a high
dose, each beginning at 24 hpf, were employed to analyze the
neurobehavioral effects of VPA. Exposure to VPA before 24 hpf
tended to result in much higher fatality and deformity rate
than 50%, which was supported by the previous discovery that
exposure to VPA beginning at gastrulation could affect common
steps in the differentiation of multiple neuronal lineages (Jacob
et al., 2014).

Zebrafish are a social species, but larvae do not exhibit
the obvious shoaling and schooling observed in adults. Social
preference is a common behavior in which animals prefer to be
near their conspecifics and it is prevalent among social animals.
Dreosti et al. found that zebrafish did not exhibit overt social
preference until 3 weeks of age (Dreosti et al., 2015), while our
work suggested that social preference was not observable until
4 weeks of age (data not shown). The differences between these
results could be attributed to different experimental conditions,
such as different experimental chambers. Thus, in this work,
behavioral tests were conducted at 1 month of age.

VPA is a widely used medicine for treating or preventing
epilepsy, migraine, and bipolar disorder. However, VPA
administration during pregnancy may result in fetal valproate
syndrome which has features similar to autism, such as impaired
social behavior (Ardinger et al., 1988; Koch et al., 1996; Moore
et al., 2000; Mawer et al., 2002). The behaviors of rats exposed
to VPA in utero have been examined by researchers (Rodier
et al., 1996; Schneider and Przewlocki, 2005; Markram et al.,
2008; Schneider et al., 2008). The effects of VPA on animals’
behavior are closely related to the exposure window and
the concentration. Kim et al. have compared the effects of
different time windows of prenatal VPA exposure on social
behavior in Sprague–Dawley rats and found that compared
with exposure at E7, E9.5, or E15, VPA exposure at E12
produced significantly reduced sociability and social preference
(Kim et al., 2011). A similar phenomenon was observed by
Kataoka et al. (2013). Bailey compared the effects of different

FIGURE 6 | Effects of chronic or acute exposure to VPA on behavioral responses to light change in zebrafish at 1 month of age. Distance moved per

minute in the 10-min dark phase was normalized against the average distance moved in the previous 10-min light phase. The control group (filled circles) was plotted

with chronic exposure to 20µM VPA (open circles) and acute exposure to 100µM VPA (open circles) in (A,B), respectively. The data are presented as the mean ±

SEM, n = 32 animals per group.
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concentrations of VPA on zebrafish behaviors and found that
compared with exposure to 0.5, 15, 30, and 50µM from 4
to 5 dpf, exposure to 5µM VPA from 4 to 5 dpf impaired
social behavior in adult zebrafish (Bailey et al., 2015). In this
study, we analyzed the effects of VPA on zebrafish behaviors
using two different exposure procedures and found that early
chronic exposure to VPA at low concentration significantly
reduced social preference in juvenile zebrafish, whereas acute
exposure to VPA at a high concentration did not significantly
affect social preference. Our results suggested that the effect
of VPA on social behavior was closely relative to the exposure
procedure, and further work needs to be done to clarify
whether there are sensitive exposure windows and exposure
concentrations for modifying social behaviors in zebrafish and
to identify those time windows and concentrations if they
exist.

Previous studies demonstrated that developmental exposure
to VPA at 15µM from 4 to 5 dpf significantly increased the
locomotor activity at 6 dpf (Bailey et al., 2015), our results
indicated that this stimulatory effect of VPA treatment on
zebrafish locomotor activity may not be sustained, given that
chronic exposure to 20µM VPA from 24 to 6 dpf (7 h per
day) did not significantly affect the locomotor activity at 30 dpf.
Acute larval exposure to 100µM VPA from 24 to 31 hpf
significantly increased the locomotor activity, while exposure
to VPA at 48µM during the first 48 hpf did not significantly
modify the locomotor activity at 30 dpf (Zimmermann et al.,
2015), implying that the effects of VPA on the locomotor
activity depended on both exposure concentration and exposure
window. The results from both the current work and previous
work suggested that 24–32 hpf may be a sensitive window for
modification of the locomotor activity of juvenile zebrafish
and that exposure concentration also plays a vital role as
well.

In summary, our results showed that chronic exposure to
low concentration of VPA impaired social preference without
changing the locomotor activity, anxiety, and light-response
behaviors, implying that the perceived social behavior change is
not due to changes in other simple behaviors, and that this would
be a suitable model for analyzing the mechanism underlying the
effect of VPA on social behavior.

CONCLUSION

The present study aimed to evaluate the effects of VPA
on simple and complex behaviors of juvenile zebrafish with
two different exposure procedures. The behavioral analysis
showed that chronic exposure to VPA at a low concentration
impaired social preference while exerting no effect on other
simple behaviors, such as the locomotor activity, anxiety, and
behavioral responses to light change. However, among the tested
behaviors, acute exposure to VPA at high concentration only
significantly increased the locomotor activity. In conclusion,
the neurobehavioral effects of VPA depended on both exposure
concentration and exposure window.
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