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a b s t r a c t

We report a new and improved method to prepare, by gentle hydration of lipid films, oil-free giant
unilamellar vesicles (GUVs), in which enzymatic reactions can be encapsulated. The traditional method
of gentle hydration requires very low concentrations of metal ions, whereas enzymatic reactions gen-
erally require mono- and divalent metal ions at physiological concentrations. In order to improve the
production of oil-free GUVs that can confine enzymatic reactions, we developed a novel method also
based on gentle hydration, but in which the precursor lipid film was doped with both 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEGylated lipid) and sugar.
Close examination of the size, shape, and lamellarity of vesicles prepared in this manner demonstrated
that the process improves the production of oil-free GUVs even at low temperatures and physiological
salt concentrations. PEGylated lipid and sugar were found to synergistically improve GUV formation.
Finally, we demonstrate the successful enzymatic synthesis of RNA within oil-free GUVs that were
prepared on ice.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A giant unilamellar vesicle (GUV) is a single, closed lipid bilayer
membrane of diameter 41 μm. GUVs have been used to study
biomembranes, membrane proteins, and models of living cells,
and utilized in synthetic biology [1–11]. In these studies, GUVs are
often used as systems to mimic cells.

The water in oil (W/O) emulsion centrifuge method [12] and
the oil-supported microfluidic method [13–15] are the standard
methods to prepare GUVs that can confine enzymatic reactions.
These techniques can generate GUVs in the presence of metal ions
at concentrations required for enzymatic reactions. The en-
capsulation yields of these W/O droplet-based methods are gen-
erally high. The lipid-coated ice droplet hydration method recently
developed, for instance, obtains very high entrapment yields for
water-soluble enzymes into giant vesicles (GVs) [16]. However, as
large amounts of oil are used, it could potentially penetrate GUV
membranes. In fact, the microfluidic jetting technique, an oil-
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supported microfluidic method, produces GUVs contaminated
with oil [13,17]. Oil contamination may affect membrane proper-
ties such as thickness, stability, and permeability, as well as the
activity of integral membrane proteins. Therefore, an oil-free
method to prepare GUVs is urgently needed to investigate con-
fined enzymatic reactions and active proteins.

Gentle hydration of lipid films is a traditional technique to
prepare oil-free GUVs [18]. This technique gives a lower en-
capsulation yield than the W/O droplet-based schemes, but the
GUVs prepared do not contain any oil at all. However, the tech-
nique is not compatible with enzymatic reactions, as it requires
very low concentrations of metal ions (o0.1 mM) [19], whereas
enzymatic reactions generally require physiological concentra-
tions. Electroformation improves this technique by enabling GUV
preparation at physiological concentrations of metal ions [20,21].
However, there is no report of GUVs prepared with electro-
formation at a low temperature, such as on ice, and at physiolo-
gical concentrations of mono- and divalent metal ions. GUV pre-
paration on ice is often required to encapsulate enzymatic reac-
tions and active proteins. The agarose matrix-assisted procedure
[22], which is another form of gentle hydration, also enables GUV
preparation at physiological concentrations of mono- and diva-
lents. However, GUV preparation through this technique has also
not been tested on ice; furthermore, GUVs are typically attached to
a surface, and are often arrayed in several layers above the surface
[22]. These features would not be suitable for some applications.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Thus, current methods of gentle hydration should be further
improved.

Here, we describe a novel process of gentle hydration, both at
physiological levels of mono- and divalent ions and low tem-
peratures. The method is termed PEGylated lipid-and-sugar-doped
Gentle Hydration (PSGH) of lipid films; the defining characteristic
of the technique is the doping of lipid films with PEGylated lipid
and sugar. GVs prepared using this method were closely examined
by microscopy and flow cytometry to characterize size, shape, and
lamellarity. Consequently, we found that PSGH improved the
production of oil-free GUVs even at physiological concentrations
of metal ions and low temperatures. A synergistic effect of PEGy-
lated lipid and sugar on GUV productivity was clearly demon-
strated. We also demonstrated the successful enzymatic synthesis
of RNA within GUVs prepared on ice.
Fig. 1. Outline of PEGylated lipid-and-sugar-doped gentle hydration (PSGH).

2. Materials and methods

2.1. Reagents

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dio-
leoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000] (ammonium salt) (DOPE-PEG2000: PEGylated lipid) were
purchased from Avanti Polar Lipids (Alabaster, AL, U.S.A.). D-Fructose
and 9-(diethylamino)-5H-benzo(α)phenoxazin-5-one (Nile red), a red
fluorescent dye, were obtained from Wako Pure Chemical Industries
(Osaka, Japan). Solutions of 1 M Tris–HCl(aq.) (pH 8.0), 500 mM MgCl2
(aq.), and 500 mM ethylenediamine-N,N,N,N-tetraacetic acid (EDTA(aq.)

pH 8.0) were from Nacalai Tesque (Kyoto, Japan). Mag-Fluo-4 was
procured from Invitrogen (Carlsbad, CA, U.S.A.). An NTP mix was
purchased from New England Biolabs (Ipswich, MA, USA), while bo-
vine serum albumin (BSA) and tris(2-carboxyethyl)phosphine (TCEP)
were purchased from Sigma-Aldrich (St. Louis, MO, U.S.A.). Thermo T7
RNA polymerase (50 unit/μL) and TTh RNaseH (10 unit/μL) were ob-
tained from Toyobo (Osaka, Japan). Oligonucleotides were synthesized
by Sigma-Aldrich Japan (Tokyo, Japan). The sequence of the oligonu-
cleotides are as follows: non-template strand, 5′-TTTTTTAA-
TACGACTCACTATAGGGATCTTCAGACACACGCTTGCATAGTTTTGCTTTG-
3′; template strand, 5′-CAAAGCAAAACTATGCAAGCGTGTGTCTGAA-
GATCCCTATAGTGAGTCGTATTAAAAAA-3′; molecular beacon probe, 5′-
[FAM]-CTATGCAAGCGTGTGTCTGAAGATGCATAG-[BHQ1]-3′. The T7
promoter is underlined. BHQ1 refers to black hole quencher version 1.

2.2. Vesicle preparation by PSGH

In PSGH, vesicle preparation is initiated by formation of a lipid/
sugar film, followed by hydration with a buffer solution. To form
the film, 20 μL of 10 mM DOPC in CHCl3, 2 μL of 1 mM DOPE-
PEG2000 in CHCl3, 40 μL of 50 mM D-fructose in MeOH, 178 μL of
CHCl3, and 60 μL of MeOH were mixed. The amount of PEGylated
lipid was 1 mol% of DOPC, which is the same ratio used by Ya-
mashita et al. to prepare GUVs in a buffer containing monovalent
ions only [23]. The amount of sugar was 10�DOPC, as used by
Tsumoto et al. [24]. The solution was put into a 10 mL round-
bottom glass flask. The organic solvent was removed with a rotary
evaporator (N-1000, EYELA, Japan) equipped with a vacuum pump
(DIVAC, ULVAC, USA). The evaporator was set at a speed of
180 rpm, exhaust rate of 1.2 L/min, and temperature of 40 °C. After
evaporation for five minutes, a lipid/sugar film of diameter �2 cm
is formed at the bottom of flask. To remove residual solvent, the
flask was placed for 17 h in a vacuum desiccator set at 10 mmHg
and room temperature. To hydrate, 2 mL of a solution containing
10 mM Tris–HCl (pH 8.0), 100 mM NaCl, and 10 mM MgCl2 was
heated to 37 °C and gently poured into the flask. The flask was
then sealed and incubated at 37 °C for 2 h to form vesicles. A
sample of 1 mL was taken, and filtered through 40 μm mesh nylon
(Cell strainer, BD Falcon, USA).

2.3. Preparation of GV reference

To determine lamellarity of thin-walled GVs, a reference mix-
ture containing uni-, bi-, and trilamellar GVs was prepared ac-
cording to Yamashita’s method [23]. The composition of lipids in
the reference was identical to that of vesicles prepared by PSGH to
enable a direct quantitative comparison of fluorescence intensity.
Thus, the reference mixture was prepared from a lipid film con-
sisting of DOPC and DOPE-PEG2000 (1 mol% of DOPC), which was
gently hydrated with deionized water for 2 h at 37 °C, and then
filtered through 40 μm mesh nylon.

2.4. Analysis of synergism between PEGylated lipid and sugar

To test whether PEGylated lipid and sugar synergistically im-
prove GUV productivity, two vesicle samples were prepared
identically, except that either PEGylated lipid or sugar was ex-
cluded during preparation. Thus, a lipid film of DOPC (0.67 mM),
doped either with PEGylated lipid (1 mol% of DOPC) or sugar
(10�DOPC), was hydrated at 37 °C for 2 h with buffer containing
10 mM Tris–HCl (pH 8.0), 100 mM NaCl, and 10 mM MgCl2.

2.5. Fluorescent staining

All the vesicle membranes were stained with Nile red, which is
a lipophilic red fluorescent dye. Nile red dissolved in CHCl3 was
added to phospholipid mixtures at 0.2 mol% of DOPC. To stain the
encapsulated aqueous pool, Mag-Fluo-4, a hydrophilic green
fluorescent dye was added at a final concentration of 1 μM to
hydration buffers. The concentration of Nile red was the same as
that used by Akashi et al. [25] to determine the lamellarity of thin-
walled GVs. The concentration of Mag-Fluo-4 was a manufacturer-
recommended one, at which the fluorescence intensity is pro-
portional to the dye concentration.

2.6. Microscopy

Vesicle samples were placed between two cover glass slides,
sealed with FrameSeal (Invitrogen, Carlsbad, CA, USA) and char-
acterized with a phase contrast and fluorescence microscope
(IX71, Olympus, Japan) equipped with a 20� objective lens and a
CCD camera (Model C4742-95-12ER, Hamamatsu Photonics, Ja-
pan). Red and green fluorescence images were obtained using
corresponding filter and dichroic mirror units (WIG, excitation



Fig. 2. Phase contrast (A) and fluorescence (B) microscopy of GVs prepared by PSGH. Arrowheads indicate myelin-like multilamellar vesicles. Scale bars are 20 μm.

Fig. 3. Plots of peripheral red fluorescence intensity versus diameter of thin-walled GVs. (A) A reference preparation containing uni-, bi-, and trilamellar vesicles. (B) A
sample of vesicles prepared by PSGH. Error bars are standard error. Myelin-like multilamellar vesicles were excluded from analysis.
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520–550 nm/emission4580 nm for red fluorescence; and NIBA,
excitation 470–490 nm/emission4510–550 nm for green fluores-
cence, Olympus, Japan). AquaCosmos (ver. 2.5, Hamamatsu Pho-
tonics, Japan) was used to analyze images.

2.7. Determination of lamellarity

The lamellarity of thin-walled GVs was determined according
to the method previously described by Akashi et al. [25]. This
technique is based on microscopic analysis of GVs stained with
Nile red; the fluorescence intensity of the vesicle boundary (i.e.,
peripheral fluorescence intensity) is proportional to the number of
lamellae. Uni-, di-, tri-, and tetralamellar vesicles are clearly dis-
tinguishable, based on well-separated averages of the fluorescence
intensity at four peripheral sites per GV.

2.8. Flow cytometry

Vesicle samples were diluted 5-fold with the buffer used for
vesicle preparation. As Mag-Fluo-4 was intended to stain the en-
capsulated aqueous pool, EDTA was added to a final concentration
of 20 mM to quench fluorescence of dyes that had not been en-
capsulated. Also, to prevent blockage of flow lines, samples were
filtered through a 40 μm mesh (Cell strainer, BD Falcon). Vesicle
samples were thus analyzed using the EPICS ALTRA HyPerSort
(Beckman-Coulter, Fullerton, CA, USA) flow cytometer. The stream
was irradiated by an Ar ion laser beam (λ¼488 nm), and fluores-
cence signals were separated by appropriate dichroic mirrors and
band pass filters. Compensation was performed according to the
manufacturer’s protocol to correct red and green fluorescence in-
tensities. The number of vesicles observed in a single analysis was
10,000.

2.9. In vitro transcription in oil-free GUV

GUVs used in in vitro transcription experiments were prepared
on ice to minimize enzymatic activity during preparation. A
500 μL sample of the transcription solution (40 mM Tris–HCl
pH 8.0, 50 mM NaCl, 10 mM MgCl2, 1 mM NTP mix, 0.1 μM tem-
plate DNA, 1 μM molecular beacon probe, 0.6 unit/μL thermo T7
RNA polymerase, 0.02% BSA, and 1 mM TCEP) was cooled on ice,
and added to a flask containing a lipid/sugar film, which had also
been cooled on ice. The resulting mixture was left on ice for
30 min. A sample of 400 μL was then filtered through a 40 μm
mesh (Cell strainer, BD Falcon). Finally, RNaseH at 0.01 unit/μL was
added to quench fluorescence from transcription products that



Fig. 4. Flow cytometry of GVs prepared by the PSGH method. (A) Phase contrast
(left), and red (center) and green (right) fluorescence images of samples used in
flow cytometry. Vesicle membranes and encapsulated aqueous pools were stained
with a red (Nile red) and a green (Mag-Fluo-4) fluorescent dye, respectively. Scale
bars are 10 μm. (B) Log–log density plot of fluorescence intensity, with red fluor-
escence intensity (IFred) on the horizontal axis and green fluorescence intensity
(IFgreen) on the vertical axis. The slopes of the solid and dashed lines are 1.5 and 1.0,
respectively.
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were not encapsulated. Vesicles were incubated at 37 °C for 2 h.
Finally, the sample was analyzed using microscopy and flow
cytometry.
3. Results and discussion

3.1. PSGH

PSGH is based on gentle hydration of a lipid/sugar film (Fig. 1),
which is formed by evaporation, under reduced pressure, of or-
ganic solvent from a mixture of phospholipid, PEGylated lipid and
sugar. Due to the hydrophilic nature of both the PEG group and the
sugar molecule, the PEG moiety probably projects out from the
lipid bilayer, while sugar molecules settle between lipid bilayers.
This might result in alternating layers of sugar and lipid in the film
(Fig. 1, lower panel). Gentle hydration with an aqueous solution
results in spontaneous formation of vesicles. As oil is never used,
the resulting vesicles are oil-free.

3.2. Microscopic analysis

To prepare GUVs at physiological concentrations of mono- and
divalent metal ions, we used a buffer containing 100 mM NaCl and
10 mM MgCl2, which are similar to cellular concentrations, and are
suitable for protein-based activity [26]. Lipid/sugar films were
hydrated at 37 °C, a temperature ideal for cells.

Phase contrast and fluorescence microscopy were used to
examine vesicle samples prepared using PSGH (Fig. 2). A number
of thin-walled GVs and myelin-like multilamellar vesicles (ar-
rowhead) were observed. Myelin-like multilamellar vesicles have
cross sections similar to the myelin sheath covering nerve fibers.
On the other hand, thin-walled GVs were mostly spherical and 1–
22 μm in diameter. The size range is sufficient to provide models
of the cell, as well as compartments for synthetic biology.

3.3. Lamellarity

To validate the PSGH process, we analyzed the lamellarity of
thin-walled GVs produced. However, the resolution of a phase
contrast microscope is in the order of sub-micrometers, whereas
the distance between lipid bilayers in a giant multilamellar vesicle
(GMV) usually approaches the order of nanometers. Therefore,
GMVs cannot be distinguished from GUVs under phase contrast.
Akashi et al. reported a fluorescence-based technique to determine
the lamellarity of GVs [25]. In this method, lamellarity is de-
termined from peripheral fluorescence of GVs stained with the
lipophilic fluorescent dye Nile red. Thin-walled GVs are thus ca-
tegorized according to peripheral fluorescence intensity, with
GUVs exhibiting the least intense fluorescence.

Thus, we determined the lamellarity of thin-walled GVs in this
manner. Fig. 3 plots peripheral fluorescence intensity versus the
diameter of vesicles from a reference mixture and from a pre-
paration obtained by PSGH. Vesicles in the reference mixture were
categorized into groups I, II, and III, which correspond to uni-, bi-,
and trilamellar GVs, respectively (Fig. 3a). On the other hand, ve-
sicles prepared by PSGH were concentrated in the region corre-
sponding to group I (Fig. 3b), indicating that these thin-walled GVs
are unilamellar.

3.4. Flow cytometry

Microscopy can be used to examine only a small number of
GVs. To analyze large populations of GVs, we used flow cytometry.
Since almost all GVs were dispersed (Fig. 2), vesicles could be
detected individually. To perform flow cytometry, vesicle mem-
branes and encapsulated aqueous pools were stained with the Nile
red and Mag-Fluo-4, respectively (Fig. 4a). To quench fluorescence
from unencapsulated reactions, we added excess EDTA to chelate
Mg2þ , which is necessary for Mag-Fluo-4 to fluoresce.

The logarithm of green fluorescence intensity from doubly
stained GUVs is proportional to that of red fluorescence intensity.
The intensity of red fluorescence, IFred, is proportional to the sur-
face area, S, while that of green fluorescence, IFgreen, is proportional
to the volume, V. Therefore, the following equations hold, given
constants k and k0.

I kS 1Fred = ( )

I k V 2Fgreen = ′ ( )

Assuming that the GUV is a complete sphere, its surface area
and volume are related according to the equation

⎛
⎝⎜

⎞
⎠⎟V

S4
3 4 3

3/2π
π

=
( )

When Eqs. (1) and (2) are substituted into Eq. (3) and trans-
formed logarithmically, Eq. (4) is obtained, with
C k klog /6 1.5

10
( )π= ′ .

I I Clog 1.5 log 4Fgreen10 Fred10= + ( )

Therefore, for spherical GUVs of various sizes, a plot of Ilog Fred10
versus Ilog Fgreen10 should be a line with slope 1.5.



Fig. 5. Phase contrast and fluorescence microscopy and flow cytometry of GV samples prepared by doping with either PEGylated lipid only (A, B, C) or sugar only (D, E, F).
Scale bars are 20 μm. Horizontal and vertical axes are the red and the green fluorescence intensities, respectively, in arbitrary units. The slopes of the solid and dashed lines
are 1.5 and 1.0, respectively.
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Fig. 4b shows such a plot of 10,000 vesicles prepared using
PSGH. The vesicles were distributed into two groups that lie along
lines with slopes 1.5 (solid line) and 1.0 (dashed line). More than
8000 vesicles fell along the first line, indicating that more than
80% of the PSGH preparation was spherical GUVs. The remaining
vesicles were distributed around the second line, indicating they
were myelin-like and multilamellar. For these vesicles, the total
surface area of the lamellae is proportional to the volume, because
lamellae also occupy the encapsulated space. Therefore, both red
and green fluorescence intensities are proportional to the volume,
resulting in a line with slope 1.0. In summary, the distribution of
vesicles in Fig. 4b demonstrates that PSGH efficiently generated
oil-free GUVs in a buffer containing both 100 mM NaCl and 10 mM
MgCl2.

3.5. Synergistic effects of PEGylated lipid and sugar

To examine whether PEGylated lipid and sugar synergistically
improved GUV production at physiological salt concentrations, we
conducted two experiments, in which either PEGylated lipid or
sugar was excluded during preparation of lipid films. As before,
hydration products were characterized by fluorescence micro-
scopy and flow cytometry.

Samples prepared by doping with PEGylated lipid only con-
tained few thin-walled GVs and some myelin-like multilamellar
vesicles that strongly fluoresced (Fig. 5a, b). The number of lipid
aggregates was quite low, indicating that many lipid bilayers in the
film did not separate. In Fig. 5c, most of these vesicles were dis-
tributed along a line with slope 1.0, proving that the major lipid
aggregates were myelin-like and multilamellar. It has been re-
ported that gentle hydration of lipid film doped with only PEGy-
lated lipid can be used to prepare GUVs in buffers containing up to
2 M NaCl [23]. However, as Fig. 5c demonstrates, GUVs could not
be prepared in the presence of both 100 mM NaCl and 10 mM
MgCl2.

Additionally, microscopic images of vesicles prepared with



Fig. 6. Encapsulated RNA synthesis in oil-free GUVs. (A) RNA synthesis was detected using the molecular beacon (MB) probe. F, green fluorescent dye; Q, quencher. (B)
Reduction by RNAseH of fluorescence from unencapsulated reactions. RNA strands annealed to MB are specifically digested by RNaseH, and the probe spontaneously refolds
back to the hairpin structure, in which fluorescence is quenched by FRET. (C) Phase contrast (left), red fluorescence (center) and green fluorescence (right) images of GUVs
encapsulating transcription reactions. Scale bars are 20 μm. (D) Flow cytometry of vesicles with encapsulated enzymes. The slope of the red solid line is 1.5.
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sugar only showed a few thin-walled GVs, together with many
myelin-like multilamellar vesicles (Fig. 5d, e). The majority of lipid
aggregates adhered to one another. These observations are con-
sistent with results from flow cytometry (Fig. 5f), data from which
fell along a line with slope 1.0, implying either the presence of
multilamellar vesicles, or adhesion of lipid aggregates. It has been
reported that gentle hydration using sugar only is suitable to
prepare dispersed GUVs in 100 mM NaCl [24]. However, when we
attempt this technique in 100 mM NaCl and 10 mM MgCl2, adhe-
sion among lipid aggregates, which is undesirable, occurred to a
significant extent.

These experiments strongly suggest that PEGylated lipid and
sugar are individually insufficient to separate lipid bilayers. How-
ever, PEGylated lipid and sugar synergistically promote separation
of lipid bilayers during PSGH. This synergism is essential to in-
crease production of oil-free GUVs in a buffer containing both
100 mM NaCl and 10 mM MgCl2.

3.6. In vitro transcription in oil-free GUVs

We demonstrated the encapsulation of active enzymes, in
particular RNA polymerase, which transcribes RNA from DNA.
GUVs for this experiment were prepared by gentle hydration on
ice, instead of 37 °C, to minimize RNA synthesis prior to en-
capsulation. Actually, RNA that was synthesized with RNA poly-
merase during vesicle formation on ice did not reach a detectable
level. Therefore, the GUV preparation on ice allowed us to observe
RNA that was synthesized only after the vesicle formation.

Transcribed RNA was specifically detected using a molecular
beacon (MB) probe (Fig. 6a), which is a hairpin DNA labeled with a
fluorescent and a quenching dye at the 5′ and the 3′ end, re-
spectively [27]. In the absence of transcribed RNA, the MB probe is
folded, and does not fluoresce due to 3′ quenching via fluores-
cence resonance energy transfer. However, in the presence of
transcribed RNA, the probe unfolds and anneals to transcribed
RNA so that quenching does not occur. In this case, the probe
fluoresces in proportion to the amount of transcribed RNA.

Fluorescence due to RNA synthesis outside vesicles would in-
terfere with microscopy and flow cytometry. Therefore, RNaseH
was added to degrade any RNA transcribed outside vesicles
(Fig. 6b). Since RNaseH does not penetrate the lipid bilayer
membrane, RNA strands produced in encapsulated reactions are
protected from RNaseH digestion.

Fig. 6c shows microscopic images of GVs that have en-
capsulated RNA polymerase. These vesicles were prepared on ice,
and even though yield decreased to �30% of production at 37 °C,
many thin-walled GVs were still obtained. Peripheral red fluores-
cence from these vesicles has similar intensity, as is observed for
GUVs in Fig. 2, suggesting they are also unilamellar. These GVs also
emitted green fluorescence from the encapsulated aqueous pool,
indicating that RNA synthesis had occurred in confinement. These
results demonstrate that RNA polymerase was active in oil-free
GUVs obtained by PSGH.

We performed flow cytometry to analyze a large number of GVs
with encapsulated enzyme, and results are shown in Fig. 6d. The
distribution of vesicles changed distinctly with the surface area,
which in this plot is indirectly measured by red fluorescence on
the horizontal axis. Vesicles with red fluorescence exceeding
1.5�102 arbitrary units were distributed along the red solid line
with slope 1.5. In these larger vesicles, all MB probes would have
unfolded and annealed to transcribed RNA, so that green fluores-
cence intensity should be proportional to the volume of vesicle.
Therefore, these vesicles were GUVs like those shown in Fig. 4b.
Among smaller vesicles, which have red fluorescence intensity
between 2�101 and 1.5�102 arbitrary units, only about 20% were
distributed along the red line; the rest were spread downward
from this line. This suggests that enzymatic activity might be in-
hibited due to frequent collisions between RNA polymerase and
the inner surface of these vesicles. These collisions are more fre-
quent because of increased area to volume ratio. Finally, vesicles
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with fluorescence below 2�101 arbitrary units of red fluorescence
are indistinguishable from the background noise, and analysis of
these vesicles was not pursued. Taken together, results demon-
strate that vesicle-encapsulated RNA polymerase successfully
synthesized RNA.
4. Conclusions

We achieved preparation of oil-free GUVs in a buffer containing
100 mM NaCl and 10 mM MgCl2, which are typically needed for
enzyme and other protein-based activity. We found that PEGylated
lipid and sugar synergistically improved GUV production by PSGH.
We demonstrated enzymatic RNA synthesis in reactions confined
within oil-free GUVs prepared on ice. The encapsulation yield of
PSGH is likely to be similar to that of the lipid film gentle hydra-
tion-based methods and therefore is lower than that of the W/O
droplet-based methods. The oil-free GUV prepared by PSGH is a
suitable compartment for use as a platform in synthetic biology,
and is especially useful to capture membrane proteins, which may
be sensitive to oil contamination. Since the PSGH method relies on
a synergistic effect of PEGylated lipid and sugar, the method is not
suitable for experiments that do not tolerate the presence of PE-
Gylated lipid or sugar. The use of oil-free GUVs to study membrane
proteins will pioneer new avenues in synthetic biology.
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