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Conventional and pathogenic
Th2 cells in inflammation,
tissue repair, and fibrosis
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Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in

the host defense against pathogens and allergens by producing Th2 cytokines,

such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses.

Emerging evidence reveals that Th2 cells also contribute to the repair of injured

tissues after inflammatory reactions. However, when the tissue repair process

becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced,

leading to organ failure and death. Thus, proper control of Th2 cells is needed

for complete tissue repair without the induction of fibrosis. Recently, the

existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells

produce large amounts of Th2 cytokines and induce type 2 inflammation when

activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are

suggested to play a central role in the induction of type 2 inflammation whereas

the role of Tpath2 cells in tissue repair and fibrosis has been less reported in

comparison to conventional Th2 cells. In this review, we discuss the roles of

conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue

inflammation, repair, and fibrosis.

KEYWORDS
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Introduction

Type 2 helper T (Th2) cells are a subset of CD4+ T cells characterized by the

production of Th2 cytokines, including interleukin-4 (IL-4), IL-5, and IL-13 (1). The

Th1-Th2 paradigm was first described about 30 years ago (2), and for a long time before

that, type 2 immunity was thought to be a simple counter-regulatory mechanism that

antagonizes type 1 immunity (3). Now, however, Th2 cells are often observed in tissues in

allergic patients and are known to play critical roles in the pathogenesis of allergic

diseases (1, 4).
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It was recently shown that Th2 cells include pathogenic Th2

(Tpath2) cells that highly express the receptor for IL-33 (a

cytokine that is released during tissue injury) and produce

large amounts of IL-5 (1). Thus, the “pathogenic Th

population disease-inducing model” has been proposed, in

which Tpath2 cells are important promoters of allergic

inflammation in both mouse and human systems (1, 5). Th2

cells are also involved in the repair of tissues that are damaged by

parasitic infections, house dust mite (HDM), and air pollution.

IL-4 and IL-13, which are induced by Th2 cells, activate

macrophages and epithelial cells and enhance the production

of extracellular matrix (ECM), an element crucial for tissue

repair (6–10). However, when the tissue repair process becomes

chronic, excessive, or uncontrolled, it may induce the

development of pathological fibrosis in various organ systems.

The mechanisms underlying the induction of fibrosis by Th2

cells have been reported to include deposition of ECM by

fibroblasts in response to various cytokines and growth factors,

including Th2 cytokines (11), but the detailed cellular and

molecular mechanisms remain unclear. Currently, research to

elucidate the mechanism underlying Th2 cell-mediated fibrosis

is being actively conducted. Recently, we have reported that

eosinophil reprogramming via IL-5 and amphiregulin production

by Tpath2 cells (12) and a CD103low cell population among tissue-

resident CD4+ T cells (13) were also found to promote

tissue fibrosis.

We herein review the role of Th2 cells, including the

conventional, pathogenic, and tissue-resident Th2 cells that we

identified, in the sequence of tissue inflammation, repair, and

fibrosis, and discuss how tissue fibrosis can be controlled.
Th2 cells in the induction of
inflammation

Induction of Th2 cell differentiation

Th2 cells produce so-called Th2 cytokines: IL-4, IL-5, and

IL-13. These cytokines play an important role in humoral

immunity and helminthic infection defense but are also central

to the pathogenesis of many allergic inflammatory diseases.

Peripheral naïve CD4+ T cells, upon recognition of antigenic

peptides by the T cell receptor (TCR), migrate into lymphoid

tissues and functionally differentiate into different Th cell

subsets. When CD4+ T cells receive IL-4 that is released by

innate immune cells, such as group 2 innate immune system

lymphocytes (ILC2s), mast cells, and basophils in lymphoid

tissues, these CD4+ T cells differentiate into Th2 cells through

IL-4-induced phosphorylation of STAT6 and the increased

expression of GATA3 (14–19). GATA3 protein stability is also

important for the functions of Th2 cells (20, 21). Through direct

or indirect interaction with epigenetic modifiers, GATA3 is
Frontiers in Immunology 02
involved in chromatin remodeling at the Th2 cytokine gene

loci: histone H3K9 acetylation (22, 23), histone H3K4

methylation (20), and DNA demethylation (24). In addition,

epigenetic modifications of the Gata3 gene control the stable

expression of GATA3 proteins (20, 25, 26). The TCR-mediated

signaling pathway also contributes to Th2 cell differentiation

(27). T cells that lack nuclear factor of activated T-cells 2

(NFAT2), encoded by the Nfatc1 gene, produce less IL-4,

indicating that the TCR-dependent activation of NFAT2 plays

a role in Th2 cell differentiation (28). Prolonged TCR signaling is

proposed to enhance the pathogenicity of Th2 cells due to a lack

of Klf2 gene reactivation (29, 30).

When airway epithelial tissues are damaged by helminth

infection, HDM, or air pollution, the innate immune system is

activated by the release of alarmin cytokines, such as thymic

stromal lymphoid neoplastic factor (TSLP), IL-25, and IL-33

from the damaged epithelial cells. In addition to IL-4, these

alarmin cytokines have been reported to be important for

inducing Th2 responses under various conditions in vivo and

in vitro (31). TSLP activates local dendritic cells to secrete CC

chemokine ligand 22 (CCL22) and CCL17, which promotes Th2

cell differentiation. IL-25 induces the production of IL-4, IL-5,

and IL-13 from antigen-presenting cells and promotes the

differentiation of Th2 cells (31). In addition, the production of

IL-5 from CD4+ T cells was enhanced in polyps of eosinophilic

chronic rhinosinusitis (ECRS) patients by direct stimulation by

increased IL-25, as Tpath2 cells also express the receptor for IL-

25 (32). IL-33 activates NF-kB and MAP kinase via the IL-1

receptor-like 1 (ST2) and induces Th2 cytokine production in

mast cells (33). Recent studies have shown that in addition to IL-

4, the Wnt antagonist, platelet-derived Dickkopf-related protein

1 (DKK1)—in combination with TCR involvement—is an

important contributor to Th2 cell differentiation in

pathological type 2 cell-mediated inflammation (34). In

addition to the well-known fact that platelets are an important

source of platelet-derived growth factor (PDGF), there are

mechanistic and physiological links among local tissue

damage, platelet activation, and Th2 cell differentiation

(Figure 1). Finally, the gene expression pattern as a Th2 subset

that is acquired by the above-described mechanism is

maintained by epigenetic modifications (25, 35).
Inflammatory response induced by
conventional Th2 cells

Effector Th2 cells are primed in lymphoid tissues and

eventually migrate into inflammatory tissues (36). CD69, a

type II transmembrane glycoprotein with C-type lectin

domains expressed on activated CD4+ T cells, is important for

migration into inflammatory tissues (37). CD69 helps CD4+ T

cells localize to inflammatory tissues by binding to a functional
frontiersin.org
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ligand for CD69, Myosin Light Chain 9 (Myl9), which is

contained in the intravascular net-like structures that are

formed in inflammatory tissues (38, 39). Th2 cells that migrate

to inflammatory tissues are able to exert an effector function

when exposed to factors in their environment. In particular, in

the absence of signals from epithelial-derived cytokines (TSLP,

IL25, and IL33), Th2 cells in the lung do not express IL-5 and IL-

13, and are unable to exert full effector functions (40). Th2 cells

that have an acquired effector function can produce Th2

cytokines, including IL-4, IL-13, and IL-5. IL-4 induces Th2

cell differentiation in an autocrine manner at inflammatory sites

(41). IL-13 promotes allergen elimination from the epithelium

by inducing the accumulation of mucin in the epithelium (42,

43). IL-5 recruits eosinophils to inflammatory sites and also

promotes their survival (44). Eosinophil-derived neurotoxin

(EDN) in granule proteins acts as an activator and

chemoattractant of dendritic cells, and consequently, activated

dendritic cells enhance Th2 responses. In addition, eosinophils

can kill some parasites via the classical antibody-dependent

cytotoxicity (ADCC) mechanism (44, 45). Furthermore,

eosinophils are sources of Th2-inducing cytokines (mainly IL-

4 and IL-13) in the very early stage of the immune response in

lymph nodes and tissues and can induce Th2 differentiation by

antigen presentation to CD4+ T cells (46–48) (Figure 2). ILC2s
Frontiers in Immunology 03
are also associated with the induction of type 2 inflammation by

directly producing Th2 cytokines and activating Th2 cells via

MHCII and IL-13 (49). ILC2s produce large amounts of Th2

cytokines upon stimulation by IL-25, IL-33 and TSLP, and also

constitutively produce a certain amount of IL-5 (50, 51).
Identification of pathogenic Th2
(Tpath2) cells

One of the major advances in the understanding of the

induction of tissue inflammation by Th2 cells is the

identification of Tpath2 cells (1, 52–57). Tpath2 cells express

high levels of ST2, a component of the IL-33 receptor, and when

activated by IL-33 released from damaged epithelial cells, they

become a high producer of IL-5 (56). IL-33 is proposed to be

required for optimal human pathogenic Th2 cell effector

function (57). The IL-5 produced by Tpath2 cells exacerbates

the pathology of eosinophilic inflammation in both mouse and

humans (53). In fact, mepolizumab and benralizumab, which are

humanized monoclonal antibodies targeting IL-5 and IL-5Ra,
respectively, have both shown remarkable therapeutic effects in

various types of eosinophilic diseases, including ECRS and

asthma (58). In addition to IL-33, IL-7 maintains memory
FIGURE 1

Alarmins that induce Th2 cell development in non-lymphoid tissues. When airway epithelial tissues are damaged by helminth infections, house
dust mites, or air pollution, the damaged epithelial cells release alarmins (e.g., thymic stromal lymphoid neoplastic factor [TSLP], interleukin [IL]-
25, and IL-33). TSLP activates local dendritic cells to secrete CC chemokine ligand 22 (CCL22) and CCL17, which promote the development of
type 2 helper T (Th2) cells. IL-25 induces the production of IL-4, IL-5, and IL-13 from antigen-presenting cells (APCs), resulting in the promotion
of Th2 cell development. IL-33 also promotes Th2 cell development by inducing the production of Th2 cytokines from mast cells. In addition,
Dickkopf-related protein 1, which is a Wnt antagonist released from platelets at the site of injury, can similarly promote Th2 cell development.
TCR, T cell receptor. This figure was created with BioRender.com.
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Tpath2 cells in an ectopic lymphoid tissue called “inducible

bronchus-associated lymphoid tissue (iBALT)” in murine

inflamed lung tissue (59). Recent technical advances, including

the genome-wide analysis of single-cell transcriptomes,

regulomes and proteomes, have highlighted the diversity and

detailed characteristics of Tpath2 cells (60, 61). We herein

summarize the current understanding of pathogenic Th2 cell

markers other than ST2 and IL-5 (62).

A CC chemokine, CCL8, is highly expressed in the skin and

functions as a ligand for the chemokine receptor, CCR8. CCR8+

memory-type Th2 cells have been identified as key pathogenic

players in chronic skin inflammation in a mouse model of skin

inflammation. In addition, a similar cell type that produces

higher levels of IL-5 is found in healthy human donors,

suggesting that CCR8 could be a marker for pathogenic Th2

cells (52). CRTH2 is a G-protein coupled receptor with which

Tpath2 cells sense and react to prostaglandin D2, a pleiotropic

mediator for activation, migration, and cytokine production in

type 2 immune responses (62). Importantly, human pathogenic

Th2 cells also express hematopoietic prostaglandin D synthase

(HPGDS), which catalyzes the conversion of prostaglandin H2

to D2. Thus, Tpath2 cells are able to amplify their own activation

and effector function via the HPGDS-PGD2-CRTH2 axis (53,

63). CD161 is a C-type lectin-like receptor and plays an

inhibitory role on NK cell cytotoxicity. The ligand of CD161 is
Frontiers in Immunology 04
the C-type lectin domain family 2 member D (CLEC2D or

LLT1), which is expressed in human epithelial cell lines isolated

from the lung, suggesting that pathogenic Th2 cells might be

activated via CD161 and contribute to inflammation in the lung

(64). The receptor of IL-25, which consists of IL-17 receptor B

(IL-17RB) and IL-17RA, also serves as a marker of the human

pathogenic Th2 cells, since IL-25 stimulates Tpath2 proliferation

and cytokine production (54).

Lipid metabolism-related molecules are also involved in the

induction of pathogenic Th2 cells. For example, peroxisome

proliferator-activated receptor gamma (PPAR-g) is a fatty acid-

activated nuclear receptor known for controlling adipogenesis,

lipid and glucose metabolism, and inflammation. The PPARG

gene is reproducibly reported as a marker associated with the

human pathogenic Th2 phenotype (55, 65–67), while specific

endogenous PPAR-g ligands remain to be identified. In humans,

the roles of PPAR-g in pathogenic Th2 cells remain unclear.

However, the specific functional role of PPAR-g in pathogenic

Th2 cells has been characterized in mice: the upregulation of IL-

33 receptor ST2 and the activation of Tpath2 cells in allergic

inflammation (68). Indeed, mice lacking PPAR-g in T cells

showed impaired immune responses in both allergic lung

inflammation and parasite infection (69). Another example of

the markers associated with lipid metabolism is free fatty acid

receptor 3 (FFAR3), which encodes a G protein-coupled
FIGURE 2

Inflammatory response induced by Th2 cells. In inflammatory tissues, Th2 cells induce an inflammatory response to eliminate antigens. Th2 cells
recruit eosinophils to the site of inflammation through IL-5 production and promote their survival. Eosinophil-derived neurotoxin (EDN) acts as
a chemoattractant and activator of dendritic cells. Eosinophils can also kill some parasites via the classical antibody-dependent cytotoxicity
(ADCC) mechanism. In addition, eosinophils promote the development of Th2 cells through the production of IL-4. In addition to the induction
of eosinophilic inflammation by IL-5, Th2 cells produce IL-13, which induces mucus production from epithelial cells, including goblet cells, and
promotes the elimination of allergens from epithelial tissues. The Th2 cell population contains pathogenic Th2 (Tpath2) cells that highly express
ST2, which is the receptor for IL-33. Tpath2 cells become high-producers of IL-5 when activated by IL-33. Tissue-resident memory Th2 cells
are differentiated from a portion of Th2 cells, and play an important role in type 2 inflammatory responses in local tissues through the
production of Th2 cytokines, such as IL-5 and IL-13. This figure was created with BioRender.com.
frontiersin.org
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receptor for short chain fatty acids. Multiple studies have shown

that human pathogenic Th2 cells express FFAR3, the expression

levels of which were correlated with IL-5 levels and the number

of tissue eosinophils (55, 65, 66).
Tpath2 cells in inflammatory diseases

As described above, the concept of Tpath2 cells has been

recognized as fundamental for understanding the pathogenesis

of inflammatory diseases, including allergic inflammation of the

upper and lower airways, atopic dermatitis, and gastrointestinal

inflammation in humans (39, 70).

While conventional Th2 cells have long been implicated in

allergic airway inflammation, recent studies in human patients

indicate that the disease is specifically driven by pathogenic Th2

cells (63, 66, 67). This idea is further supported by the successful

clinical application of anti-IL-5 monoclonal antibodies in the

treatment of asthma patients (56). In addition, other

therapeutics targeting alarmins that activate pathogenic Th2

cells, such as anti-TSLP and anti-IL-33 treatments, are being

developed for allergic asthma (71). Moreover, inhibitors of

CRTH2 are currently being evaluated in clinical trials for

allergic asthma (62). In ECRS patients, IL-5-producing

pathogenic Th2 cells have also been identified in the upper

airways (32).

Evidence that the pathogenic Th2 cell subset might play a

role in atopic dermatitis (AD) came from a mouse model in

which chronic skin inflammation was found to be driven by a

specific subset of CCR8+ memory Th2 cells expressing high

levels of IL-5 (52). Consistent with these findings, CCL18, a

ligand of CCR8, is shown to be overexpressed in the skin of AD

patients and to be well-correlated with disease activity (72).

However, treatment with a monoclonal antibody to human

interleukin-5 (mepolizumab) did not result in clinical success

in patients with AD (73), whereas blocking of the Th2 cytokine

signaling with a monoclonal antibody against the IL-4/IL-13

receptor alpha chain shows high efficacy in patients with severe

AD (74).

Recently, a single cell analysis of T cells isolated from eosinophilic

esophagitis (EoE) tissue in humans identified a pathogenic Th2 cell

population that expresses HPGDS, CRTH2, and CD161. These

pathogenic Th2 cells produce higher levels of IL-5 and IL-13,

which are correlated with disease severity (65). Thus, EoE has been

considered as one of the diseases associated with pathogenic Th2 cells.

In another study, CRTH2hiCD161hiHPGDShiST2+ Tpath2 cells were

proposed to be a pathogenic T-cell population in EoE patients (53).

Furthermore, the effects of allergen-specific immunotherapy in EoE

patients have revealed a correlation between the presence of

CD45ROhiCRTH2hiCCD49dhiCCR4hiCXCR3loCCR6loCD27loST2+

Tpath2 cells and disease activity (55). G-protein-coupled receptor 15

(GPR15) is a known lymphocyte trafficking receptor and may serve
Frontiers in Immunology 05
as a pathogenic marker in inflammatory bowel disease: increased

numbers of CD4+CD45RO+GPR15+ memory-type Th2 cells are

found in the colon of patients with ulcerative colitis (75, 76).
Tpath2 and tissue-resident memory
Th2 cells

Memory Th2 cells, which are differentiated from effector

Th2 cells, are central to adaptive immunity against parasite

infection and play an important role in the host defense through

inflammatory responses (36). Memory Th2 cells have also been

implicated in the pathogenesis of chronic inflammatory diseases

(1). Evidence from recent studies indicates that memory Th2

cells, including pathogenic memory Th2 cells, are more

heterogeneous in their function than previously recognized.

Thus, a precise understanding of the nature of the

involvement of memory Th cells in various chronic

inflammatory diseases is quite important for the development

of new therapeutic approaches for intractable immune-related

disorders. More recently, it has become clear that there are two

types of memory CD4+ T cells: circulating and non-circulating

(77). The non-circulating cells are now called tissue-resident

memory T (TRM) cells (78, 79). Unlike circulating memory T

cells, which circulate throughout the body via blood vessels and

lymphatic vessels, TRM cells are retained in non-lymphoid

tissues, such as the lungs, intestines, and skin (78). In the

lungs of mice in which inflammation is induced by HDM, Th2

TRM cells are transcriptionally and functionally distinct from

circulating memory Th2 cells (80). Th2 TRM cells have increased

expression of Il5 and Il13 (80). In addition, in the lungs of mice,

CD4+ TRM cells that were induced by repeated exposure to

Aspergillus fumigatus caused an inflammatory response (13).

Thus, Th2 TRM cells play an important role in type 2

inflammatory responses in local tissues (81) (Figure 2).

In the skin, TRM provide frontline immune defense (82, 83).

Recently, a transcriptome analysis of human CD4+ TRM from

healthy skin revealed an interesting overlap of the TRM

transcriptome with that of pathogenic Th2 cells (84). For

example, human CD4+ TRM were found to express specific

molecules, including markers described in the previous section

—CCR8 and PPAR-g—which are closely linked to pathogenic

Th2 cells. The biological relevance of this remarkable similarity

remains to be elucidated; however, the result indicates that both

TRM and pathogenic Th2 cells share a similar differentiation

program for adaptation to the tissue environment of the skin.

Interestingly, in mice, PPAR-gmediates metabolic adaptation of

CD8+ TRM to the lipid-rich microenvironment of the skin (23).

Since both TRM and pathogenic Th2 cells are linked to the

chronic inflammation of barrier tissues, the similarity in the

transcriptome could be a hint to future therapeutic or even

curative strategies.
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Th2 cells in the tissue repair

In addition to inducing type 2 inflammatory responses, type

2 cytokines that are produced by Th2 cells also directly or

indirectly help the repair of injured tissues by targeting a wide

variety of immune and non-immune cells, including fibroblasts,

epithelial cells, macrophages, and endothelial cells (Figure 3).

Tissue repair is a tightly coordinated and highly dynamic process

that restores tissues injured by parasitic infections, HDM, air

pollution, and other conditions to their original state. We herein

summarize the outline of the current understanding of the tissue

repair processes, which are thought to be mainly conventional

Th2 cells.

Basically, this process can be divided into three distinct but

overlapping phases. These three stages are defined as

“coagulation and inflammation”, “tissue formation”, and

“tissue reconstruction” (85). In the “coagulation and

inflammation” phase, the injury site is first isolated from

outside the body by blood coagulation, and then the

mobilization of inflammatory cells, such as Th2 cells, begins

(85). The activation of macrophages by type 2 cytokines, such as

IL-4 and IL-13, is important in the resolution of the subsequent

stages of inflammation and in tissue formation and remodeling

(6, 7).

In the second stage, “tissue formation”, pro-inflammatory

signals, such as type 2 cytokines, weaken, and cell proliferation is

initiated by growth factors, such as transforming growth factor-b
(TGF-b) and basic fibroblast growth factor (FGF-2). At this

stage, two processes are thought to be important: the removal of
Frontiers in Immunology 06
apoptotic cell debris by activated macrophages and the induction

of fibroblast proliferation (86). In fact, wound healing is

impaired when the number of macrophages is reduced (87). In

particular, macrophages that receive type 2 cytokines (also

referred as to an alternatively activated or M2 macrophages)

are involved in tissue repair in the liver, central nervous system

(CNS), heart, skeletal muscle, and lung (88). In mice, IL-4

produced by basophils and Th2 cells activates type 2 immune

responses that convert the recruited inflammatory monocytes

into wound-healing macrophages in the liver (89). These

macrophages can replace the lost Kupffer cells in the liver and

restore tissue homeostasis (89). Furthermore, the IL-4-activated

macrophages are highly metabolically active and quickly

consume critical amino acids in the injury site, which can

slow the progression of fibrosis. This is due to the suppression

of local CD4+ T cell proliferation and myofibroblast activation

(90, 91). In the CNS of mice, depletion of intralesional IL-4-

associated macrophages substantially delayed oligodendrocyte

differentiation (92). In addition, multipotent adult progenitor

cells protect against axonal dieback in spinal cord injury by

expanding protective IL-4-associated macrophages in rats (93).

In the heart, the critical contribution of IL-4- and IL-13-

activated macrophages to cardiac repair was reported (94):

Trib1-deficient mice that selectively lack IL-4-associated

macrophages frequently experienced cardiac rupture after

myocardial infarction. In the skeletal muscle in a mouse model

of Duchenne muscular dystrophy, which is associated with IFN-

g-activated macrophages, IFN-g-deficiency markedly improved

the motor function in the late regenerative phase. It was
FIGURE 3

Mechanism of tissue repair by Th2 cells. Type 2 cytokines produced by Th2 cells not only induce type 2 inflammatory responses but also
contribute to the repair of injured tissues. The activation of macrophages by IL-4 and IL-13 is important for the resolution of the type 2
inflammatory response and initiation of tissue repair. Activated macrophages induce fibroblast proliferation, remove extracellular matrix (ECM)
formed by fibroblasts and other cells, and clear apoptotic cells in injured tissues. IL-4 and IL-13 produced by Th2 cells can also directly induce
the proliferation of epithelial cells and contribute to the reconstruction of injured tissues. Furthermore, eosinophils, which are recruited to
inflammatory sites by IL-5 produced by Th2 cells, can also produce IL-4 and IL-13. Thus, Th2 cells induce tissue repair both directly and
indirectly. This figure was created with BioRender.com.
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associated with a skewing of macrophages toward an IL-4-

associated anti-inflammatory phenotype (95). In humans,

myogenic precursor cell activation by anti-inflammatory

macrophages is proposed to be crucial to muscle cell

regeneration following injury (96). Taken together, these

results suggest a possible protective role of reparative

macrophages in the skeletal muscle.

Eosinophils are also involved in tissue repair. For example,

eosinophils induce hepatocyte proliferation by secreting IL-4

and IL-13 in an IL-4Ra-dependent manner during the tissue

repair process in the liver (97). IL-4 and IL-13 also induce the

proliferation of epithelial cells that express IL-4Ra, which
promotes stem and progenitor cells in adult tissues to

proliferate and differentiate (8, 9). Similar findings have also

been reported in cases of skeletal muscle injury in a mouse

model. In skeletal muscle injury, IL-4, which is derived from

eosinophils, targets the regenerative function of muscle-resident

adipocyte progenitors and fibroblasts that contribute to

myogenesis (98). As described in Figure 2, IL-5, which is

essential for the eosinophil function, is produced in large

amounts by Tpath2 cells. Since Tpath2 cells are activated by

IL-33 released from injured tissues in both mice and humans

(39), the IL-33-Tpath2 axis is expected to play an important role

in the repair of injured tissues by collaborating with

macrophages and eosinophils. For example, IL-33 was shown

to attenuate experimental autoimmune encephalomyelitis (EAE)

in mice by suppressing IL-17 and IFN-g production and by

inducing reparative IL-4-associated macrophages, suggesting

that type 2 cytokines produced by Tpath2 cells polarize anti-

inflammatory macrophages (99). As targets of IL-33, ILC2s also

contribute to tissue repair. In allergic (100–102) and infection

models (40, 103), ILC2s, in addition to Th2 cells, have been

reported to be a source of IL-13. In particular, ILC2s produce

large amounts of IL-13 when stimulated by alarmin released

during tissue injury (50). Lung ILC2s also produce amphiregulin

in response to IL-33 and restore the respiratory function after

influenza virus-induced lung injury (104).

In addition to the dynamic proliferation and differentiation of

these cells, the formation of de novo ECM and the deposition of

collagen supporting the migrated cells are also hallmarks of the

“tissue formation” phase. In tissue repair, the ECM, which includes

components such as collagen and fibronectin, is important because

it mechanically stabilizes the damaged tissue, anchors growth

factors, and serves as a scaffold for endothelial cells, immune cells,

and fibroblasts and to migrate to the site of tissue damage or repair

(10). The ECM can also bind growth factors, thus acting as a

reservoir for growth factors, concentrating their activity close to the

cell and protecting it from degradation (105). Through the action of

tissue inhibitor of metalloproteinases (TIMPs) and matrix

metalloproteinases (MMPs), myofibroblasts continuously regulate

matrix deposition and turnover (106, 107). This process is

organized by cell-to-cell and cell-to-ECM interactions.
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The third stage, “tissue reconstruction,” is the final stage of

tissue repair. In this stage, the tissue is reconstructed to its

original form by the wound reconstruction process. Wound

tissue reconstruction is a multi-step process. During this stage,

which can last from several weeks to several months,

myofibroblasts, macrophages, and endothelial cells present in

the tissue undergo apoptosis, and newly formed blood vessels

regress (85, 108). The newly formed collagen layer beneath the

wound undergoes remodeling and reconstruction. During this

phase, macrophages contribute to tissue repair by ingesting

cellular debris and decomposing the excess ECM that has

accumulated in and around the wound (108). Nonetheless, the

depletion of skin macrophages during the tissue reconstruction

phase does not significantly affect the outcome of tissue repair.

This suggests that macrophages have redundant roles in tissue

repair and that their function may overlap with the functions of

other cell populations at this wound repair phase (109).

However, how tissue repair is regulated by macrophages that

are activated by type 2 cytokines and other cell types that

characterize type 2 inflammation, such as mast cells, basophils,

eosinophils, Th2 cells, and ILC2s, remains unclear.
Th2 cells in the induction of fibrosis

Overview of tissue fibrosis

Fibrosis is not a disease, rather it is the result of uncontrolled

tissue repair responses that occur after many types of tissue

injury, particularly caused by chronic inflammatory disease.

Fibrosis is the widespread accumulation of fibrous connective

tissue and is defined by the excessive accumulation of ECM

components, such as collagen and fibronectin (110). In fact, the

formation of fibrotic tissue is a normal and critical step in tissue

repair in all organs in response to tissue injury caused by various

triggers, such as infection, inflammation, autoimmune diseases,

degenerative diseases, and tumors (111). When tissue is injured,

the wound healing response is initiated through mechanisms

that were described previously. If the injury is mild or non-

repetitive, the deposition of ECM components increases only

temporarily, allowing for efficient wound healing and facilitating

the functional recovery of tissue structures (106, 107). However,

if the damage is repeated or severe, wound healing mechanisms

may become uncontrollable and ECM components may

continue to accumulate, resulting in the destruction of tissue

structures, organ dysfunction, and eventually organ failure (110,

112). In various diseases, such as hepatic cirrhosis, renal

interstitial fibrosis, pulmonary fibrosis, myocardial infarction,

graft-versus-host disease (GVHD), and systemic sclerosis,

fibrotic remodeling impairs the organ function and causes

high morbidity and mortality (111). Although the role of

macrophages in fibrogenesis has been studied for many years,
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kokubo et al. 10.3389/fimmu.2022.945063
the mechanisms through which T cells regulate fibrogenesis are

not fully understood.
Mechanism underlying lung fibrosis
induced by Tpath2 cells

Memory-type Tpath2 cells express high levels of the IL-33

receptor ST2 and play important roles in fibrogenesis in both

HDM-induced murine lung inflammation and human airway

inflammatory disease (5, 12) (Figure 4). In mouse, IL-33, which

is mainly produced by epithelial cells undergoing tissue injury,

activates memory-type Tpath2 cells and induces the production

of amphiregulin, a member of the epidermal growth factor

family (12). In HDM-induced murine lung inflammation,

amphiregulin reprograms the eosinophil transcriptome via the

epidermal growth factor receptor (EGFR) and promotes the

production of osteopontin, which is a fibrosis-inducing protein

(12, 113). Amphiregulin-producing memory-type Tpath2 cells

and IL-5-producing memory-type Tpath2 cells were thought to

be distinct subpopulations and to cooperate to induce

eosinophilic inflammation and to establish airway fibrosis (12).

In addition, an analysis of nasal polyps from patients with ECRS

showed that the percentages of memory-type Tpath2 cells in nasal

polyps were higher than those in peripheral blood (Figure 5).
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Furthermore, in nasal polyps of ECRS patients, amphiregulin-

producing memory CD4+ T cells and osteopontin-producing

eosinophils were found, with a dense fibrotic response

(12, 114). Pharmacological blocking of EGFR signaling

attenuates the expression of Spp1, encoding osteopontin, in

both mouse and human eosinophils (12). Thus, the IL-33-

amphiregulin-osteopontin axis induces a fibrotic response in

chronic allergic inflammation in both mouse and human

systems (12). In contrast, amphiregulin that is produced from

activated lung ILC2s restores the respiratory function after

influenza virus-induced lung injury (104). This suggests that

amphiregulin has different functions depending on the cell type

and biological background.
Mechanism underlying the induction of
fibrosis by IL-4 and IL-13

Several cell types, including fibroblasts, epithelial cells, and

macrophages, are known to induce fibrosis in response to Th2

cytokines (Figure 4). Fibroblasts play an important role in normal

tissue repair and the induction of fibrosis by directly depositing

ECM in response to various growth factors and cytokines,

including Th2 cytokines (11). In particular, IL-13 signaling is

important in the induction of fibrosis by fibroblasts (8).
FIGURE 4

Mechanism underlying the induction of fibrosis by Th2 cells. Fibrosis can be induced when the tissue repair response by cells such as Th2 cells
becomes uncontrollable. While macrophages that are activated by IL-4 and IL-13 work for tissue repair through the mechanisms described in
Figure 3, fibrosis is induced by various mechanisms. IL-4 can also directly induce fibrosis by acting on epithelial cells. IL-33, which is produced
by injured epithelial cells, activates memory-type pathogenic Th2 cells via ST2. Memory-type pathogenic Th2 cells include a subpopulation that
produces IL-5 and a subpopulation that produces amphiregulin in response to IL-33 stimulation. Amphiregulin acts on eosinophils recruited by
IL-5 and reprograms eosinophils to produce osteopontin and induce fibrosis. CD4+ T cells that are involved in fibrosis also include tissue-
resident memory T (TRM) cells with the low or high expression of CD103. CD4+ TRM cells with the low expression of CD103 produce high levels
of Th2 cytokines and promote fibrosis, whereas CD4+ TRM cells with the high expression of CD103 express high levels of Foxp3 and inhibit
fibrosis. IFN-g produced by Th1 cells has been reported to inhibit the induction of fibrosis by Th2 cells. IFN-g may directly inhibit fibrosis by
upregulating the expression of matrix metalloproteinases (MMP) that degrade ECM. This figure was created with BioRender.com.
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Pathological fibrosis is caused by direct signaling of IL-13 in

PDGFRB+
fibroblasts, suggesting that the duration and

magnitude of the IL-13 response may determine whether or

not tissue repair evolves into fibrosis (8). In addition, several

studies have suggested that senescent fibroblasts are resistant to

apoptosis and thereby maintain inflammation and fibrosis by

producing inflammatory cytokines, immunomodulators,

proteases, and growth factors (115, 116). Therefore, senolytic

and senotherapeutic drugs may have potential applications in the

treatment of fibrosis and aging-related diseases (115, 116). In

addition to being an important source of cytokines that trigger

type 2 immune responses, epithelial cells—another cell type that

induces fibrosis—can directly respond to IL-4 and IL-13 to

induce important functions of type 2 immune responses, such

as mucus secretion (9). IL-4Ra deficiency in epithelial cells was

reported to completely diminish fibrosis during schistosomiasis

and bile proliferation, which was associated with experimental

liver fibrosis induced by the overexpression of IL-13 (8).

Macrophages are also capable of inducing fibrosis in response

to Th2 cytokines. Macrophages in tissues are important

regulators of tissue fibrosis and play key roles in the initiation,

maintenance, and resolution of tissue damage (87, 88, 117).

Tissue macrophages are also important producers of

chemokines that attract T cells and fibroblasts, which influence

the formation of the fibrotic niche (118).

The macrophages that are activated by IL-4 and IL-13 have

been reported to induce fibrosis by various mechanisms. First,
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IL-4 and IL-13 promote fibrosis as well as tissue repair by

inducing fibroblast activation and the development of ECM-

producing myofibroblasts through the promotion of TGF-b1
production from macrophages (87). Second, MMP12, which is

also produced by macrophages, plays a role. MMP12 suppresses

the expression of collagen-degrading proteins MMP2, MMP9,

and MMP13, which cause an increased fibrotic response and

decreased matrix degradation after infection (119). Furthermore,

resistin-like alpha (RELMa) secreted by macrophages activates

fibroblasts and upregulates lysyl hydroxylase 2, which controls

mechanical cross-linking of collagen fibrils (120), resulting in the

production of type 2 cytokines (120). In contrast, there was a

report showing that macrophages may inhibit fibrosis and

inflammation by competing for essential metabolites, such as

l-arginine with T cells and other cells. In that report, mice with

tissue macrophage-specific deletion of IL-4Ra showed increased

inflammation after Schistosoma mansoni infection but little

change in their liver fibrosis status (91, 121). In other words,

the role of macrophages that are activated by IL-4 or IL-13 may

vary depending on the organ or pathogenesis (122).
Diversity of eosinophils involved
in fibrosis

Eosinophils play an important role in fibrosis in the lungs

and skin in chronic asthma and atopic dermatitis, respectively.
FIGURE 5

Memory-type Tpath2 cells in an ECRS patient. Representative plots of CD4+CD45RO+ (memory CD4+) T cells isolated from the peripheral blood
and polyp of an ECRS patient. CRTH2-positive and CD161-positive cells are defined as Tpath2 cells (12).
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In addition, vascular injury is induced by eosinophils after high-

dose irradiation through various pro-fibrotic cytokines,

including osteopontin, and eosinophil granule proteins (84,

123–125). In contrast, studies using eosinophil-deficient

DdblGATA and TgPHIL mice demonstrated almost normal

fibrosis, granulomatous inflammation, and type 2 cytokine

production after infection (126). Thus, the importance of

eosinophils in fibrosis remains controversial. It has also been

reported that—in Th2 cell-driven allergic inflammation—a

subset of eosinophils that are recruited to the tissue enhances

inflammation, whereas another subset of eosinophils that is

retained in the tissue prior to the induction of inflammation

suppresses inflammation via the inhibition of bone marrow-

derived dendritic cell (BMDC) maturation (127). Therefore,

while the recruited eosinophil subset induces an inflammatory

response and promotes the development of Th2 cell-dependent

fibrosis, it is also possible that the tissue-retaining eosinophil

population suppresses fibrosis via the suppression of

inflammation (127). The existence of such functionally distinct

populations of eosinophils may suggest the multi-functional

roles of eosinophils in the induction and resolution of fibrosis.
Mechanism underlying the induction of
fibrosis by alarmins

Alarmins released from damaged tissues, such as IL-33,

TSLP, and IL-25, have been reported to contribute not only to

the induction of Th2 cell differentiation but also the initiation

and progression of tissue fibrosis. For example, IL-33 induces the

production of IL-13 by ILC2, macrophages (128), and

eosinophils (129), as well as the activation of Tpath2 cells

(130), as described above. It has been proposed that fibrosis is

promoted through the induction of IL-13 production by

eosinophils (129). In fact, IL-33 elevation has been reported in

dermal tissue in dermatofibrosis (131, 132), lung and intestinal

epithelium in patients with fibrotic colitis and pulmonary

fibrosis (129, 133–135), and the liver of mice with liver fibrosis

(133). TSLP is also detected in human and experimental colonic

fibrosis (136), systemic sclerosis (137–139), pulmonary fibrosis

(140, 141), and dermatofibrosis (142). IL-25, the third alarmin

that promotes fibrosis, activates ILC2s to produce large amounts

of the fibrosis-promoting cytokine IL-13 (143). In fact, the

intranasal administration of recombinant IL-25 to mice causes

airway inflammation and pulmonary fibrosis via the production

of connective tissue growth factor (CTGF) and TGF-b1 (144).

ILC2s that are activated by alarmins also produce large amounts

of IL-5 (50). IL-5 recruits and activates eosinophils in

bleomycin-induced pulmonary fibrosis (145). Attempts have

been made to inhibit tissue fibrosis by inhibiting these

alarmins. In mouse models of chronic liver fibrosis and acute

pulmonary fibrosis, individual blocking of IL-33, TSLP, and IL-
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25 had no effect on IL-13-mediated pathology, but simultaneous

blocking of these three alarmins significantly reduced fibrosis,

eosinophilia, inflammation, and ILC2 mobilization (146). These

results suggest that there may be redundancy in the fibrosis-

inducing functions of IL-33, TSLP, and IL-25.
Lung fibrosis in COVID-19

The elucidation of the mechanisms underlying tissue repair and

fibrosis by Th2 cells and Th2 cytokines is an urgent issue, as

COVID-19, the disease caused by severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) infection, which is

currently causing a global pandemic (147), is accompanied by

fibrosis (148–151) and is particularly dangerous for patients with

pulmonary fibrotic diseases (152). In patients with severe COVID-

19, T helper lymphocytes were found to be biased toward a Th2-like

phenotype (153). It has also been reported thatmiRNAs encoded by

SARS-CoV-2 target IL-5 and IL-33 for transcriptional regulation,

suggesting that Tpath2 cells may be associated with the pathology of

COVID-19 (154). The enhancement of the type 2 immune response

was detected in fatal SARS-CoV-2 infection (155) and severe

COVID-19 cases (156, 157), and has been reported to be

associated with adverse effects in other respiratory infections (158,

159). A meta-analysis of more than 50,000 hospitalized COVID-19

patients showed that the incidence of acute respiratory distress

syndrome (ARDS) increased to 14.8% (160). In contrast, it has been

observed that the prognosis of COVID-19 is not altered in patients

with asthma and other eosinophil-related diseases (161, 162).

Similarly, although preclinical studies suggest that eosinophils

have potential antiviral activity, there is no evidence that

eosinopenia induced by anti-eosinophil therapy increases

susceptibility to SARS-CoV-2 (163). In addition, it is noteworthy

that no eosinophilia has been observed in the lungs of COVID-19

patients (163). Thus, the inflammatory response induced by

conventional or pathogenic Th2 cells and the subsequent fibrosis

would be expected to have different effects on the pathology of

COVID-19. Pulmonary fibrosis, a common signature in patients

with virus-associated respiratory diseases, is also observed in the

lungs of patients with SARS-CoV infection (164–166) and Middle

East respiratory syndrome coronavirus (MERS-CoV) infection

(167). In contrast, it has been reported that pulmonary fibrosis is

a risk factor for severe COVID-19 infection (168). An international

multicenter study reported that the survival rate of patients who

were hospitalized with COVID-19 with complication by non-

idiopathic or idiopathic pulmonary fibrosis was significantly lower

than that of patients without pulmonary fibrosis (169). This means

that patients with interstitial lung disease (ILD), especially fibrotic

ILD, face a lower survival rate after COVID-19 infection than

patients without ILD (169). In addition, risk factors for COVID-19

and idiopathic pulmonary fibrosis share many similarities,

including age, sex, obesity, diabetes, smoking history, and
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hypertension, and both diseases begin with lung injury (170, 171).

In short, a better understanding of the cellular and molecular

mechanisms underlying tissue fibrosis will help us to control

fibrosis in patients with severe diseases induced by viruses,

including COVID-19.
Control of tissue fibrosis

Regulation of lung fibrosis by CD103low

and CD103high CD4+ TRM cells

Th2 TRM cells have been reported to play an important role in

type 2 inflammatory responses in local tissues, but their role in

tissue fibrosis induced during chronic inflammation has been

unclear. Recently, we reported that tissue-resident CD44hiCD69hi

CD4+ T cells showed the higher expression of fibrotic genes in

comparison to circulating CD44lo or CD44hiCD69lo CD4+ T cells in

the lungs of mice with repeated exposure to Aspergillus fumigatus

(13). Furthermore, CD103lo CD4+ TRM cells were defined as

pathogenic, while CD103hi CD4+ TRM cells were defined as

immunosuppressive Treg cells, and they had a different epigenetic

and transcriptional program in the inflamed lung. CD4+CD103lo

TRM cells promoted the pathology of allergic inflammation and

fibrotic response by increasing Th2 cytokines, such as IL-4, IL-5,

and IL-13. In contrast, CD103hi tissue-resident Treg cells expressed

Foxp3 and ameliorated the fibrotic response. Thus, tissue-resident

CD4+ T cell populations with opposing functionality regulate the

pathogenesis of fungal-induced chronic inflammatory response and

subsequent fibrotic response in the lung (13) (Figure 4).
Mechanisms underlying the
suppression of fibrosis by Th
subsets other than Th2 cells

While Th2 cells induce tissue fibrosis through type-2

inflammatory responses, Th1 cells inhibit fibrosis through the

production of the pro-inflammatory cytokine IFN-g (Figure 4).
First, it was reported that IFN-g suppresses collagen synthesis by

fibroblasts and attenuates fibrosis (172). In addition, Wynn et al.

previously used IL-12 for the treatment of S. mansoni infection

in mice and found that IL-12 not only increased the Th1

cytokine expression by inducing Th1 differentiation from

naïve CD4+ T cells but also suppressed the inflammatory

response induced by Th2 cells (173). IFN-g upregulates the

expression of MMPs, such as MMP-2, MMP-7, MMP-9, and

MMP-13, by bone marrow-derived cells, resulting in a dramatic

improvement in fibrosis (111). This proteolytic activity can alter

the remodeling of ECM and help ameliorate fibrosis (174). In

contrast, the induction of fibrosis by Th1 cells and IFN-g has

been reported in liver injury (175) and fibrotic diseases (176,

177). Therefore, the function of Th1 cells and IFN-g in the
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suppression of fibrosis remains controversial. Another subset of

cells that have been reported to suppress fibrosis are Treg cells.

First, it has been reported that the function of Treg cells is

reduced in cystic fibrosis patients infected with Pseudomonas

aeruginosa (178). Second, in hypertensive mice treated with

angiotensin II, the adoptive transfer of Treg cells improved

cardiac hypertrophy and fibrosis of the heart (179).

Furthermore, in Mdr2-deficient mice with sclerosing

cholangitis, low-dose IL-2 treatment induced the proliferation

of intrahepatic Treg cells and suppressed biliary injury and

fibrosis (180). In contrast, there have been several reports on

the exacerbation of fibrosis by Treg cells (181. 182). Thus, it is

possible that Treg cells may have different functions in different

disease models of fibrosis.
Inhibition of IL-13 signaling by the decoy
receptor, IL-13Ra2

IL-13, a major Th2 effector cytokine for the induction of

fibrosis, exerts its effects through a receptor complex containing

IL-4Ra and IL-13Ra1. There is also a third high-affinity IL-13

receptor, IL-13Ra2, which is an inducible decoy receptor that

inhibits the effector function of IL-13 by sequestering the IL-13

from the IL-4Ra/IL-13Ra1 signaling receptor complex (183).

Several cytokines that are derived Th1 and Th17 have been

reported to increase IL-13Ra2, suggesting a strong reciprocal

regulation of the IL-13 function by Th1 and Th17-type immune

responses (184). Indeed, combinations of TNF and several

cytokines, including IL-4 or IL-17, have been shown to

synergistically promote the expression of IL-13Ra2 and inhibit

the ability of IL-13 to upregulate downstream targets in mouse

and human fibroblasts (184).
Targeting IL-4 and IL-13 signaling for
fibrosis therapy

A number of studies have reported the continuous activation

of signaling via Th2 cytokines in fibrosis. Among these Th2

cytokines, IL-4 and IL-13 particularly promote fibrosis, and

indeed, IL-4 and IL-13 levels are increased in many lung

diseases (185–188). Therefore, blockade with antagonists and/

or antibodies that target various aspects of the IL-4 and IL-13

signaling pathways in combination or alone is being explored as

a therapeutic approach (189). However, the results of these trials

in various diseases have been contradictory, and some trials have

shown even worse outcomes in treated patients than in controls

(190–192). These results suggest the complexity of the

mechanism underlying the induction of fibrosis by IL-4 and

IL-13 signaling.

In the course of experimental murine schistosomiasis and in

a pulmonary granuloma model, blocking IL-13 notably reduces
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fibrosis but simultaneously increases IFN-g production, followed
by increased TNF production and necrosis of inflamed tissue,

exacerbating lung and liver damage. However, blocking both IL-

13 and IFN-g markedly suppresses fibrosis and eliminates

the simultaneous type 1 inflammation and subsequent tissue

damage that is observed with anti-IL-13 alone (193). Similarly,

blocking IL-4 or IL-13 in HDM-induced allergy models has been

shown to induce considerable neutrophilic inflammation by

Th17 cells. However, blocking both IL-13 and IL-17A protects

mice from neutrophilic and eosinophilic inflammation and

eliminates the associated airway hyperresponsiveness and

mucus production, indicating that dual or multiple blockade

strategies are effective in combating rebound inflammation

(193, 194). Interestingly, some clinical trials in which portions

of the IL-4 and/or IL-13 signaling pathways are blocked have

shown disappointing results (190–192). This may be due to

unintended disruption of important beneficial aspects of IL-4

and IL-13 signaling and/or dysregulation of type 1 and Th17-

driven inflammatory responses. In contrast, anti-IL-5 therapy

in asthmatic patients is reported to inhibit lung fibrosis without

affecting the lung function (195). The result of this clinical trial is

expected to be attributed to the recruitment and activation

of eosinophils by IL-5 (196, 197). Based on these results, it

is expected that targeting IL-5 signaling to specifically

inhibit the Tpath2 cell function, rather than targeting IL-4 and

IL-13 signaling to inhibit the function of whole Th2 cells, will

allow for more precise inhibition of tissue fibrosis. Taken

together, these studies suggest that careful targeting of

therapeutic agents and consideration of dosage is needed

to successfully block the pathological features of persistent

type 2-driven inflammation. An ideal treatment would neither

sacrifice the beneficial functions (e.g., wound repair and

epithelial regeneration) nor induce detrimental relapsing

inflammatory responses.
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Conclusions

In this review, we provide a systematic overview of the role

of conventional Th2 cells in the sequence of tissue inflammation,

repair, and fibrosis, and discuss the role of Tpath2 cells (Table 1).

As described above, Th2 cells play an important role in type-2

inflammation, tissue repair and tissue fibrosis via Th2 cytokines,

which target various immune and non-immune cells. Among

Th2 cells, Tpath2 cells have the ability of higher IL-5 production,

which induces eosinophil ic inflammation. Another

subpopulation of Tpath2 cells, which produces amphiregulin,

reprograms recruited-eosinophils to produce osteopontin, the

fibrosis-inducing immunomodulatory protein. Furthermore,

these Tpath2 cells show the signature of tissue residency. In

conclusion, Tpath2 cells are expected to induce subsequent

tissue fibrosis in addition to the previously reported induction

of inflammatory responses.

Very recently, various novel mechanisms—beyond type-2

inflammation—that induce tissue fibrosis have emerged. For

example, it has been reported that altering the gut microbiota

may reduce fibrosis (198, 199). Checkpoint inhibitors for cancer

treatment have recently received a great deal of attention, but

they also show promise in relation to the resolution of fibrosis. It

has been reported that checkpoint inhibitors that block

costimulatory signals, such as CTLA4 and OX40L, can prevent

fibrosis and induce the regression of established fibrosis (200–

202). Liver oxidative stress associated with obesity has also been

shown to be involved in T cell recruitment and fibrosis (203).

Single-cell sequencing technology identifies the transcriptome

profiles of individual cells in all cell types in certain tissues, and

has allowed us to identify several cell populations that are

important for the induction of fibrosis and also novel

mechanisms in fibrogenesis (204, 205). In the near the future,

this multifaceted approach will hopefully pave the way to the
TABLE 1 The roles of conventional Th2 cells and Tpath2 cells in inflammation, tissue repair, and fibrosis.

Cell type Situation Role Reference

Conventional Th2 cells Inflammation Exacerbation of airway inflammation
Exacerbation of atopic dermatitis
Exacerbation of eosinophilic esophagitis
Exacerbation of inflammation against parasites infection
Exacerbation of inflammation against Aspergillus fumigatus

(37) (38) (40) (56)
(72) (74)
(53) (55) (65)
(44) (45) (119)
(13)

Tissue repair Induction of the tissue repair response of macrophage
Induction of the hepatocyte proliferation by secreting IL-4
Activation of myofibroblasts by IL-13

(7) (94)
(97)
(8)

Fibrosis Exacerbation of skin fibrosis
Exacerbation of lung fibrosis
Exacerbation of lung fibrosis by increasing MMP12 via IL-13
Exacerbation of skin fibrosis by activating macrophage

(84) (125)
(118) (13) (185)
(119)
(120)

Tpath2 cells Inflammation Exacerbation of airway inflammation
Exacerbation of atopic dermatitis
Exacerbation of eosinophilic esophagitis

(39) (56) (66) (70)
(52) (55) (63)
(53) (65)

Fibrosis Exacerbation of lung fibrosis via eosinophil (12)
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elucidation of the mechanism underlying the induction of

fibrosis by Tpath2 cells.
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