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Abstract

Genetic information, such as single nucleotide polymorphism (SNP) data, has been widely recognized as useful in prediction
of disease risk. However, how to model the genetic data that is often categorical in disease class prediction is complex and
challenging. In this paper, we propose a novel class of nonlinear threshold index logistic models to deal with the complex,
nonlinear effects of categorical/discrete SNP covariates for Schizophrenia class prediction. A maximum likelihood
methodology is suggested to estimate the unknown parameters in the models. Simulation studies demonstrate that the
proposed methodology works viably well for moderate-size samples. The suggested approach is therefore applied to the
analysis of the Schizophrenia classification by using a real set of SNP data from Western Australian Family Study of
Schizophrenia (WAFSS). Our empirical findings provide evidence that the proposed nonlinear models well outperform the
widely used linear and tree based logistic regression models in class prediction of schizophrenia risk with SNP data in terms
of both Types I/II error rates and ROC curves.
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Introduction

Genetic information is useful in prediction of disease risk [1].

For example, schizophrenia is one of the most serious and

frightening of all mental illnesses, and the greatest risk factor of a

positive family history reflects the genetic proximity between

relative and proband. It is recognized that many risk genes exist

with each of small effect and each relatively common in the

general population. Patients probably inherit several risk genes,

which interact with each other and the environment [2] to cause

schizophrenia once a critical threshold is crossed [3, page 91]. In

this paper, our main objective is to propose a new class of

nonlinear threshold index nonlinear logistic models, to character-

ize the complex links of genetic information of categorical single

nucleotide polymorphism (SNP) data to the class prediction of

disease risks.

The SNP data sets are high-throughput genomic data that

provides useful information for identifying pathways and genes

that are related to various clinical phenotypes. For example,

genetic factors together with environment play a significant role in

the development of schizophrenia. As reviewed by [3], while the

lifetime risk in the general population is just below 1%, it is 6.5%

in first degree relatives of patients [4], and it rises to more than

40% in monozygotic twins of affected people [5]. SNPs are

probably the most common, and so far the best investigated

genetic variations. A SNP is a DNA sequence variation occurring

when a single nucleotide (A,T,C or G) differs between members of

species. Each SNP can take one of the 3 forms: homozygous

reference genotype; heterozygous variant genotype and homozy-

gous variant genotype. SNPs are assumed to alter the risk for

developing a particular disease. It is, however, very unlikely that

any individual SNP plays an important role in the development of

complex disease. Instead, multiple genes of small to moderate

effect, as well as a host environmental influences are supposed to

explain the differences between low and high risk groups. In

practice, after recoding for analysis, the SNP data are high-

dimensional and categorical.

How to efficiently utilise the genetic information of SNP data in

disease classification is complicated and challenging. The complex

effects of multiple genes in explaining the differences between low

and high risk groups calls for a kind of nonlinear logistic regression

models. General tree model [6] popular in the health sciences

could be used to characterize such nonlinear interactions, but it is

a kind of nonparametric method which suffers from curse of

dimensionality when the dimension of the covariate vector is very

high [7]. In the first author’s thesis [8], it is found that the tree-

based logistic model, even with a pathway-based additive form,

performs worse than the linear logistic model in the class

prediction of the schizophrenia risk by using the SNP data.

Alternatively, extended from linear models, single index models
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[9], by using smoothing techniques, can be used to estimate the

nonlinear factors in logistic regression when the regressor variables

are continuous [10]. These semi-parametric nonlinear models are

very popular in many applications. See [11] for a comprehensive

survey and various applications of single-index models. To further

combine the interpretability of multiple linear models and

flexibility of single-index models, their hybrid, the partially linear

single-index models (PLSiM), have been studied and applied for

analyzing various complex data generated from biological and

economic studies in the literature [12–15]. The first remarkable

work on PLSiM can be traced back to [16], in which a backfitting

algorithm was proposed to estimate parameters of interest in a

more general case. [14] suggested a penalized spline estimation

procedure. [13] applied the minimum average variance estimation

(MAVE) [17] to PLSiM and developed an effective algorithm.

More recently, [15] studied estimation in PLSiM with additional

assumptions imposed on model structure. [12] proposed a profile

least squares estimation procedure. But for the categorical

regressors like SNP data, we can not apply these above models

to capture the nonlinear interaction effects because of the

categorical nature of SNPs.

In this paper, a new class of threshold index logistic regression

(TILoR) models is thus proposed, which are of parametric

structures combined with the dimension-reduction features as

(but more general) in the semi-parametric partially linear single-

index models of [10]. This method can not only use the genotype

variables (SNPs) themselves to predict phenotype (complex disease)

with satisfactory outcome, but also identify combinations of SNPs

and quantify the importance of these interactions in SNPs. The

most important advantage of the proposed model is that the model

can parsimoniously reflect qualitative change of the probability

when the combination of SNPs achieves a threshold, which is

unknown and estimated from the data. We apply the proposed

model and method for studying the SNP data set of the Western

Australian Family study of Schizophrenia (WAFSS), a study

dedicated to the identification of genetic interactions associated

with schizophrenia. We empirically demonstrate that the proposed

nonlinear models viably outperform the widely used linear or tree-

based nonlinear logistic regression in class prediction of schizo-

phrenia risk based on SNP data in terms of both Types I/II error

rates, predictive accuracy and ROC curves (see Section).

The remaining of this paper is organized as follows: In Section

2, we will introduce the proposed threshold index logistic

regression models. The maximum likelihood methodology to

estimate the unknown parameters in the models will be suggested

in Section. Section will apply the proposed model and method-

ology to the analysis of the schizophrenia risk classification using

the SNP data from the WAFSS. In Section, the properties of the

proposed methodology are then investigated with Monte carlo

simulated data of moderate size. Section concludes.

The Models

Logistic regression is extensively popular with dichotomous

responses in numerous disciplines [18]. In particular, biostatistical

methods are grounded in the analysis of binary and count data and

the logit plays a central role in the analysis of the binary data in

such as case-control study to assess relative risks of disease [19].

Under linear logistic regression structure, various methods and

applications, in the literature, have been well developed no matter

if the predictor variables are discrete or continuous; see, for

example, [18] and [20] for comprehensive reviews and also [21]

for the recent application in biostatistics. However, beyond the

linear structure, a logistic regression becomes far more difficult

and complex to apply when the genetic information of categorical

data is considered.

In this paper, we propose a model of logistic regression allowing

for a nonlinear structure for categorical genetic information.

Suppose X~(X1,X2, � � � ,Xp)T consists of a large number of gene

SNPs, say p~40 SNPs as our regressors in our real data example

of Section, which are used to predict the phenotype Y that takes

on binary values in a case-control study. Consider the model:

log
P(Y~1DX)

1{P(Y~1DX)

� �
~ 1(a

T
X)z 2(b

T
X), ð1Þ

where EaE~1, EbE~1, aTb~0, and the first non-zero compo-

nents of a and b are positive, for model identifiability, and 1 and

2 are two one-dimensional nonlinear functions which are

modelled by two stepwise linear functions through threshold

effects as follows:

k(u)~(bk1uzbk2)Ifuƒckgz(bk3uzbk4)Ifuwckg, k~1,2, ð2Þ

where bki’s and ck’s are unknown parameters to be estimated. Here

we have extended the idea of threshold (auto)regression of [22,23]

in nonlinear time series analysis to the nonlinear genomic analysis

of SNP data which are categorical. Thus, (1) and (2) form an

additive threshold index logistic regression (A-TILoR) model

log
P(Y~1jX)

1{P(Y~1jX)

� �
~(b11aT Xzb12)IfaT Xƒc1g

z(b13aT Xzb14)IfaT Xwc1g

z(b21bTXzb22)IfbTXƒc2g

z(b23b TXzb24)IfbTXwc2g
,

ð3Þ

with EaE~1, EbE~1, a bT ~0, and the first non-zero components

of a and b being positive.

The motivation of proposing the above models lies in twofold.

Firstly, Model (3) is intuitively appealing. Notice that many risk

genes exist with each of small effect [3], which interact with each

other to cause schizophrenia once a critical threshold is crossed. It

appears that the indices of aTX and bTX in these models could just

reflect the interactive effects of individual risk genes, which are

combined together forming regimes in the form of these indices,

while the thresholds in (2) would indicate the threshold effects of

the regimes. Secondly, as referees commented, why do we use two

functions 1 and 2, not one or three functions, in model (1)? This

is because model (1) with two functions 1 and 2 does take the

model with one function as a special case (say 2:0) and is

significantly more parsimonious than the model with three

functions, in view of the large dimension p of X in applications

(say p~40 in Section 4). We shall show in Section 4 that model (3)

viably outperforms the linear logistic regression and random forest

in the analysis of the SNP data in the class prediction of the

schizophrenia risk.

Maximum Likelihood Estimation

Let (Yi,X
T
i ),i~1, . . . ,n, be random vectors that are indepen-

dently and identically distributed as (Y ,XT).

Analysis of Schizophrenia Data
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Subsection 1 Model parameters estimation
First of all, we look at the MLE for the A-TILoR model (3).

Write q~(b11,b12,b13,b14,aT,b21,b22,b23,b24,bT,c1,c2)T and

Qi(q)~(b11aT Xizb12)IfaT Xiƒc1g
z(b13aT Xizb14)IfaT Xiwc1g

z(b21bTXizb22)IfbTXiƒc2g
z(b23bTXizb24)IfbT

Xiwc2g
:

ð4Þ

The log-likelihood can be expressed as:

‘A(q)~ log LA(q)~
Xn

i~1

Yi log
exp Qi(q)f g

1zexp Qi(q)f g

� �

z
Xn

i~1

(1{Yi) log
1

1zexp Qi(q)f g

� �
:

ð5Þ

Maximizing the log-likelihood (5) with respect to q~(b11,b12,

b13,b14,aT,b21,b22,b23,b24,bT,c1,c2)T subject to the constraints

EaE~1, EbE~1 and aTb~0 leads to the MLE q̂q of q. For

convenience of calculation, in general we can apply the method of

Lagrange multipliers to turn the maximization of (5) with the

constraints into a maximisation of the following function

‘A(q)zl1(aTa{1)zl2(bTb{1)zl3(aTb), ð6Þ

with respect to (q,l1,l2,l3).

Note that the log-likelihood (6) is not differentiable with respect

to c1 and c2 as well as a and b owing to (4). Therefore the widely

used iteration procedure in optimization such as Newton-Raphson

algorithm cannot be used here. We apply the downhill simplex

method for the maximization of the log-likelihood (6), which does

not require the multi-dimensional objective function of the

optimization to be differentiable; for details, the reader is referred

to [24, pp413] on the method and code.

In our numerical experiments, we used the R version of the

standard downhill simplex method, translated from the C code of

[24]. According to our experience, this algorithm works rather

stably and fast in convergence with well specified initial values of

the vector h or q, for which we need experimental tries to achieve

a global maximum as done in using other optimization algorithms.

In our numerical examples below, our experimental tries were

based on many different initial values generated randomly, with

which we can identify possible global maximum by refining the

initial values in the downhill simplex algorithm.

Subsection 2 Bootstrap estimation of the standard
deviation of parameter estimates

We now evaluate whether the estimated value of an unknown

parameter is significantly away from zero or not, i.e., testing

whether we can reject the null hypothesis that the estimated

parameter is equal to zero. This requires the knowledge of the

standard deviation of the estimator of each parameter.

One way to estimate the standard deviation of the estimator of

each unknown parameter is through estimating the asymptotic

variance of the estimator of the parameter, which can be

established by following the argument of [25]. However,

asymptotic variance is based on the assumption that the sample

size tends to infinity, which may be difficult to apply sometimes.

We therefore suggest to estimate the standard deviation by using

the bootstrap.

Given the observations f(Xi,Yi)gn
i~1, we denote the MLE of

unknown parameters by q̂q~(b̂b11,b̂b12,b̂b13,b̂b14,âaT,b̂b21,b̂b22,b̂b23,b̂b24,

b̂bT,ĉc1,ĉc2)T: Then, the bootstrap procedure works as follows:

(1) Generate a bootstrap sample of size n:

a) For the i-th observation Xi, calculate

ŴWi~(b̂b11âaT Xizb̂b12)IfâaT Xiƒĉc1g
z(b̂b13âaT Xizb̂b14)IfâaT Xiwĉc1g

z(b̂b21b̂bTXizb̂b22)Ifb̂bTX iƒĉc2g
z(b̂b23b̂bTXizb̂b24)Ifb̂bTX iwĉc2g

,

and

p̂pi~P̂P(Yi~1DXi)~
eŴWi

1zeŴWi
:

b) Generate the i-th bootstrap observation Y �i from a binomial

distribution Binorm(1,p̂pi).

c) For i~1,2, � � � ,n in Steps a) and b), a bootstrap sample of size

n, f(Xi,Y
�
i )gn

i~1, is generated.

(2) Obtain a bootstrap MLE of q using the bootstrap sample of

size n, f(Xi,Y
�
i )gn

i~1:

The estimation is calculated by using the method provided in

Section 3.1, where we use q̂q as the initial values of the parameters

in the maximum likelihood procedure for the bootstrap sample

f(Xi,Y
�
i )gn

i~1. Denote the unknown parameters of the bootstrap

MLE by q̂q�~(b̂b�11,b̂b�12,b̂b�13,b̂b�14,âa�
T

,b̂b�21,b̂b�22,b̂b�23,b̂b�24,b̂b�T,ĉc�1,ĉc�2)
T

:

(3) Repeat Steps 1) and 2) B times. Denote the B bootstrap

estimates of q by q̂q�(j), j~1, 2, � � � , B:

(4) The standard deviation of the k-th component of q̂q is

calculated as

std(q̂qk)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

j~1

q̂q
�(j)
k {�qq�k

� �2

vuut ,

where q̂q
�(j)
k is the k-th component of q̂q�(j) obtained in Step 3),

and �qq�k~
1
B

PB
j~1 q̂q�(j)k .

The main burden of computation in the above bootstrap

procedure lies in Step 2). Here the maximisation of the likelihood

for each bootstrap sample by using the downhill simplex method,

given at the end of Section 3.1, needs well specified initial values of

the vector q, which may require a bit time-consuming experi-

mental tries in general if we have no information on the actual

value of the vector q. Luckily, in the bootstrap, a simple way to

reduce this computation burden is to fully utilise the estimator q̂q
because the bootstrap sample is generated based on this data-

based estimator, and therefore we can well specify the initial values

of the vector q in Step 2) by adding small randomly-generated

(vector) values to q̂q.

Analysis of Schizophrenia Data
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Prediction of Schizophrenia Risk Using SNPs Data

We now apply the proposed methodology for analysis of a real

SNP data set in the schizophrenia study conducted in Western

Australia, which is dedicated to identification of the genetic

interactions associated with schizophrenia.

The data set is from the Western Australian Family Study of

Schizophrenia (WAFSS) case-control study that started from 1996

and is still continuing today. The WAFSS study population

includes 496 Western Australians of European descent, in which

there are 325 members affected by schizophrenia (cases), and 171

population controls. Genotyping was conducted on 23 selected

genes according to neurological knowledge and research interests.

A total of 1022 SNPs was found. We first applied the OR (odds

ratio) principle [1, pp70] to choose important SNPs, from which

p~40 SNPs are selected at the significance level (i.e, Type I error

rate) of 5%. We use these 40 SNPs as our regressors, denoted by

X~(X1,X2, � � � ,X40); see Table 1 for these 40 SNPs.

Subsection 3 Analysis based on the A-TILoR model
We apply the A-TILoR model to analysis of the WAFSS

schizophrenia SNP dataset, with X of dimension p~40:

log
P(Y~1jX)

1{P(Y~1jX)

� �
~(b11aT Xzb12)IfaT Xƒc1g

z(b13aT Xzb14)IfaT Xwc1g

z(b21bTXzb22)IfbTXƒc2g

z(b23bTXzb24)IfbTXwc2g
,

ð7Þ

where a and b are of the identifiability conditions in model (3).

Then, we estimate the unknown parameters by maximum

likelihood method and the standard deviation of the estimator of

each parameter by using a bootstrap procedure, as introduced in

Section 3. The estimated values of the coefficients (b11,b12,b13,b14,

b21,b22,b23,b24)T, b and a in model (7) and their bootstrap based

standard deviations (s.d.), with the bootstrap sample size equal to

100, are reported in Table 2, and the estimated coefficient

c1~{0:0951 (s.d.: 0:0005) and c2~0:0916 (s.d.: 0:0004).

In genetic analysis, the individual SNPs make contributions through

interactions. Our indices in the TILoR model confirm that the

individual SNPs’ contributions are made through such regime indices

a and b (Table 1). All the components of the index vectors a and b,

except the coefficients of X1 (SNP rs8074995) in a and that of X27

(SNP rs1943699) in b, are significantly different from zero at the

significance level (that is, the allowed Type I testing error rate) of both

5% and even 1%, or equivalently at the confidence level of both 95%

and 99%, respectively. Schizophrenia is a complex disorder. There are

multiple susceptibility genes, each with small to modest effects that

interact with each other and environmental factors to influence

susceptibility for this disease. It is accepted that for each gene, more

than one SNP shows association with schizophrenia, but rarely are data

from individual SNPs highly significant [26]. Table 1 provides an

explicit quantitative proof to this biological understanding of

schizophrenia using the proposed threshold index logistic regression

model. For reference, in Table 3, we have also provided the larger

components of a and b whose absolute values are greater than 0.2 and

Table 1. WAFSS Study: Estimated coefficients a, b and their
standard deviations (s.d.).

SNP a (s.d.) b (s.d.)

X1(rs8074995) 0.0058 (0.0042) 0.1393 (0.0050)

X2(rs439401) 0.3166 (0.0052) 0.1727 (0.0051)

X3(rs10774517) 20.0797 (0.0041) 20.1082 (0.0044)

X4(rs7960673) 20.0161 (0.0043) 20.0541 (0.0044)

X5(rs6490272) 0.0004 (0.0048) 0.1058 (0.0042)

X6(rs534455) 0.1194 (0.0042) 0.1804 (0.0047)

X7(rs486706) 20.0343 (0.0055) 0.0503 (0.0047)

X8(rs694060) 20.0905 (0.0047) 0.0630 (0.0042)

X9(rs12128305) 20.1112 (0.0042) 0.0810 (0.0048)

X10(rs11207007) 0.1359 (0.0036) 20.0288 (0.0054)

X11(rs6687842) 20.0203 (0.0040) 20.0993 (0.0050)

X12(rs10047071) 20.0531 (0.0051) 20.2190 (0.0054)

X13(rs17424216) 20.2258 (0.0059) 0.0227 (0.0040)

X14(rs2991515) 20.0350 (0.0047) 0.0800 (0.0048)

X15(rs11581152) 0.1220 (0.0051) 0.0241 (0.0042)

X16(rs852787) 20.1378 (0.0060) 0.0976 (0.0039)

X17(rs9432024) 20.2081 (0.0056) 0.1916 (0.0043)

X18(rs11122357) 0.0368 (0.0056) 20.3270 (0.0042)

X19(rs877984) 0.1109 (0.0046) 0.0651 (0.0046)

X20(rs1400316) 20.0826 (0.0050) 20.2375 (0.0049)

X21(rs1399622) 20.0473 (0.0036) 20.0544 (0.0052)

X22(rs17507049) 20.2784 (0.0050) 0.1464 (0.0046)

X23(rs7121214) 0.1016 (0.0052) 20.0622 (0.0049)

X24(rs7928038) 0.1064 (0.0045) 20.3077 (0.0042)

X25(rs10501563) 20.1824 (0.0050) 20.1235 (0.0048)

X26(rs1940078) 20.0405 (0.0060) 20.4768 (0.0041)

X27(rs1943699) 0.2444 (0.0049) 20.0024 (0.0051)

X28(rs6592211) 20.1094 (0.0048) 20.1192 (0.0035)

X29(rs17203281) 20.5100 (0.0053) 20.0415 (0.0050)

X30(rs1615640) 20.1139 (0.0047) 0.0162 (0.0047)

X31(rs11220082) 20.0795 (0.0050) 20.1194 (0.0047)

X32(rs931671) 20.2502 (0.0048) 0.1427 (0.0048)

X33(rs17281921) 0.0332 (0.0043) 20.0568 (0.0039)

X34(rs1978198) 0.0342 (0.0055) 0.2519 (0.0048)

X35(rs2711881) 20.0555 (0.0048) 20.1884 (0.0045)

X36(rs2528865) 0.0770 (0.0051) 20.0204 (0.0051)

X37(rs10248053) 20.1033 (0.0056) 0.1180 (0.0058)

X38(rs2283029) 0.0845 (0.0049) 0.2366 (0.0050)

X39(rs1454626) 20.3238 (0.0045) 0.0979 (0.0043)

X40(rs1022307) 0.0410 (0.0043) 20.0302 (0.0047)

doi:10.1371/journal.pone.0109454.t001

Table 2. Estimated coefficients b1, b2 and their standard
deviations calculated by bootstrap method in TILoR model for
the WAFSS schizophrenia data set.

b1 = (b11,b12,b13,b14) 0.0274 0.4358 22.7377 1.3744

s.d. (bootstrap) 0.0139 0.0873 0.0561 0.0547

b2 = (b21,b22,b23,b24) 0.0260 20.0748 2.4239 0.4685

s.d. (bootstrap) 0.0281 0.0875 0.0629 0.0553

doi:10.1371/journal.pone.0109454.t002
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their corresponding gene: SNP names. It looks that these genes: SNPs

may play a larger part in deciding the threshold effects.

Regarding the thresholds, the values c1~{0:0951 and

c2~0:0916 appear near 0, but they are still very significant, as

the confidence intervals, i.e., the values of c1 and c2 plus their

three times standard deviations calculated by bootstrap method,

respectively, still do not include 0.

We can also calculate the values of the indices of aTX’s and bTX’s,

respectively. Compared with the thresholds c1 and c2, it follows that

under the a-regime, there is a high empirical probability (90.32%) that

the values of aTX are less than the threshold c1, while under the b-

regime, the empirical probability of bTX less than the threshold c2 is

66.33%.

By looking at the functions 1 and 2 in (2), which are plotted in

Figure 1, it is apparent that when the regime indices are lower

than the corresponding thresholds, the impacts of the regimes are

stable, but when indices are greater than the thresholds, the

impacts become viably significant. This is consistent with the

biological fact that the risk genes interact with each other to cause

schizophrenia once a critical threshold is crossed [3]. If combining

this with the fact stated above that the majorities of the index

variables are less than the two thresholds (90.32% for the a-regime

and 66.33% for the b-regime), it follows that the impacts in most

of cases of the index variables are small; only if the regime indices

are greater than the corresponding thresholds will they have

significant impact, but that probability is relatively lower, with the

probability of 9.68% in the a-regime and 33.67% in the b-regime.

Figure 1 also provides a visual exhibition of the nonlinear feature

of the impact on schizophrenia of SNP data sets. It appears that

the b-regime plays more important role than the a-regime in

causing schizophrenia.

Subsection 4 Comparison with other models by
Cross-Validation

In this subsection, using cross-validation, we further demon-

strate the performance of our proposed A-TILoR model in

comparison with some popular logistic regression models, includ-

ing generalized linear model and the random forest method.

We first examine the performance of our A-TILoR model in

comparison with generalised linear model in R (GLM is referred

to the linear logistic regression below). We will show that our

proposed TILoR method (simply denoted as TILoR below)

performs viably better than the GLM and random forest.

We have carried out the comparison through cross-validation

testing. It is known that the resubstitution estimate of predictive

accuracy, derived by direct application of model predictions to the

data from which the regression relationship is derived, gives, in

general, an optimistic assessment. Because there is a mutual

dependence between the model prediction and the data used to

derive that prediction, an ideal is to assess the performance of the

model on a new data set. The data that are used to develop the model

from the training set, while the data on which predictions are tested

form the test set. Cross-validation extends the training/test set

approach. The data are divided into k sets (or folds), where k is

typically in the range of 3 to 10. Each of the k sets becomes in turn the

test set, with the remaining data forming the training set. The

predictive accuracy assessments from the k folds are combined to give

a measure of the predictive performance of the model. This may be

done for several different measures of predictive performance. Here

we use a 3-fold validation with special considerations based on the

case-control character. For the general schizophrenia data set (325

cases and 171 controls), we use a random number sampling system to

divide the case data into three equal groups, and control data into

three equal groups. Then we combine the case groups and the control

group to form three folds. For each of the three folds, it is set aside as

the test data, with the remaining data making up the training data. In

each time, there are 108 cases and 57 controls in the test set, and 217

cases and 114 controls in the training set.

According to the experts from the WAFSS, the source of the data

in this analysis, it is generally accepted that schizophrenia’s broad

heritability is about 80% (c.f., [27]). Therefore, 80% is naturally the

approximate upper limit of accuracy of models using genotypes

only. In other words, without using other information such as

Table 3. WAFSS Study: The components of a and b whose absolute values are greater than 0.2.

Component of X (Gene:SNP) Component of a

X2 (APOE:rs439401) 0.3166

X13 (DAB:rs17424216) 20.2258

X17 (DISC1:rs9432024) 20.2081

X22 (DLG2:rs17507049) 20.2785

X27 (DLG2:rs1943699) 0.2444

X29 (DLG4:rs17203281) 20.5099

X32 (NUDEL:rs931671) 20.2502

X39 (VLDLR:rs1454626) 20.3238

Component of X (Gene:SNP) Component of b

X12 (DAB:rs10047071) 20.2190

X18 (DISC1:rs11122357) 20.3270

X20 (DLG2:rs1400316) 20.2375

X24 (DLG2:rs7928038) 20.3077

X26 (DLG2:rs1940078) 20.4768

X34 (RELN:rs1978198) 0.2519

X38 (RELN:rs2283029) 0.2366

doi:10.1371/journal.pone.0109454.t003
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phenotypes, whatever modelling technique applies, the accuracy

rate is not supposed to be higher than 80%. If we consider 50% as a

model-worthy lower limit accuracy, the interval (50%–80%) gives

an idea what the accuracy rate will be in. That gives us an idea

about what to expect.

In Table 4, we report the comparison between the GLM and

the TILoR from the predictive accuracy and the Type I and Type

II error rates for the schizophrenia.

From the above tables, we may summarize that: From the

predictive accuracy perspective, the TILoR obviously performs

better than the GLM in Table 4, also close to the up-limit of 80%

for schizophrenia prediction (genotype only). From the perspective

Table 4. WAFSS Study: Type I, Type II errors rates, predictive accuracy rates, and area under the curve (AUC) based on cross-
validation estimate using GLM models, TILoR models, and random forest (RF) method.

Fold1 Fold2 Fold3 Average

TILoR Type I error 38.59% 36.84% 21.05% 32.16%

Type II error 25.92% 31.48% 28.70% 28.70%

predictive accuracy 69.69% 66.67% 73.94% 70.10%

AUC 0.812 0.812 0.791 0.805

GLM Type I error 52.63% 57.89% 70.17% 60.23%

Type II error 23.14% 20.37% 15.74% 19.75%

predictive accuracy 66.67% 66.67% 65.45% 66.26%

AUC 0.774 0.774 0.774 0.774

RF Type I error 63.16% 77.19% 77.19% 72.51%

Type II error 8.33% 5.56% 3.70% 5.86%

Prediction accuracy 72.73% 69.70% 70.91% 71.11%

AUC 0.688 0.702 0.732 0.707

doi:10.1371/journal.pone.0109454.t004

Figure 1: TILoR model for general schizophrenia: The plot of the functions g1 and g2 , respectively.
doi:10.1371/journal.pone.0109454.g001
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of the Type I and Type II error rates, the problem with the GLM

is that it has a too ideal type II error but far too worse type I error

(60.23% cross-validation error) in Table 4. The bad performance

on type I error has made GLM itself unsuitable to be used as a

practical model for schizophrenia. In contrast, in the same tables,

using TILoR, both the type I error (32.16%) and type II error

(28.70%) are stable and close to the 20% lower limit of the error

rate. Therefore, TILoR is an eligible and nice predictor for

schizophrenia classification. We have also depicted the receiver of

characteristic (ROC) curves based on TILoR (solid line), GLM

(dotted line), and random forest (RF; dashed line) in Figure 2, and

corresponding area under curve (AUC) values in Table 4. These

curves and AUC values indicate that TILoR model is uniformly

superior to the counterparts. Specifically, the AUC values based

on TILoR, GLM, and RF equal to 0.805, 0.774, and 0.707, respec-

tively. In short, our TILoR viably outperforms the popular GLM

method in class prediction of schizophrenia risk using SNPs data.

A Monte Carlo Simulation Study

In this section, we are first examining the finite sample performance

of the proposed estimators of maximum likelihood method for the

unknown parameters in the A-TILOR model (3) by Monte Carlo

simulations.

In real application of genomic data analysis, the dimension p of

the predictor vector is quite large, and the predictor variables are

categorical with SNP data. To accommodate these scenarios, we

consider the A-TILOR model, used for simulation, of the form (3)

with p~39, and X~(X1,X2, � � � ,Xp), with Xj*Binomial(2,qj),

and qj~(1z(j{1)=p)=2, for j~1,2, � � � ,p, where we assume that

Xj ’s are linearly independent with each other. We take the

parameters in the model detailed below:

Figure 2: The ROC curves based on three methods/models (TILoR: Blue line; GLM: Red line; random forest: Green line)
corresponding to folds 1–3.
doi:10.1371/journal.pone.0109454.g002
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b1~(b11b12,b13,b14)~(0:145,{0:420,2:165,0:339),

c1~0:182,

a~(0:161,0:145,{0:105,0:081,0:214,{0:051,0:330,{0:128,

0:130,{0:193,{0:026,{0:006,0:068,{0:288,0:010,0:123,

{0:015,0:170,{0:087,{0:144,0:047,{0:024,{0:216,

{0:064,{0:235,0:173,0:259,0:072,0:073,{0:444,

{0:021,{0:149,0:126,0:108,{0:057,0:061,{0:123,

0:016,0:244),

b2~(b21b22,b23,b24)~(0:670,1:046,{1:685,{0:779),

c2~0:259,

b~(0:150,{0:132,{0:468,0:016,0:123,0:159,0:135,

0:148,0:241,0:011,{0:300,{0:159,0:025,{0:021,

0:283,{0:125,0:133,{0:110,0:157,{0:065,{0:041,

{0:094,{0:081,0:076,0:180,0:036,0:112,{0:098,

0:159,0:175,0:166,0:027,{0:205,0:051,{0:059,

{0:021,0:139,{0:286,0:136):

We first simulate an independent sample of size n of random

vector Xi with its jth component Xi,j*Bin(2,qj), for j~1,2, � � � ,p,

and i~1,2, � � � ,n. Then, for each i, we calculate P(Yi~1DXi)
according to (3), and thus, we simulate Yi from the Bernoulli trial

with probability equal to P(Yi~1DXi).

For each simulated sample, we apply the suggested maximum

likelihood method to estimate the parameters. We repeat the

simulation 100 times for each of the two cases of sample size

n~200 ~323, respectively. The boxplots of the estimates of

the parameters in g1, a, 2 and b based on 100 simulations are

displayed in Figures 3 and 4, for the cases of sample size n~200
and n~323, respectively. In order to assess the precision of the

estimate for each of the parameters, the absolute errors of the

estimates of the parameters based on 100 simulations are also

depicted in boxplot in Figures 5 and 6 for the cases of sample size

corresponding to those in Figures 3 and 4, respectively.

From these figures, we can conclude that as the sample size

increases, the absolute error of the estimate significantly decreases.

Comparing Figure 4 with Figure 3, the boxplot becomes much

narrower for each parameter in Figure 4 than that in Figure 3.

This also clearly follows by comparing Figure 6 with Figure 5. It

looks apparent that the suggested methodology for the samples of

size n~323 used in Figure 4 and Figure 6 is quite satisfactory for

the proposed model even with a large predictor vector of

Figure 3: Boxplot of the estimates of the parameters in g1, a, g2 and b based on 100 simulations: n~200.
doi:10.1371/journal.pone.0109454.g003
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dimension p~39. This sample size is close to that of the training

data set used in cross-validation in Section 4.2.

Conclusion and Discussions

A common and important task in genetic association studies is

the identification of SNPs and SNP interactions associated with an

interest, for example, a disease. Because SNP interactions are

assumed to be more influential than individual SNPs, there is a

need for a method to capture such complex nonlinear interactions.

In this paper, we have extended the idea of threshold (auto)-

regression of [22,23] in nonlinear time series analysis to the

nonlinear genomic analysis of SNP data which are categorical, and

we have proposed a new class of threshold index logistic

regression(TILoR) models, including partially linear and additive

TILoR models, to quantify the SNPs and SNP interaction for

classification in case-control studies. We have provided a

maximum likelihood methodology to estimate the unknown

parameters, which is shown, via Monte carlo simulation, to be

applicable with moderate-size samples.

Empirical study by applying the TILoR model to the

schizophrenia SNP data has found that our TILoR model

outperforms linear logistic model and random forests in terms of

the Type I/II errors, cross-validation predictive accuracy rates,

area under curve. The accuracy for schizophrenia prediction

based on the TILoR model, random forest, and GLM are 70.10%,

71.11%, and 66.26%. They are similar with the first two slightly

better. However, the Type I errors based on random forest and

GLM are substantially larger than the Type I error based on the

TILoR model although their Type II errors are smaller. Note that

the Type I errors for both random forest and GLM are greater

than 50%. Furthermore, the AUC based on the TILoR is higher

than the AUC based the GLM and random forest. Therefore the

result of the cross-validation prediction for schizophrenia with our

proposed TILoR model is very encouraging.

Our TILoR schizophrenia prediction has the potential to

becoming a part of medical diagnostic and disease risk manage-

ment process. The medical diagnosis in psychiatry is problematic.

Apart from the fact that there are differing theoretical views

toward mental conditions, there are few lab tests available. Our

prediction is based on the SNP genotype data alone, meaning that

only a drop of blood taken from a participant will be sufficient for

genotyping. The final TILoR model involves about 40 SNPs on 12

genes, which dramatically reduces the cost of genotype and

therefore, the cost of the prediction. In particular, for children

coming from a schizophrenia family, our findings could provide a

disease risk reference to their life style chosen. For example, late

adolescence and early adulthood are peak periods for the onset of

schizophrenia. At this stage, avoiding environmental disadvanta-

geous influences will be a sensible and rational way to better

manage disease risk.

Figure 4: Boxplot of the estimates of the parameters in g1, a, g2 and b based on 100 simulations: n~323.
doi:10.1371/journal.pone.0109454.g004
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Figure 5: Boxplot of the absolute errors (AEs) of the estimates of the parameters in g1, a, g2 and b based on 100 simulations: n~200.
doi:10.1371/journal.pone.0109454.g005

Figure 6: Boxplot of the absolute errors (AEs) of the estimates of the parameters in g1, a, g2 and b based on 100 simulations: n~323.
doi:10.1371/journal.pone.0109454.g006

Analysis of Schizophrenia Data

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e109454



Supporting Information

Dataset S1 (TXT)

Acknowledgments

The authors thank the Academic Editor, Professor Yun Li and three

referees for their constructive comments that substantially improved an

earlier version of this paper. At the beginning of this project, the first

author (Jiang) had many valuable discussions with Prof Luba Kalaydjieva

from Centre for Medical Research, University of Western Australia, for

which we gratefully acknowledge. Furthermore, the authors wish to thank

the Western Australian Institute for Medical Research and The University

of Western Australia for providing us with a dataset of WAFSS (Western

Australian Family Study of Schizophrenia) used in this paper, which was

obtained when the first author was studying at University of Western

Australia (prior to her move to Curtin University), and is published here

(Please see the supporting Dataset S1).

Author Contributions

Conceived and designed the experiments: ZYJ HL ZDL KLT. Performed

the experiments: ZYJ ZDL. Analyzed the data: ZYJ CAD HL.

Contributed reagents/materials/analysis tools: ZYJ HL ZDL AJ. Wrote

the paper: ZYJ ZDL HL YM.

References

1. Thomas DC (2004) Statistical Methods in Genetic Epidemiology. Oxford

University Press.
2. Ma S, Yang L, Romero R, Cui Y (2011) Varying-coefficient models for gene-

environment interaction: a non-linear look. Bioinformatics 27: 2119–2126.

3. Picchioni MM, Murray RM (2007) Schizophrenia. BMJ 335: 91–95.
4. Kendler KS, McGuire M, Gruenberg AM, O9Hare A, et al. (1993) The

roscommon family study: I. methods, diagnosis of probands, and risk of
schizophrenia in relatives. Archives of General Psychiatry.

5. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, et al. (1999)

Heritability estimates for psychotic disorders: the maudsley twin psychosis series.
Archives of General Psychiatry 56: 162.

6. Zhang H, Singer B (1999) Recursive partitioning in the health sciences.
Springer.

7. Wei Z, Li H (2007) Nonparametric pathway-based regression models for analysis
of genomic data. Biostatistics 8: 265–284.

8. Jiang Z (2011) Statistical Analysis of Genomic Data: A New Model for Class

Prediction and Inference. Ph.d., Curtin University, Perth, Western Australia.
9. Ichimura H (1993) Semiparametric least squares (SLS) and weighted SLS

estimation of single-index models. Journal of Econometrics 58: 71–120.
10. Yi G, He W, Liang H (2011) Semiparametric marginal and association

regression methods for clustered binary data. Annals of the Institute of Statistical

Mathematics 63: 511–533.
11. Horowitz JL (2009) Semiparametric and Nonparametric Methods in Econo-

metrics. New York: Springer.
12. Liang H, Liu X, Li R, Tsai CL (2010) Estimation and testing for partially linear

single-index models. The Annals of Statistics 38: 3811–3836.
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