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Abstract

Investigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is
a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple
spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ
information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial
distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here,
we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information
in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal
activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a
testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the
single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such
neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit
a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing.
Thus neuronal chains can work as computational units performing different operations over spatiotemporal information.
Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while
selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret
raw wave information. The same stimulus can be processed differently or identically according to the context set by a
periodic wave train injected at the opposite end of the chain.
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Introduction

Distributed spatiotemporal processing of neural information is

widely recognized as the basis for binding and generation of

ultimate cognitive abilities in the brain [1,2]. Gamma waves have

been postulated as a carrier of such high order functions [3,4].

Recently the propagation of solitary waves in two-dimensional

neuronal structures has been proposed as a mean for generation of

compact internal representations of external dynamic situations

[5,6]. Thus growing evidence suggests that neurons can participate

in a collective processing of long-scale information, relevant part of

which is shared over all neurons but not concentrated at the single

neuron level. In this context we define wave-processing of information

as a computation (in terms of modification of global information

contained in neuronal structure) mediated by nontrivial interac-

tion of waves propagating over neuronal tissue. Thus the brain

may actively work not only in time domain but also effectively use

spatial dimension for information processing.

Despite wide consensus on significant relevance of long-scale

waves for information processing, neurophysiological and bio-

physical bases of their origin and interaction are largely unknown.

Indeed, in the vast majority of experimental and theoretical

models, waves traveling over dissipative excitable media (including

neuronal structures) vanish at collision (see e.g. [7–9]). For

example, refractory period behind traveling waves of spreading

depression forces their annihilation after collision [10,11].

Obviously complete destruction of neuronal excitation caused by

the interaction of waves cannot contribute to effective and versatile

processing of information. A remarkable exception is the back-

propagation of action potentials in dendrites involved in plasticity

mechanisms and stimulus selection [12]. Recent experimental and

modeling results show that annihilation of colliding dendritic

spikes, far to be a residual phenomenon, could be crucial for

information processing in active dendrites [13,14]. At the

mesoscopic level, recent studies of local field potentials created

by synaptic currents in dendrites revealed nontrivial interaction of

the confluent inputs to populations of target cells [15–17].

Particularly, it has been found that Schaffer input to the CA1

region of the hippocampus is composed of wave trains in the

gamma band. Then the coordinated activity of CA3 pyramidal

neurons increases information flux in this pathway.

Another handicap for spreading the concept of wave-processing

is its scant experimental support due to significant difficulties in

detection of macroscopic waves in multi-electrode data and their

functional interpretation [18]. Most of the waves described in the

literature have pathologic nature and hardly participate in

information processing. Examples are large-range epileptic waves,

spreading depression of Leao, spiral waves in hart tissue, etc.
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[11,19–21]. Nevertheless, importance of self-sustained waves

propagating and interacting throughout the intricate neuron

morphology has been recently put in evidence [4,22–24]. For

example, it has been found that sniffing an odor induces three

waves at different locations of turtle olfactory bulb [22]. These

waves then interact in a complex way. When consecutive odor

stimulations are presented, one of the waves is enhanced if the

odorants are the same but suppressed if they are different. This

finding suggests that waves may carry information about previous

olfactory experience and process it appropriately. Thus investiga-

tion of mechanisms allowing neuronal structures to represent and

process information in a significantly spatiotemporal way is a

challenging theoretical and experimental problem with vital

impact in different fields of Neuroscience, Medicine, and

Nonlinear Dynamics.

One of the most successful approaches for dealing with

processing of long scale information uses the FitzHugh-Nagumo

(FN) paradigm, which under simple mathematical assumptions

captures essential functional features exhibited by neurons. The

FN-model has been widely used to describe biological neural

networks, interaction and propagation of waves, and processing of

information (see e.g. [25–27] and references therein). Nonetheless

these works assume that neurons locally create information, which

is then transmitted, shared, and processed at the network level.

We, however, shall demonstrate that nonlinear interaction of self-

sustained waves, as carrier of information, can be implemented in

classical chains of coupled FN-like neurons. Then such chains

modeling laminar neuronal structures acquire ability of wave-

processing of long-scale information.

Head-on collision of self-sustained waves in classical FN-chains

leads to their complete annihilation. Such monostable interaction

offers little, if any, computational capacity, whereas versatile wave-

processing of information requires bistable interaction of waves. Thus,

simultaneously with wave annihilation the network dynamics has

to admit at least one more significantly different response to the

input stimuli, i.e. traveling waves should be able to cross each

other. Transparent crossing of self-sustained waves has been

known for a long time. In the last decades it has been shown that

such behavior is not exclusive attribute of solitons, but a generic

property observed experimentally [28,29] and numerically

[25,30–34]. The mechanism of crossing of self-sustained waves

has been attributed to different nonlocal properties of the medium

as e.g. cross-diffusion [34].

In this work we show that versatile wave-processing of long-scale

information in laminar neural structures, described within the FN-

paradigm, can be achieved by introducing into the single-neuron

dynamics an additional voltage-gated membrane current. This local

mechanism, ubiquitous in real neurons [35], provides a chain of

such neurons with new emergent network properties. In particular,

nonlinear waves as a carrier of long-scale information exhibit a

variety of functionally different regimes of interactions from

complete or partial annihilation to transparent crossing. Thus

neuronal chains can work as computational units performing

different operations over spatiotemporal information. To further

illustrate the great potential of the concept we show that neuronal

chains can ‘‘discard’’ stimuli of too high or too low frequencies,

while selectively compress those in the ‘‘natural’’ frequency range,

i.e. we observe the phenomenon of complexity resonance. We also

show how raw wave information can be contextually ‘‘interpreted’’

by a neuronal chain, i.e. the chain can process the same stimulus

differently or identically according to the context set by a periodic

wave train injected at the opposite end.

Interaction of Waves in Chains of Coupled Neurons
We shall illustrate the concept of the information wave-

processing by using a one-dimensional chain of FN-like neurons:

_uuj ~f (uj ,vj)zd(uj{1{2ujzujz1)

_vvj ~(ujzb{avj) ð1Þ

where uj and vj are the so-called membrane potential and

recovering variable of the jth neuron, respectively; 0v%1 is the

smallness parameter; and f (u,v) accounts for nonlinear kinetics of

the transmembrane currents. Finally aw0, bw0; and the

parameter d§0 accounts for the strength of couplings between

neighboring neurons. The chain (1) is considered with Dirichlet

boundary conditions: u0~uNz1~u�, where N is the total number

of neurons in the chain and u� is the resting potential.

FitzHugh-Nagumo Dynamics
In the original FN-neuron the membrane kinetics is given by:

fFN(u,v)~u{u3=3{v ð2Þ

Setting in (1) a~1:3 and b~0:273 (~0:09, d~0) we ensure

that single FN-neuron has a unique attractor, a stable steady state,

given by

fFN(u�,v�)~0, u�~av�{b

where u�&{1:12 a.u. defines the resting potential. Any

perturbation of the neuronal state decays to the steady state,

however, small but finite excitation can lead to a large excursion in

the phase plane, i.e. to a spike (Fig. 1A).

Voltage-gated Depolarizing High-threshold Current
Let us now introduce into the neuron’s kinetics an additional

voltage-gated high-threshold current, e.g. due to Ca2z conduc-

tance.

f (u,v)~fFN(u,v)zcH(u{uth) ð3Þ

where H(:) denotes a Heaviside-like step function (we assume

H[C(R,½0,1�)), uth is the voltage threshold (we set uth~1:7 in

numerical simulations), and c describes the magnitude of the

additional current. We note that the extended neuron model with

the kinetics (3) reduces to the classical FN-neuron at c~0.

For uth big enough (uthw2 for ?0) the neuron conserves FN-

intrinsic excitable property and can generate spikes similarly to the

FN-neuron (Figs. 1A and 1B, blue curves). By rising c above the

critical value:

c�~(uthzb)=azu3
th=3{uth

a pair of additional steady states appears on the phase plane of

single neuron through a fold bifurcation. Thus the neuron

becomes bistable and can stay at rest either in ‘‘down’’ or ‘‘up’’

states, whereas a saddle point separates their basins of attraction.

Strong enough perturbations can switch the neuron between down

and up states whereas at the down state it can also generate spikes

(Fig. 1B). The bistable property of the neuron together with

Wave-Processing of Long-Scale Information
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excitability makes the collective dynamics of a chain of such

neurons (e.g. interaction of waves) nontrivial.

Role of Depolarizing Current in Head on Collision of
Waves in Neuronal Chains

Classical excitable FN-chain (1), (2) for strong enough coupling,

d , admits self-sustained pulse-like running waves. Figure 2A

illustrates head-on collision of such waves, which leads to their

annihilation. As mentioned above such behavior is typical for

waves with refractory period (see e.g. [8] for general discussion and

[10,19] for electrophisiological and theoretical examples). Thus

only trivial wave-processing of information, i.e. its annihilation,

can be achieved in this chain.

To cope with this restriction, above we extended the FN-model

(1), (3). Figure 2B shows the wave behavior in the chain of bistable-

excitable neurons. At the beginning the wave dynamics repeats the

classical FN-chain (snapshot t1). Indeed, in standard conditions of

waves propagation the membrane potential uj(t) does not reach

the threshold uth and the extra membrane current in (3) is

negligible. Hence no difference exists between the wave behavior

of the classical chain and the chain of bistable-excitable neurons.

However, when the waves collide, the membrane potential in the

collision region overcomes uth and appearing extra membrane

current changes their dynamics (Fig. 2B, snapshot t2).

Balance between the depolarizing membrane current and the

axial (along the chain) diffusive current creates a new quasi-stable

structure, wave generator (Fig. 2B, snapshot t2). The drive exerted

by the wave generator transiently avoids collapsing of the chain

excitation and emits two new waves propagating in opposite

directions (Fig. 2B, snapshots t3, t4). Finally, when the newly

created waves run away, the balance between the excitatory and

dissipative currents breaks and the wave generator collapses

(Fig. 2B, snapshots t5).

Thus the relation between the magnitude of the voltage-gated

excitatory current controlled by c and the axial (coupling) current

controlled by d defines the functional regime of the wave

collisions. As we shall see below the chain (1), (3) can exhibit a

rich repertoire of behaviors and unexpected computational

capabilities, which stem from the possibility of waves to cross

each other. It is also worth noting that for small enough inter-

neuronal coupling d the chain possesses several stationary or

quasi-stationary behaviors including variants of spatial chaos (see

for details e.g. [36,37]). We, however, concentrate here on the

wave behavior and hence below restrict to the case d§1.

Bases of Information Wave-processing
As we shall see further the computational abilities of neuronal

chains are based on coexistence of significantly different scenarios

of wave collisions. In other words, for effective information

processing the chain must admit at least two collision scenarios for

the same parameter values. Above (Fig. 2B) we observed one

scenario, the wave-crossing, which (in some extent) conserves the

information in the chain. Let us now show that the dynamics of the

chain of bistable-excitable neurons can be even more complex.

Collision scenarios. First, we assume that colliding pulses

are stationary waves, i.e. all transient processes of the wave

formation have vanished and waves are given by

uj(t)~~uu(j+ct)vuth

where ~uu(:) is a pulse-like function and c is the wave velocity.

Figures 3A–3D show the spatiotemporal evolution of two

symmetric colliding waves for different values of the magnitude

of additional excitatory membrane current (controlled by c).

For small enough c two colliding waves annihilate as it typically

happens in the FN-chain in particular and in reaction-diffusion

systems in general (Fig. 3A). For moderate values of c the waves

cross each other enabling transparent transmission of wave-

information (Fig. 3B). We notice a positive phase-shift at the

collision, i.e. delay in the wave reemission. For even higher c the

neurons involved in collision are switched to the up-state and form

a pacemaker that emits periodic sequence of waves (Fig. 3C), i.e. a

new source of wave-information emerges in the chain at the place

of spatial coincidence of waves. Finally for high enough c the up-

state becomes dominating and two phase waves emerging at the

collision switch the chain from down to up-state (Fig. 3D). Such

behavior is similar to waves of spreading depression in the

hippocampus [19]. We note that the phase transition is

‘‘supersonic’’, i.e. it propagates faster than subthreshold ‘‘sound’’

waves.

Figure 1. Single neuron dynamics. A) Original FN-neuron. Small but finite excitations can produce spikes (red and blue curves). B) Bistable-
excitable neuron (FN-neurons equipped with additional voltage-gated membrane current, c~2:7). The neuron admits FN-like spikes (blue curve) and
transitions between ‘‘down’’ and ‘‘up’’ states (green and red curves).
doi:10.1371/journal.pone.0057440.g001
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Second, we consider asymmetric collisions of a stationary

traveling wave with a wave newly excited by a stimulus applied

near the place of future collision. In general, asymmetric collisions

lead to asymmetry in the wave creation. For moderate c we

observe selective annihilation of a part of the information (Fig. 3E

vs 3B). Such behavior is untypical for solitons and for traveling

waves in most of the reaction-diffusion systems (including the

classical FN-chain). We also note that the behaviors shown in

Figures 3B and 3E correspond to the same parameter values, i.e.

the chain exhibits bistable interaction of waves, condition required for

effective wave-processing of information. For slightly higher c the

waves cross each other as in Figure 3B but now the newly created

waves are desynchronized, i.e. they receive different phase shifts

(Fig. 3F). For the value of c corresponding to the formation of a

pacemaker the released waves again have different phase shifts

(Fig. 3C vs 3G). Similarly, in the phase wave regime the wave

emitted to the right has lower phase shift (Fig. 3H vs 3D).

Bifurcation analysis of wave-processing. The numerically

found different collisions’ scenarios (Fig. 3) correspond to

functionally different states of the information processing in the

chain. In order to gain insight into the dynamics of wave

interaction we studied bifurcations occurring in the system.

The stationary solutions of Eqs. (1), (3) are given by the 2D map:

(u,w)T. 2u{w{
1

d
f u,

uzb

a

� �
,u

� �T

ð4Þ

The map admits three constant solutions (fixed points):

(u,w)~(sk,sk), k~1,2,3

which correspond to the steady states of a single neuron (Fig. 3B),

for example, s1~u�&{1:12 a.u. is the down-state.

The fixed point p1~(s1,s1) is of a saddle type. There exist

variety of orbits homoclinic to p1. Figure 4A shows stable, W s(p1),
and unstable, W u(p1), manifolds and their intersections define

homoclinic orbits. Several spatial profiles of the homoclinics are

shown in Fig. 4B. They differ by the width of the stationary

solution and one of them (green in Fig. 4B) corresponds to the

width of the wave generator transiently formed during the wave

collision (Fig. 4B, t~t2). Following Ref. [25] we call such orbit

(spatial profile) a nucleating solution (NS).

To describe bifurcations of the homoclinics we introduce the

integral characteristics:

S~
XN

j~1

(uj{u�) ð5Þ

Then using one of the orbits provided by the intersection of

manifolds W u(p1) and W s(p1) as initial point we continued the

homoclinics over the control parameter c (Fig. 4C). For

intermediate values of c there exist a number of homoclinic

orbits, which appear and disappear through fold bifurcations.

Figure 2. Head on collisions of waves in neuronal chains. A) Snapshots of the membrane potential along the classical FN-chain (d~1) for five
consecutive time instants t1, . . . ,t5 . Long scale self-sustained waves travel (arrows mark direction of propagation) and annihilate at collision. B) Wave
collision in the chain of bistable-excitable neurons (c~2:7, d~1). Dashed horizontal line marks the voltage threshold uth~1:7. At collision a transient
extra membrane current provokes wave regeneration (t~t2,t3). The newly emitted waves propagate in opposite directions, while the wave generator
collapses (t~t4,t5).
doi:10.1371/journal.pone.0057440.g002
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This analysis shows that there is a critical value of c below

which there is no nucleation and hence colliding waves

annihilate (Fig. 3A).

For nontrivial collisions (Figs. 3B–3H) the existence of an NS

is a prerequisite. Under collision trajectory in the phase space of

the chain (1), (3) passes nearby the steady state corresponding to

NS, which guides the further scenarios of the wave behavior.

We then linearized the system (1), (3) in a vicinity of this steady

state, which turned to be a saddle. Indeed, its spectrum has one

zero-eigenvalue, corresponding to the translation symmetry in

the chain, and two pairs of complex eigenvalues with real

positive parts (Fig. 4D). Figure 4E shows the corresponding

eigenvectors that describe scenarios of the development of

instability. Both unstable directions have the same exponent,

and hence their winner is determined by how the trajectory

enters the saddle region, i.e. by initial perturbation created at

the wave collision.

At symmetric collisions (Figs. 3B–3D) the perturbation is also

symmetric going along the symmetric eigenvector e2(j) (Fig. 4E).

This leads to generation of a pair of symmetric pulses at the tails of

the NS. Asymmetric collisions brake the symmetry and the NS will

be asymmetrically perturbed, i.e. the initial conditions are shifted

to the asymmetric eigenvector e1(j). Then we have opposite drive

in the tails of the NS, which is the origin of asymmetry in the

forming structure. After the first local separation over the unstable

manifold, the following behavior of the chain is nonlocal and

depends on the controlling parameters.

Figure 5 shows complete bifurcation diagram of the neuronal

chain (for d§1). It has four domains with qualitatively different

behaviors. In the region of wave annihilation NS does not exist

and independently on the collision symmetry the initial perturba-

tions go straight to the down-state, which corresponds to the

scenario A in Figure 3. In the remaining domains the NS separates

trajectory flows, which gives rise to symmetric and asymmetric

scenarios. In the wave crossing domain the unstable manifold of

NS pushes the trajectory outside to a big excursion, which results

in reemission of two symmetric waves or one single wave or two

asymmetric waves (scenarios B, E, and F in Fig. 3, respectively). In

the pacemaker domain a limit cycle is born from a saddle-node

type bifurcation, which results in emission of periodic waves of

finite amplitude (scenarios C and G). Finally in the phase wave

domain the trajectories are redirected to the up-state, and hence

the chain is switched dynamically to the up-state (scenarios D and

H).

Finally we note that one of the most interesting regions, the

wave-crossing, extends over quite a big area in the parameter

space (Fig. 5). Thus the observed phenomena of the wave-crossing

(Figs. 3B and 3E) are robust to variation of e.g. the wave velocity

(controlled by d ) and amplitude.

Figure 3. Basic elements of wave-processing of information in the chain of bistable-excitable neurons. A)–D) Scenarios of symmetric
head on collision (central part of the chain is shown). The outcome depends on the magnitude of the additional voltage-dependent membrane
current: A) Waves annihilate, c~0 (see also Fig. 2A); B) Waves cross each other, c~2:7 (see also Fig. 2B); C) A pacemaker is formed and emits
periodically waves, c~5:4; and D) Formation of phase switching supersonic waves, c~13:5. E)–F) Asymmetric collision of a stationary traveling wave
with newly created wave (arrows): E) Only one wave survives after collision, c~2:7; F) Two desynchronized waves emerge in collision, c~3:1; G) and
H) the same as (C) and (D) but with desynchronization between waves emitted to the left and to the right (d~1).
doi:10.1371/journal.pone.0057440.g003
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Wave-processing of Long-scale Information
As mentioned above, different functional regimes in neuronal

chains can be achieved by proper adjustment of the coupling

strength between neurons and the membrane voltage-gated

current (Fig. 5). One of the most interesting regimes, the wave

crossing, occurs for intermediate values of both parameters. In this

section we study what computational abilities such functional state

may offer.

Concurrence of periodic wave trains: Four types of wave-

processing. The real potential of the wave-processing of neural

information arises in realistic biological contexts. For example,

interaction of coordinated inputs from the lateral and medial

entorhinal cortex to the laminar structure of the hippocampus

participates in consolidation of memory [38]. Let us now simulate

concurrence of two coordinated inputs to a spatially extended

laminar neuronal structure. We shall model the information

content by two periodic wave trains injected into a chain of

bistable-excitable neurons from opposite ends (Fig. 6A). After

nonlinear interaction, in general, wave trains change their internal

structure and we get two emergent output trains carrying out the

processed information.

Figure 6B.1 shows spatiotemporal evolution of two colliding

identical periodic trains. Since the chain is in the wave crossing

regime (Fig. 5) two collision scenarios are possible: transparent

wave crossing with phase shift (Fig. 3B) and annihilation of one of

the waves (Fig. 3E). Which of the scenarios is realized in each

collision depends on a number of factors, e.g. on the time passed

from the previous collision. Indeed, when the spatial period

between waves is small enough the newly created waves have no

room to stabilize and one of them dies. In contrast, sparse waves

(i.e. long time between interactions) cross each other transparently.

Thus the proper combination of symmetric and asymmetric

crossings is behind the generation of new aperiodic wave patterns

at the output. In Figure 6B.1 every odd wave propagates to the

output. Thus we can speak about a kind of decimating processing.

However, different waves receive different phase shifts in collisions

and consequently the structure of the output trains is more

complex (aperiodic).

To get deeper insight into the wave-processing we injected into

the chain two periodic wave trains as above, but with different

inter-wave periods. The train’s asymmetry leads to different

dynamic processing of each train and generation of new trains

with complex inter-wave structures. Figure 6B.2 shows a

representative example of such experiments. Both trains initially

had 10 periodic waves spaced by 65 (train #1) and 30 (train #2)

neurons. Four waves from the train #1 and three from the train

#2 survived at the output. These were number 1, 5, 7, 9 and 1, 7,

10 for the trains #1 and #2, respectively. We also notice

significantly different phase shift obtained by each wave, which

finally codifies the number of collisions and their frequencies. Thus

the neuronal chain can perform nontrivial information processing

Figure 4. Analysis of the nucleating solution leading to different scenarios of wave collisions. A) Stable and unstable manifolds to the
saddle point p1 in the map (4). Black dots mark three fixed points (d~2, c~4). B) Spatial profiles of several homoclinic orbits (NS stands for nucleating
solution). C) Bifurcation diagram. Each branch corresponds to a homoclinic orbit in the map (4). D) Eigenvalues of the NS. Two pairs have positive real
value. E) NS and real parts of the eigenvectors corresponding to the eigenvalues with positive real part: asymmetric, e1(j), and symmetric, e2(j).
doi:10.1371/journal.pone.0057440.g004
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beyond decimating. It can dynamically select and precisely

position in time only ‘‘desired’’ waves from a raw message, which

finally convey mutual information in ‘‘compressed’’ form.

In order to quantify the outcome of the wave-processing we

introduce an entropic measure. Wave trains at the input and

output were converted into binary vectors with ones correspond-

ing to wave crests separated by blocks of zeros (silences). The bin

size was equal to the spatial refractory period (20 neurons). Then

we evaluated the block entropy [39] over a set of words obtained

by sliding a window of 10 symbols over the input and output

vectors:

E~{
X

pi ln (pi) ð6Þ

where pi is the relative frequency of the ith word. Although this

measure for finite trains may underestimate the real train entropy

it suits well for our purpose of quantification of the observed

information compression. Finally we evaluated the relative

variation of the information content before and after wave-

processing as:

d~
Eout{Ein

Ein

ð7Þ

As we expected, during the wave-processing the information

contained in wave trains grew significantly (Fig. 6C). The mean

growth was about 75% in experiments with identical trains with

spatial period varying from 30 to 100 neurons. High variability of

the information increment (std &55) indicates strong dependence

of the wave-processing on the inter-wave period.

Collision of wave trains with different periods (Fig. 6B.2) leads to

different entropy increments. The train #1, the spatial period of

which was kept constant, got 100% mean increment (std &20),

while the train #2, the period of which was changed in the range

½30,100� neurons, received 75% increase with std &58. Thus

overall characteristics of the wave-processing of the 2nd train were

similar to the case of identical trains (Fig. 6C). Surprising relatively

low variability of the train #1 (std &20) suggests that the

informational outcome of the wave-processing of a train depends

strongly on its own period but only slightly on the period of the

other colliding train. Thus the chain can process information in

different spatiotemporal domains, effectively reducing the number

Figure 5. Bifurcation diagram and sketches of trajectories describing different scenarios of wave collisions in the chain of bistable-
excitable neurons. In each inset: Square and diamond mark initial conditions for symmetric and asymmetric collisions, respectively; Green dot
corresponds to the nucleating solution (NS); Blue and red unstable manifolds represent development of symmetric and asymmetric perturbations
(see also Fig. 0E); Letters in black circles correspond to scenarios shown in Fig. 3.
doi:10.1371/journal.pone.0057440.g005
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of ‘‘redundant’’ waves in one train, while keeping practically

constant the informative structure of the other train.

Finally we spanned periods of both colliding trains in the range

from 30 to 100 neurons, while keeping 10 waves in each train. As

we observed before different number of waves survived after

collision. Depending on the proportion of survived waves, denoted

by n~
#input

#output
, we classified four functionally different types of

wave-processing (Fig. 6D):

N Transparent propagation. (n~100%, all waves propagate to the

output)

N Soft processing. (50%vnv100%, most waves propagate to the

output)

N Hard processing. (10%vnƒ50%, some waves propagate to the

output)

N Dark collision. (nƒ10%, few waves propagate to the output)

For colliding trains with large periods there is room for

symmetric wave crossing and no annihilation occurs. Then the

output trains are identical to the input ones, i.e. trains

transparently cross each other receiving global phase shift

(Fig. 6D, red area: transparent propagation). For shorter spatial

periods some asymmetric wave crossings appear, which decreases

the number of waves propagating to the output (Fig. 6D, yellow

area: soft processing). In soft processing at least one train conserves

most of the input waves. For intermediate periods of both input

trains the wave-processing, denominated as hard processing (Fig. 6D,

green area), leads to annihilation of the majority of input waves.

Finally for really short periods (Fig. 6D, blue area: dark collision)

annihilation dominates the wave-processing and only few (usually

only the first) waves propagate to the output.

Transparent propagation does not alter the complexity measure

(6) and hence d~0. Soft and hard processing regimes increase

significantly the informational content at the output, i.e. d is high,

whereas dark collision leads again to d&0. Thus we have a kind of

band-pass filtering of periodic waves, but instead of simple

reduction of the train period we have changes in the train

complexity. For intermediate spatial periods the information is

maximal and then decreases for long and short periods. Such

complexity resonance is reminiscent of the rate-temporal coding

problem (see e.g. [40]). Indeed, our neuronal structure can

‘‘ignore’’ stimuli of too low frequency and ‘‘annihilate’’ those of

Figure 6. Wave-processing of periodic wave trains: Complexity resonance. A) Sketch of numerical experiments. Two input periodic wave
trains (#1 and #2) are injected from both ends of the chain modeling laminar neuronal structure (gray arrows indicate direction of propagation).
Nonlinear interaction of the trains, i.e. the wave-processing, leads to two emerging output trains with different aperiodic structure. B) Representative
examples of collisions of identical periodic trains (left panel: 10 waves, spatial period 65 neurons) and trains with different spatial periods (right panel:
10 waves, spatial periods 65 and 30 neurons). Evolution of the wave crests shows how the interplay between symmetric and asymmetric wave
collisions yields aperiodic output trains. Waves propagating to the output are drawn by thicker lines. C) Entropy increment provided by the wave-
processing of identical and different periodic trains (means and standard deviations). For identical trains periods from 30 to 100 neurons have been
considered. For different trains the period of the input train #1 was kept constant (65 neurons), while the period of the input train #2 spanned
interval from 30 to 100 neurons. D) Complexity resonance. Left panel: colored regions mark four types of wave-processing. Right panel: Examples of
output trains for each type of the wave-processing. Complexity of the output trains reaches maximum at intermediate spatial periods of input trains
(d~1, c~2:7).
doi:10.1371/journal.pone.0057440.g006
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too high frequency, while selectively process stimuli in the

‘‘natural’’ frequency range. The processed stimuli are compressed

and get higher train complexity at the output.

Context dependent information processing. A remark-

able quality of evolved living beings is their ability to interpret

information according to circumstances. Response of an organism

to the same stimulus can depend on, for example, its internal state

or external situation. Then the context acts like a framework for

such high-level functions as learning, memory, understanding, etc.

[6,41]. The proposed concept of wave-processing of information

also includes contextualization as one of its central features.

To illustrate how contextualization of raw long-scale informa-

tion can be implemented in neuronal structure, we used again the

two-inputs paradigm (Fig. 7A). Left end of the neuronal chain has

been designated as an informative input, i.e. it receives informa-

tion or stimulus to be processed by the chain. The purpose of the

right end is dual. It is used: i) as an input for contextual trains and

ii) for readout of the computation results. While the informative

train can have rather complex aperiodic structure and conse-

quently high entropy, the contextual train may be quit simple. In

all experiments we employed the same informative train shown in

Figure 7A (raw information), whereas for setting different contexts

we used periodic wave trains with different number of waves and

inter-wave periods (Fig. 7B, left trains).

In general, interaction of the informative train with different

contextual trains leads to different output trains (Fig. 7B, red

trains). The output trains convey information coded in the raw

stimulus but modulated by the context. Thus the output message is

a contextualized variant of the input information. Although

different contexts usually yield different outputs, we notice that the

same output may also occur (Fig. 7B, black trains). Such

simultaneous divergence/convergence of the contextual informa-

tion processing is also known in the Nature. Indeed, organisms

may act differently or identically to the same stimulus in different

circumstances.

In order to illustrate the great potential of the contextual wave-

processing of information we performed the following experi-

ments. Using the same input stimulus with high entropy (Fig. 7A,

raw information) we tested contextual trains of different spatial

length with three different spatial periods: 30, 65, and 100

neurons. To quantify changes in the output wave train we

employed two measures: i) the spatial length (related to

compression) and ii) the relative entropy (related to complexity).

Figure 7C summarizes our results.

We found that the length of the output train changes practically

linearly with increase of the length of the contextual train. The

slope of the least-squares linear regression strongly depends on the

period of the contextual train. Contextual trains with the shortest

spatial period of 30 neurons (Fig. 7C, red triangles) exert strongest

impact on the length of the output (processed) train, whereas trains

with longest spatial period of 100 neurons have little effect on the

output train (Fig. 7C, black squares). To confirm this observation

we also evaluated the relative entropy (7). Since the input stimulus

(raw information) has high entropy, in this case the wave-

processing led to entropy decrease (Fig. 7C, inset), i.e. the wave-

processing selects only a part of input information. In agreement

Figure 7. Contextual processing of information. A) Sketch of numerical experiments. The wave train injected at the left input of the neuronal
chain conveys raw information (stimulus to be processed, the same for all experiments). The informative train interacts with a periodic train injected
at the right input, which sets the context for the wave-processing. The context features are the spatial period and length of the contextual train. After
trains’ interaction the processed information can be readout from the right end of the chain. B) Four examples of different contexts (trains with 3 and
9 waves spaced by 30 and 100 neurons) and the corresponding outputs (processed trains). Red trains are different, whereas black train are the same,
which suggests divergence/convergence of the contextualization. C) Influence of the context on the information extracted from the raw message.
Main graph: the length of the output train linearly depends on the length of the contextual train and its period modulates the sensitivity. Inset:
relative entropy of the output has higher variability for contextual train with shorter periods (horizontal displacements of symbols serve for
visualization only).
doi:10.1371/journal.pone.0057440.g007
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with previous results, we observed that the variability of the output

information is maximal for contextual trains with short period (30

neurons) and minimal for trains with long period (100 neurons).

Thus the neuronal chain offers effective mechanism for con-

textualization of the input information. We can easily control

characteristics of the processing by changing the length of the

contextual wave-train and tune the sensitivity to the context by

changing its period.

Discussion

Questions ‘‘How information is represented in the brain?’’ and

‘‘What are the principles of its processing?’’ are the most

challenging in contemporary Neuroscience. It is now well

accepted that different brain nuclei use different strategies for

information handling. At the initial processing levels, primary

brain nuclei codify sensory information in the form of spike

trains. At this stage variants of the rate and time coding schemes

are largely employed (see e.g. [40,42,43] and references therein).

However, at upper levels the situation becomes much more

complicated. Highly evolved nuclei involve distributed parallel

processing of multimodal and multiscale information. Complex

networks made up of proximal and distant heterogenous

couplings coordinate neural activity at different sites [44]. Then

the synchronization concept standing on correlated firing of

multiple spatially distant neurons (see e.g. [3]) has been widely

spread as a paradigm for computational and cognitive tasks.

Although this hypothesis received strong experimental and

theoretical support, not all experimental facts can be easily fitted

in the paradigm.

It seems that besides synergetic cooperation of neurons in time

domain, e.g. through synchronization of spikes in different time

windows, the brain may also employ information coding and

processing in spatial dimension. For example waves of neural

activity, functionally related to behaviors and global dynamics,

have been found in visual, sensory-motor, auditory, and olfactory

cortices (see [24] for a review). In this work we proposed and

theoretically illustrated a novel concept of significantly spatio-

temporal representation and processing of long-scale information

in laminar neuronal structures. We argued that relevant long-

scale information may be hidden in spatiotemporal waves,

abundant in different brain structures, and then nonlinear

interaction of such waves yields efficient information processing,

which we called wave-processing. We note that the discussed

wave-processing cannot be reduced to the synchronization

paradigm since it occurs in two dimensions: space and time, i.e.

the result of computation depends significantly on the spatial

distribution of information.

To implement wave-processing in a mathematical model we

proposed a mechanism that relays on local single neuron

dynamics. We incorporated into the classical FitzHugh-Nagumo

neuron an additional membrane current accounting for the

dynamics of voltage gated high threshold ionic channels. Then a

chain of such neurons acquires new emergent properties. Namely,

we have shown that nonlinear self-sustained waves can exhibit a

variety of functionally different regimes of interactions from

complete or partial annihilation to transparent crossing. We

provided a rigorous description of the bifurcations in the phase

space of the corresponding dynamical system leading to different

collision scenarios. It is worth noting that the model incorporates

two types of multistability: of a single neuron (Fig. 1B) and of the

wave collision (Figs. 3B, 3E). The existence of the former is not

essential, i.e. the main results can be reproduced with a

monostable single-neuron model (without up state). However,

the additional high-threshold conductance is a must for the

multistable wave interaction. We have shown that the latter

multistability, as basic computational requisite at the network

level, is governed by a special nucleating solution of a saddle type

with two generic routs leading to different scenarios of wave

interaction. Thus besides symmetric transparent wave crossing the

neuronal chain simultaneously admits asymmetric wave interac-

tion, an asset for wave-processing. This regime of wave interaction

occurs for intermediate (biologically plausible) values of the

coupling strength between neurons and the amount of the

additional membrane current.

We have shown that neuronal chains can exhibit nontrivial

computational abilities mimicking different physiological processes

in the brain. In particular we described the phenomenon of

complexity resonance and classified four available types of

processing of wave information: Transparent propagation, Soft

and Hard processing, and Dark collision. Using these ‘‘computa-

tional tools’’ a laminar neuronal structure can ‘‘ignore’’ stimuli of

too high or too low frequencies (or spatial scales), while selectively

process those in the ‘‘natural’’ frequency range. Input stimuli are

compressed and receive higher complexity at the output thus

effectively codifying raw information.

We have also shown that the concept of wave-processing

naturally offers an effective mechanism for contextual compu-

tations, i.e for interpretation of raw information according to

circumstances or context that acts like a framework for high-

level functions. We illustrated contextualization of raw long-

scale information using a complex stimulus as input informa-

tion and periodic wave trains modeling different contexts. We

have shown that the content of the output wave train linearly

depends on the length of the contextual train and the

sensitivity to the context is controlled by the context frequency.

As it happens in the Nature contextualization of information

obeys divergence/convergence properties. The neuronal chain

can process stimulus differently or identically in different

circumstances.

Thus neuronal chains can work as computational units

performing different operations over spatiotemporal informa-

tion. Both the biophysical basis of the model and its revealed

computational features make it suitable for functional descrip-

tion of global and sparse information processing in real neural

networks. We expect that the concept of wave-processing could

be involved in such high-level brain functions as path-planning

and decision making. Indeed, to behave efficiently and actively

in complex environments, evolved organisms create in the

brain a model of the external world. Then this model is used to

perform mental ‘‘computations’’ and test in parallel different

decision alternatives (see e.g. [6] and references therein). To

perform this task the brain should be able to map 4-

dimensional space-time structure of the external world into

the internal neuronal space. Then it seems reasonable to

hypothesize that laminar brain structures (like e.g. cerebral

cortex) may naturally serve as a container for the information

mapping, while neural waves may perform parallel computa-

tions over such space-time information.
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