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Abstract: The flavonoid composition of various tissues throughout plant development is of biological
relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA
1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we
provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing
R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes
embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1
mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five
major TTG1-dependent traits is highlighted.
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1. Motivation

Flavonoids are secondary plant metabolites with a broad spectrum of functions for plants,
including UV protection, pollination and feeding attraction, rhizosphere signaling and pathogen
defense [1–5]. Early on, health-promoting effects of flavonoids were under investigation, and a mixture
of flavonoids from citrus was initially named “vitamin P” by Szent-Györgyi in 1936 [6].

Generations of researchers have been attracted by flavonoids, their function and the regulation
of their biosynthesis pathways. Potential health-promoting benefits for human nutrition, as well
as medical topics like binding and inhibition of proteins, absorption, conversion and localization
within the human body were in the focus of more than 70% of flavonoid reviews. Apart from
these, two major types of topics dominated other reviews since 1964: (1) the substances themselves
(e.g., lists of substances, identification of individual substances, chemical properties, synthesis and
conversion, analytical methodology, composition in specific species, tissues and developmental stages)
and (2) their function (e.g., functions tested in vitro, like radical scavenging, functions in plants like
UV protection and functions related to the plant′s environment like exudate signaling within the
rhizosphere, pathogen defense, pollination or feeding attraction).

Different types of flavonoids are known to have different functions (e.g., [3,7–10]). Therefore,
when it comes to breeding efforts, understanding the varying flavonoid composition of specific plant
organs throughout development is of utmost relevance. So far, only a few reviews have centered on
specific aspects of the flavonoid biosynthesis pathway’s regulation through plant development.

Where We Are and Where to Go?

Screening for plants with deviating coloration of plant organs facilitated the identification of
the core pathway’s enzymes and essential regulators. These mutant sets, combined with sequencing
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technology, have already answered the “Who is who?” and “Who does what?” questions for the
flavonoid biosynthesis core pathway (e.g., summarized in [11–16]).

We can now specify and ask “Who does what, where, when and why?” It is important to note that
the functional spatiotemporal focus moves the gene function of regulators and their own regulation
to center stage. AtTTG1 (Arabidopsis thaliana (A. thaliana) TRANSPARENT TESTA GLABRA 1) is one
of these regulators. With the AtTTG1-dependent gene regulatory network, it acts as a regulatory
hub, differentially modulating spatiotemporal flavonoid composition of plant tissues throughout
development and is an excellent example for such concerted regulatory mechanisms.

Moving away from solved “yes-no” scenarios of the past, in which the identified defective factor
of a mutant would block the whole downstream pathway (e.g., of A. thaliana tt (transparent testa)
mutants), it will now be important to complement these findings with more subtle, but relevant
modifications of the pathway, e.g., accessible through natural variation studies. At the same time, gene
function and regulation should be linked not only with individual substances, but also with flavonoid
composition of specific plant organs in various species, which is of interest for plant breeding purposes.

Flavonoids have been at the center of research for an impressive period of time by now. In the
post-genomic era, novel questions can be asked, and the wealth of knowledge that stems from research
in the well-established model species A. thaliana can be extended to other species. This requires and
allows for an embedding of previous findings in an evolutionary context to drive future research
projects and to link different areas of research.

Towards this end, this review provides a small contribution with a focus on AtTTG1, the
AtTTG1-dependent regulation of the flavonoid biosynthesis and an embedding into the evolutionary
context. Moreover, this review provides an overview of comprehensive collections of A. thaliana ttg1
mutants and AtTTG1 orthologs.

2. Introduction

2.1. Flavonoid Biosynthesis Pathway

At the end of the last century, A. thaliana, an annual Brassicaceae with a small genome, emerged
as the model organism for molecular geneticists. Its genome was the first sequenced genome of a
flowering plant and was released in the year 2000 [17]. Extensive detailed knowledge about the
flavonoid biosynthesis pathway and its regulator stems from this workhorse of molecular genetics.
Studies on this pathway in A. thaliana benefit from the fact that the core enzymes are only encoded by
a single gene except for six copies for FLAVONOL SYNTHASE (FLS), out of which two were shown to
be expressed [18,19].

The flavonoid biosynthesis pathway in A. thaliana comprises core substances from several groups:
e.g., chalcones, flavanones, flavonols, anthocyanidins, flavan-3-ols and proanthocyanidins. There are a
few thousand derivatives of these substances (for more details, see Figure 1 and, e.g., [12,20,21]; for
a fingerprint of the flavonoid/aglycon composition of A. thaliana seeds and seedlings, see [22] and
its supplement).

Flavonoids are widely distributed within the plant kingdom and can be found in bryophytes,
vascular plants and spermatophytes. It is discussed that flavonoids initially evolved as regulators or
messengers and then as UV protectants [23]. The early steps of the pathway are shared by mosses
and, e.g., angiosperms and therefore thought to be of ancient origin. As both parts of the pathway
have evolved separately, but have evolved for a long time, it might not be surprising to find both early
and late biosynthesis of enzymes: specific and overlapping sets of regulators. AtTTG1-dependent
regulation is predominantly specific for the late biosynthesis of enzymes.
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Figure 1. Flavonoid biosynthesis pathway of plants modified from [22] with an emphasis on A. 
thaliana seeds. Black arrows highlight the core pathway and substances in A. thaliana discussed in this 
review. The respective enzymatic steps from the different levels of the pathway are extracted on the 
right. Examples for different products of OMTs (O-METHYLTRANSFERASEs) are given 
(isorhamnetin, peonidin, petunidin, malvidin). Note that not all steps occur in A. thaliana and other 
substances can also occur in A. thaliana: e.g., pelargonidin. See [22] for details. The dashed arrow 
indicates that several proteins and enzymes are required for proanthocyanidin synthesis, deposition 
and/or further conversion to condensed tannins including transport processes (for a review on 
flavonoid transport and a few recent findings, see [24,25]). R2R3-MYELOBLASTOSIS-basic  
HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes predominantly regulate late 
biosynthetic genes encoding for the core pathway enzymes. Dashed line: the assumed “border” 
between early and late biosynthetic genes and products in A. thaliana [20,26,27]. Boxed enzymes are 
under differential developmental regulation of MBW(AtTTG1) complexes. See Figure 4 for details. 
Reduced levels of isorhamnetin in seeds of ttg1-1, but not transparent testa (tt)2 and tt8 mutants, 
indicate that the border might need some adjustment or that additional AtTTG1-dependent 
regulation occurs [22]. CHS: CHALCONE SYNTHASE, CHI: CHALCONE ISOMERASE, F3H: 
FLAVANONE 3-HYDROXYLASE, F3′H: FLAVONOID 3′ HYDROXYLASE, FLS: FLAVONOL 
SYNTHASE, DFR: DIHYDROFLAVONOL 4-REDUCTASE, LDOX: LEUCOANTHOCYANIDIN 
DIOXYGENASE, ANS: ANTHOCYANIDIN SYNTHASE, ANR: ANTHOCYANIDIN REDUCTASE, 
BAN: BANYLUS, EBG: early biosynthetic genes, LBG: late biosynthetic genes. 

2.2. Trait Complexity and the Evolution of Transcription Factor Families 

With increased trait complexity in plant organisms, transcription factor gene families have 
expanded [28]. For bHLH (basic HELIX-LOOP-HELIX), as well as for many other transcription 
factors, a strong expansion accompanied the period of land invasion [29]. Transcription-associated 
proteins (TAPs) can be separated into transcription factors (like R2R3-MYB(MYELOBLASTOSIS 
(homolog)) or bHLH), binding cis-regulatory elements in a sequence-specific manner and 
transcription regulators (like TTG1) that are of relevance within gene regulatory networks, but do 
not necessarily bind DNA themselves [28]. The combinatorial control in transcription factor 
complexes with components from different transcription factor classes allowed the integration of 
different developmental and environmental signals for further trait diversification [30]. In agreement 
with this, transcription factor family expansion correlated with morphological complexity in land 
plant evolution. This was not the case for transcriptional regulators [28]. 

Figure 1. Flavonoid biosynthesis pathway of plants modified from [22] with an emphasis on A. thaliana
seeds. Black arrows highlight the core pathway and substances in A. thaliana discussed in this review.
The respective enzymatic steps from the different levels of the pathway are extracted on the right.
Examples for different products of OMTs (O-METHYLTRANSFERASEs) are given (isorhamnetin,
peonidin, petunidin, malvidin). Note that not all steps occur in A. thaliana and other substances can
also occur in A. thaliana: e.g., pelargonidin. See [22] for details. The dashed arrow indicates that
several proteins and enzymes are required for proanthocyanidin synthesis, deposition and/or further
conversion to condensed tannins including transport processes (for a review on flavonoid transport and
a few recent findings, see [24,25]). R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat
(MBW(AtTTG1)) complexes predominantly regulate late biosynthetic genes encoding for the core
pathway enzymes. Dashed line: the assumed “border” between early and late biosynthetic genes and
products in A. thaliana [20,26,27]. Boxed enzymes are under differential developmental regulation of
MBW(AtTTG1) complexes. See Section 6 for details. Reduced levels of isorhamnetin in seeds of ttg1-1,
but not transparent testa (tt)2 and tt8 mutants, indicate that the border might need some adjustment
or that additional AtTTG1-dependent regulation occurs [22]. CHS: CHALCONE SYNTHASE,
CHI: CHALCONE ISOMERASE, F3H: FLAVANONE 3-HYDROXYLASE, F3′H: FLAVONOID 3′

HYDROXYLASE, FLS: FLAVONOL SYNTHASE, DFR: DIHYDROFLAVONOL 4-REDUCTASE,
LDOX: LEUCOANTHOCYANIDIN DIOXYGENASE, ANS: ANTHOCYANIDIN SYNTHASE, ANR:
ANTHOCYANIDIN REDUCTASE, BAN: BANYLUS, EBG: early biosynthetic genes, LBG: late
biosynthetic genes.

2.2. Trait Complexity and the Evolution of Transcription Factor Families

With increased trait complexity in plant organisms, transcription factor gene families have
expanded [28]. For bHLH (basic HELIX-LOOP-HELIX), as well as for many other transcription factors,
a strong expansion accompanied the period of land invasion [29]. Transcription-associated proteins
(TAPs) can be separated into transcription factors (like R2R3-MYB(MYELOBLASTOSIS (homolog)) or
bHLH), binding cis-regulatory elements in a sequence-specific manner and transcription regulators
(like TTG1) that are of relevance within gene regulatory networks, but do not necessarily bind
DNA themselves [28]. The combinatorial control in transcription factor complexes with components
from different transcription factor classes allowed the integration of different developmental and
environmental signals for further trait diversification [30]. In agreement with this, transcription factor
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family expansion correlated with morphological complexity in land plant evolution. This was not the
case for transcriptional regulators [28].

Within the AtTTG1-dependent gene regulatory network, the highest trait specificity is found for
the R2R3-MYB factors (see the next section), indicating that these might have evolved the most towards
specific adaptive traits. A reduced complexity is seen for bHLH factors with partially overlapping
function. Differential complex composition of MBW(AtTTG1) complexes can explain the differential
AtTTG1-dependent regulation of the flavonoid biosynthesis pathway. In particular, differing DNA
binding motif preferences of the respective R2R3-MYB components have been reported [31–33].

3. AtTTG1-Dependent Gene Regulatory Network

AtTTG1 is the head of an evolutionarily-conserved gene regulatory network, regulating five
AtTTG1-dependent traits with adaptive value for the plant: (1) trichome and (2) root hair patterning,
(3) accumulation of anthocyanidin (and its derivatives) (in seedlings), (4) seed coat pigmentation and
(5) seed coat differentiation including mucilage production (Figure 2). Differential MBW(AtTTG1)
complex composition underlies the regulation of the five major traits [15,20,34–38].

Plants 2017, 6, 65  4 of 29 

 

Within the AtTTG1-dependent gene regulatory network, the highest trait specificity is found for 
the R2R3-MYB factors (see the next section), indicating that these might have evolved the most 
towards specific adaptive traits. A reduced complexity is seen for bHLH factors with partially 
overlapping function. Differential complex composition of MBW(AtTTG1) complexes can explain the 
differential AtTTG1-dependent regulation of the flavonoid biosynthesis pathway. In particular, 
differing DNA binding motif preferences of the respective R2R3-MYB components have  
been reported [31–33]. 

3. AtTTG1-Dependent Gene Regulatory Network 

AtTTG1 is the head of an evolutionarily-conserved gene regulatory network, regulating five 
AtTTG1-dependent traits with adaptive value for the plant: (1) trichome and (2) root hair patterning, 
(3) accumulation of anthocyanidin (and its derivatives) (in seedlings), (4) seed coat pigmentation and 
(5) seed coat differentiation including mucilage production (Figure 2). Differential MBW(AtTTG1) 
complex composition underlies the regulation of the five major traits [15,20,34–38]. 

 

Figure 2. AtTTG1-dependent gene regulatory network. Proteins encoded by the AtTTG1-dependent 
gene regulatory network and possible differential MBW(AtTTG1) complex formation, regulating the 
five major AtTTG1-dependent traits. Shown are all bHLH and R2R3-MYB proteins that can form a 
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(www.thebiogrid.org) [39]. Inhibitors/competitors compete with respective R2R3-MYBs for binding 
to bHLH proteins. We also extracted from the BioGrid database non-MYB and non-bHLH factors that 
interact with TTG1 and added the recently found interactors SPL4 and SPL5. Interactions are 
documented in a variety of papers [40–53]. For the inhibitors, see e.g., [54–56]. The seed coat picture 
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MYC: MYELOCYTOMATOSIS (homolog), TT: TRANSPARENT TESTA, WER: WERWOLF, MYB: 
MYELOBLASTOSIS (homolog), PAP: PRODUCTION OF ANTHOCYANIN PIGMENT, TRY: 
TRIPTYCHON, CPC: CAPRICE, ETC: ENHANCER OF TRY AND CPC1, TCL: TRICHOMELESS, 
MYBL: MYB-like, TTG2: TRANSPARENT TESTA GLABRA 1, SPL: SQUAMOSA PROMOTER 
BINDING PROTEIN-LIKE, BIN2: BRASSINOSTEROID-INSENSITIVE 2, GEM: GL2-EXPRESSION 
MODULATOR. PAP3 and PAP4 are also known as MYB113 and  
MYB114, respectively [57]. 

Figure 2. AtTTG1-dependent gene regulatory network. Proteins encoded by the AtTTG1-dependent
gene regulatory network and possible differential MBW(AtTTG1) complex formation, regulating
the five major AtTTG1-dependent traits. Shown are all bHLH and R2R3-MYB proteins that can
form a ternary complex with AtTTG1 and regulate one of the five major AtTTG1-dependent
traits indicated on the right. Lines represent interactions as documented in the BioGrid database
(www.thebiogrid.org) [39]. Inhibitors/competitors compete with respective R2R3-MYBs for binding
to bHLH proteins. We also extracted from the BioGrid database non-MYB and non-bHLH factors
that interact with TTG1 and added the recently found interactors SPL4 and SPL5. Interactions
are documented in a variety of papers [40–53]. For the inhibitors, see e.g., [54–56]. The seed coat
picture was acquired by Hans-Peter Bollhagen. Photography of the seedling was done by Siegfried
Werth. TTG1: TRANSPARENT TESTA GLABRA 1, GL3: GLABRA3, EGL3: ENHANCER OF
GLABRA3, MYC: MYELOCYTOMATOSIS (homolog), TT: TRANSPARENT TESTA, WER: WERWOLF,
MYB: MYELOBLASTOSIS (homolog), PAP: PRODUCTION OF ANTHOCYANIN PIGMENT, TRY:
TRIPTYCHON, CPC: CAPRICE, ETC: ENHANCER OF TRY AND CPC1, TCL: TRICHOMELESS,
MYBL: MYB-like, TTG2: TRANSPARENT TESTA GLABRA 1, SPL: SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE, BIN2: BRASSINOSTEROID-INSENSITIVE 2, GEM: GL2-EXPRESSION
MODULATOR. PAP3 and PAP4 are also known as MYB113 and MYB114, respectively [57].

MBW(AtTTG1) complexes consist of three classes of proteins: R2R3-MYB, bHLH and the WD40
repeat protein TTG1. Complexes of higher order are possible due to the homo- and heterodimerization

www.thebiogrid.org
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of bHLH proteins [40,42,58]. The highest specificity of the trait regulation by MBW(AtTTG1) complexes
exists on the level of the R2R3-MYB factors, while the bHLH factors act redundantly towards the
different traits, and AtTTG1 is indispensable for all five traits. While we focus on the flavonoid
biosynthesis in this review, we would like to point to previous reviews covering the role of AtTTG1
in trichome and root hair patterning (e.g., [59,60]). AtTTG1 has also been positioned in the seed coat
mucilage pathway [61].

4. The Components of MBW(AtTTG1) Complexes

4.1. R2R3-MYBs

MYB proteins are found in all eukaryotic organisms [62,63]; first identified in the v-myb oncogene
of the avian myeloblastoma virus, later in the human proto-oncogene c-myb and other related
factors. MYB proteins in general contain up to three imperfect repeats: R1, R2 and R3 with R2
and R3 representing the minimum DNA-binding domain and containing cooperative recognition
helices [62,64–67]. Few plant 4R-MYB proteins are reported (e.g., in soy bean) [68–70]. R2R3-MYB
proteins are the most abundant plant-specific MYB proteins [63,65,66,71]. A consensus motif is present
in all R2R3-MYB domains from A. thaliana [72]. The first cloned plant MYB gene was Colorless1 (C1)
from maize (Zea mays) that regulates anthocyanin accumulation [73]. c1 was the gene disrupted
in McClintock’s experiments (e.g., [74]) underlying her discovery of transposable elements. Several
reviews have focused on plant MYB transcription factors in general, specific MYB pathways’ regulation
or species (see e.g., [32,69,70,75–81])

4.2. bHLHs

Plant bHLH proteins of subgroup IIIf and MYB proteins containing the bHLH interaction motif
[DE]Lx2[RK]x3Lx6Lx3R directly interact [46]. Subgroup IIIf bHLH proteins are already present in
mosses [29]. Similar to R2R3-MYB proteins, the first cloned plant bHLH proteins originated from
maize. In 1989, the R (Red 1) and B (Booster 1) genes were cloned [82,83].

The bHLH motif was first discovered and described in murine muscle development transcription
factors and found to mediate dimerization and DNA binding [84]. It consists of a basic region at
the N-terminus that binds specific DNA motives and an HLH region that mainly forms homo- and
hetero-dimers with bHLH proteins [85]. Several reviews have focused on plant bHLH transcription
factors in general and in specific pathways (see, e.g., [81,86,87]).

4.3. WDRs—TTG1

WD40 repeat (WDR) proteins are conserved in eukaryotes [88]. They have evolved in plants in
various protein families with diverse functions: e.g., signal transduction, cytoskeletal dynamics, chromatin
modification or transcriptional regulation [88]. This is in part due to diversification of regulators and
targets up- and downstream the WDR proteins that act as interaction platform, constituents for protein
complexes and sites of transient protein contacts [88]. WDR proteins are characterized by different
numbers of WD40 repeats (usually 4–10 in plants) [88]. WDR proteins share a stretch of about 40 amino
acids that usually end with Trp-Asp (WD) in each WD40 repeat [89]. Four and more WD40 repeats in
one protein can form so-called β-propellers, a cylindrical formed series of four-stranded antiparallel
beta sheets [88,90]. In the mammalian G-protein subunit Gβ, it is shown that the first and last WD 40
repeat contribute to the same beta-blade [90]. There are 237 WDR proteins with more than four repeats in
A. thaliana [88], including TTG1, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and the four
SUPPRESSOR OF PHYA-105 (SPA) proteins [34,91–93].

TTG1 sequences were known to be present in angiosperms, but not in gymnosperms and older
plant lines [31]. This requires an update, as recently, an ortholog has been identified from Norway
spruce (Picea abies) [94]. For an overview of (putative) AtTTG1 orthologs, see Section 9 of this review.
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5. AtTTG1 Mutants

A. thaliana mutants of AtTTG1 were fundamental in elucidating its gene and proteins functions.
One of the often used and stronger mutants is ttg1-1, which carries a mutation leading to a premature
stop codon and thereby to a truncation of the AtTTG1 protein at its far C-terminus. A closer view
of the AtTTG1 gene and protein structure will help to understand the relevance of the C-terminus
for AtTTG1.

In AtTTG1 loss-of-function mutants, leaves are glabrous as no trichomes are formed, ectopic root
hairs are additionally produced, seeds are yellow instead of brownish, seedlings do not accumulate
anthocyanidin and the columella, as well as the mucilage of seed coat epidermal cells is missing.

Both flavonoid-related AtTTG1-dependent traits, anthocyanidin accumulation and seed coat
pigmentation melt down to a differential regulation of the flavonoid biosynthesis pathway. The TTG1
syndrome of ttg1 mutants varies in dependence of the position and type of mutation. Table 1 lists 22 A.
thaliana ttg1 mutants and the observed flavonoid-related pigmentation phenotype of seeds.

Table 1. Comprehensive list of A. thaliana ttg1 mutants with documentation on seed pigmentation.

Allele Background Mutagenesis Mutation Phenotype References

ttg1-1 Ler EMS Q317stop tt, g [15,34]
ttg1-9 Col-0 EMS S282F tt, g [34,95,96]
ttg1-10 Ws EMS g->a (5′UTR) tt, (g) [97]
ttg1-11 Col-0 EMS G149R tt, g [97]
ttg1-12 Col-0 EMS G43R tt, g [97]
ttg1-13 RLD1 fast neutrons deletion tt, g [97]
ttg1-15 Antwerp-1 Kranz collect. S310stop tt, g [34] *
ttg1-16 Enkheim-1 Kranz collect. S310stop tt, g [34] 1

ttg1-17 Enkheim-1 Kranz collect. S310stop tt, g [34] 1

ttg1-18 Enkheim-1 Kranz collect. S310stop tt, g [34] 1

ttg1-19 Enkheim-1 Kranz collect. W183stop tt, g [34] 1

ttg1-20 Enkheim-1 Kranz collect. S30C, S310stop tt, g [34] 1

ttg1-21 Col-0 T-DNA 2 exon 1 tt, NA [11,98]
ttg1-21-CI * Col carbon ion irradiation exon 1 (CI) tt, NA [99]

ttg1-22 Col-0 T-DNA 2 exon 1 tt, NA [11,98]
ttg1-213 NA NA W183stop tt, g [100]
urm23 gl1-2 (Col-1) EMS G302E ((g)) [100]

ttg1 (Est) Est-1 EMS S101F tt, g [101]
ttg1-P313 Col-4 T-DNA 3 insertion (ND) g [102,103]

ttg1-P416 Col-4 T-DNA 3 insertion (Chr5:
8371365..8371665) tt, g [102,103]

ttg1-SK31268 Col-4 T-DNA 3 insertion (ND) tt, g [102,103]

ttg1-SK41546 Col-4 T-DNA 3 insertion (Chr5:
8371188..8371488) tt, g # [102,103]

* Note that ttg1-21 has been assigned twice and “-CI” was added here for clarification, CI = carbon ion-induced
chromosomal rearrangement (breakage in exon 1 of TTG1 on chromosome 5 and rejoining with chromosome 3), tt:
transparent testa phenotype, g: glabra phenotype, severity of glabrous phenotype: g > (g) > ((g)); 1 origin: Kranz collect.
= Kranz collection; 2 GABI (“Genomanalyse im biologischen System Pflanze”) -Kat (“Kölner Arabidopsis T-DNA”)
lines [98]; 3 SK (Saskatoon) population [103]: activation tagging lines (insertion of pSKI015 [104]); # enlarged
trichome cells usually with no aerial extension, but sometimes stubby un-branched trichomes. Please note that not
in all cases has the function been linked to the mutation. Not all studies conducted a rescue experiment or tested for
allelism with a previously established mutant. Please refer to the references for more details. Col: Columbia, Ler:
Landsberg erecta, Est: Estland, EMS: Ethyl methanesulfonate (used for mutagenesis), T-DNA: transfer-DNA, UTR:
untranslated region, NA: no information available, urm: unarmed, gl1: glabra1, ND: position of insertion was not
determined in the respective study.

The position of the mutations within these mutants indicates that proper AtTTG1 function requires
an intact C-terminus. In Gβ, the first and last WD40 repeat contribute to the same β-blade; a similar
scenario might occur in AtTTG1. Together with the modeled 3D-structure of AtTTG1, this points to a
high relevance of the C-terminus for the protein’s proper folding and domain structure (see Figure 3).
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retrieved from TAIR [105]. Exons, introns, 5′ and 3′UTR, mutants and protein domains were 
visualized using CLC DNA workbench 5.3.1 (CLC bio, Aarhus, Denmark). Please note that the intron 
is not part of the 3′UTR, which comprises the last nucleotide of exon 1 and the full exon 2. When 
searching databases for domains and repeats of AtTTG1, the resulting number, positioning and 
confidence for the detected WD40 repeats are diverse (e.g., SMART, PROSITE) [106–109]. Shown here 
is the annotation provided by UniProt. The colored bar below the protein sequence indicates the 
confidence of the Phyr2 model shown in (b) along the protein [110]. (b,c) AtTTG1 tertiary structure. 
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Figure 3. (a) AtTTG1 gene structure, mutants and protein domains. The AtTTG1 gene structure was
retrieved from TAIR [105]. Exons, introns, 5′ and 3′UTR, mutants and protein domains were visualized
using CLC DNA workbench 5.3.1 (CLC bio, Aarhus, Denmark). Please note that the intron is not part of
the 3′UTR, which comprises the last nucleotide of exon 1 and the full exon 2. When searching databases
for domains and repeats of AtTTG1, the resulting number, positioning and confidence for the detected
WD40 repeats are diverse (e.g., SMART, PROSITE) [106–109]. Shown here is the annotation provided
by UniProt. The colored bar below the protein sequence indicates the confidence of the Phyr2 model
shown in (b) along the protein [110]. (b,c) AtTTG1 tertiary structure. The AtTTG1 protein tertiary
structure was modeled using (b) Phyre2 or (c) loaded into SwissProt PdbViewer v.4.1.0 for marking the
amino acids that are mutated or changed to a stop codon in the mutants [110,111]. Both (b,c) underline
a part of the β-sheet structure, in particular the relevance of the C-terminus of AtTTG1 for the tertiary
structure (highlighted by an ellipse in (b)). For the list of mutants and respective references, please
refer to Table 1. CDS: coding DNA sequence, UTR: untranslated region.

Interestingly, according to the reported insertion loci (Table 1; [105]), two of the activation tagging
T-DNA insertions were shown to be located in intron 1. This might change the 3′UTR due to differential
splicing and possible loss of the 3′UTR portion originating from exon 2 in the transcript (exon 1
includes the stop codon and the first nucleotide of the 3′UTR; exon 2 comprises the remaining 3′UTR;
see Figure 3). Moreover, similar as recently reported for GLABRA3 (GL3) [112], the intron might have
a regulatory function, which could be impaired by the T-DNA insertion (size of inserted T-DNA >
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6 kb). A T-DNA insertion in the AtTTG1 intron might change the splicing, the 3’UTR and its function,
transcript stability and movement properties. Furthermore, an effect of the activation tagging insert
including 35S promoters and a possible additional transcript is possible.

Helen A. Stafford described the differential accumulation of proanthocyanidin between plants with
different developmental strategies. While abundant in gymnosperms and some ferns, proanthocyanidins
are still found as defense compounds in leaves of long-lived woody plants, and they are rare in
short-lived, herbaceous plants in which they are found in the seed coat of some of these [23]. In A.
thaliana, seeds off ttg1 null mutants appear yellow due to the missing pigments [15]. They have a
transparent testa. These pigments require the activity of DIHYDROFLAVONOL 4-REDUCTASE (DFR)
and other downstream enzymatic steps [14]. These include LEUCOANTHOCYANIDIN DIOXYGENASE
(LDOX)/ANTHOCYANIDIN SYNTHASE (ANS), ANTHOCYANIDIN REDUCTASE (ANR)/BANYLUS
(BAN) and, in other species, also LEUCOANTHOCYANIDIN REDUCTASE (LAR) activity [20].

6. Target Enzymes of MBW(AtTTG1) Complexes in the Core Flavonoid Biosynthesis Pathway

Progress made in the last decade in differentiating target-specific activity of MBW(TTG1)
complexes is diverse and uses different experimental systems (see previous reviews for a
developmental and hormonal embedding [20,113,114]). In Figure 4, we combine exemplary results
from at set of studies. These analyze the regulation of the flavonoid biosynthesis’ core enzymes through
differential sets of MBW(AtTTG1) components. The compilation highlights the need for systematic
tissue-specific studies in this area of research. We apologize for all other examples not chosen here.

Many studies have focused on the regulation of DFR through MBW(AtTTG1) complexes. This is
not surprising as no DFR is expressed in absence of AtTTG1 as shown in ttg1 mutants [14]. This leads to
a complete blockage of the downstream pathway in these mutants [22]. On the level of bHLH factors,
redundancy has been observed for AtTTG1-dependent traits. In this line, Zhang and co-workers
observed a significantly reduced DFR expression as compared to the wildtype when analyzing
seedlings. They also found a decrease of the DFR transcript level gl3egl3 double mutants and an
even lower level in gl3egl3tt8 triple mutants (Figure 4, Study 1 [42]).

Further downstream, the pathway, BAN expression was modulated in young siliques that carried
constructs overexpressing AtTTG1, TT8 and TT2, which were fused to the glucocorticoid receptor (GR).
These move into the nucleus upon dexamethasone (DEX) treatment. The increased BAN expression in
these AtTTG1-GR and TT2-GR lines could be even more elevated when using cycloheximide (CHX)
to block protein translation and thereby block secondary transcriptional effects possibly evoked by
transcriptional activity of direct targets of AtTTG1 and TT2. This result was in contrast to TT8-GR
induced BAN expression upon DEX treatment counteracted by CHX treatment suggesting a more
complex regulation through TT8 (Figure 4, Study 2 [47]). In the same study, a strong induction by
adding AtTTG1 to TT2-GL3/EGL3/TT8 dimer combinations was found. Here, A. thaliana protoplasts
were used as the test system. Interestingly, TT2-EGL3 and TT2-TT8 did not require AtTTG1 for a
significant induction of BAN transcription. MBW complexes with MYC1 could not activate the BAN
promoter:GUS construct.

In one of the more comprehensive studies, mutants, promoter:GUS lines and GFP reporter
constructs in the heterologous system Physcomitrella patens (protoplasts) were combined (Figure 4, Study
3 [115]). Most bHLH-PAP1/PAP2/TT2 dimers tested could activate DFR, LDOX or BAN in the absence
of co-overexpressed AtTTG1 in P. patens or A. thaliana protoplasts with exceptions for TT2-MYC1 (DFR,
BAN), TT2-GL3 (BAN) and TT2-TT8 for LDOX (Figure 4, Studies 2, 5–8 [46,47,116–118]). The selected
studies cover TT2 dimers for DFR and BAN, PAP1 dimers for DFR and LDOX and PAP2 dimers for
DFR. Endogenous proteins and low levels of AtTTG1 in the used protoplast might influence the results.
Therefore, promoter binding studies will complement these results. First evidence of MYB-binding
motives from Y1H studies is already available [33].

Xu and co-workers also acquired the expression of flavonoid biosynthetic genes in mutant
background and compared it to the respective wildtype [115]. Not only the LBGs DFR, LDOX and
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BAN are downregulated in tt2, tt8 and ttg1 mutants, but also the EBGs F3H and F3’H in tt2 and ttg1
mutants. As MBW(AtTTG1) complexes affect transcriptional cascades, it is relevant to point out that
direct activation of DFR, LDOX and again BAN is shown for AtTTG1-GR in siliques using the same
DEX/CHX approach as described above. The regulation of F3’H is indirect for AtTTG1, but direct for
GL3 (Figure 4, Study 4 [27]).

An important step towards understanding MBW(AtTTG1)-regulated flavonoid compositions
will be tissue-specific studies using, e.g., promoter:GUS constructs for the pathways’ core enzymes as
done for seeds [115]. Other important lines of experiments will be to bypass redundancies through
systematic double and higher order mutants (e.g., [27,42]) and to analyze direct promoter binding.
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Figure 4. Tissue-specific MBW(AtTTG1) regulation of the flavonoid biosynthesis’ LBGs. Collection
of exemplifying studies analyzing the flavonoids core enzyme’s regulation through MBW(AtTTG1)
components. These comprise tissue-specific, mutant and promoter-reporter experimental approaches.
Black boxes next to the MBW factors indicate the combinations of MBW factors, used mutants or
overexpression lines in the respective experiment summarized above for the different LBG promoters.
Black boxes next to the enzymes depend on the type of experiment. The respective enzyme’s promoter
was either (1) upregulated by combinations of MBW factors or in MBW overexpression lines; (2)
downregulated in the respective mutant; (3) induced upon DEX treatment combined with or without
CHX when fusions with GR were used. White boxes: the respective promoter/transcript level was not
significantly affected in the experiment, and this was documented in the respective study. Grey
boxes: not tested/no results presented in the respective study. Note the differential regulation
based on complex composition, e.g., for AtTTG1-GL3/EGL3/TT8-TT2/MYB5 complexes in [115].
AtTTG1-GL3/EGL3/TT8-PAP are known to be relevant in vegetative tissue (e.g., [115,118]).
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The following studies were used for compiling this figure and are indicated in the figure as numbers
below the MBW factors: 1: [42], 2: [47], 3: [115], 4: [27], 5: [116], 6: [46], 7: [118], 8: [117]. *:
wt vs. mutant or overexpressor (ttg1, tt2, myb5, gl3egl3, gl3egl3tt8, gl3egl3tt8myc1, MYBRNAi,
pap1/pap1-D, Pro35S:MYB113). Black boxes mean in this case: The respective promoters are
significantly downregulated in the respective mutants. #: upregulation effect of transcription upon
overexpression of TTG1-GR or GL3-GR encoding constructs in ttg1 or in the gl3egl3 double mutant. ##:
effect is also seen for GL3-GR when EGL3 is present in gl3 single mutants (height sucrose concentration
(3%) in this experiment); F3H and CHX were not tested in this experiment. x: fusion to GR in the
presence of DEX and CHX leads to upregulation of the respective promoter tested (all in respective
mutant background). Pp: Physcomitrella patens protoplasts At: A. thaliana (A7) protoplasts, siliques:
young siliques, endoth.: endothelium, seedling +: seedlings treated with cycloheximide (CHX)
when testing for the effect of overexpressing, e.g., AtTTG1-GR (glucocorticoid receptor) or GL3-GR,
respectively. For chalaza and endothelium, the results are from the visual impression from GUS-stained
seeds. Thick boxes around enzymes: LBGs. See, e.g., Figure 1 for the other abbreviations.

7. MBW(AtTTG1) Complexes, Multilayered Regulatory Mechanisms at Work:
A Possible Scenario

Atttg1 mutant analysis suggests that AtTTG1 is indispensable to regulate all AtTTG1-dependent
traits in concert. It is assumed that AtTTG1, MYB and bHLH factors can form a ternary complex
that acts as a transcriptional activator [31,35,38,119,120]. Interestingly, overexpression of the maize R
gene in Atttg1 mutant background could rescue all AtTTG1-dependent traits [121]. It has also been
shown that bHLH-R2R3-MYB-dimers can activate tested promoters [122]. This might also have been
the ancient status, as, e.g., mosses possess type IIIf bHLH factors, but no functional TTG1 ortholog
has been described to our knowledge [29,31]. GLABRA1 (GL1) and GL3 were shown to be able to
activate CPC expression in Arabidopsis suspension cultures [122], and TT2 and TT8 overexpression is
sufficient for BAN and LDOX activation, as well as PAP1 with EGL3 or TT8 for LDOX activation in A7
protoplasts, which express low levels of TTG1 according to the authors [47,117,118]. Therefore, the test
system might not have been devoid of TTG1. Is this amount of putatively translated TTG1 sufficient to
mediate a minimal required TTG1 function when the other factors are overexpressed? Here, studies in
ttg1 mutant background are required. Since bHLH and an R2R3-MYB factor can activate transcription
without TTG1, what is the function of TTG1? This has not been solved yet, and many aspects require
further investigation. Other possible scenarios are described below (see Section 8).

One possible function of AtTTG1 might be to shield the bHLH and R2R3-MYB factor from
(negative) regulators. AtTTG1 was shown to be localized at promoters (e.g., TRANSPARENT
TESTA GLABRA2 (TTG2) and CAPRICE (CPC)) by semi-quantitative PCR of ChIP experiments [123].
It might modulate the chromatin at the target promoter to set the stage for the other factors (early
in development). It might also be directed to target promoters by non-MYB, non-bHLH interaction
partners (e.g., TTG2 [51]) or the following scenario might (Figure 5) occur:
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Instead of ternary complex formation and binding to the promoter as a complex, a R2R3-MYB
factor binds to a specific promoter. It cannot activate the promoter on its own, at least this was
shown for the AtDFR promoter and R2R2-MYB proteins of MBW(AtTTG1) complexes [46]. bHLH
factors could dock to the WD40-platform TTG1 (Figure 5a). When the appropriate bHLH-TTG1 pair is
available, it binds the R2R3-MYB factor, facilitated maybe by a bHLH binding motif at an appropriate
distance, and the ternary complex is (at least transiently) formed (Figure 5b). Prior DNA binding of
the R2R3-MYB factor might not be required. TTG1 possibly even dissociates again (Figure 5c), but
was required for joining the bHLH-R2R3-MYB pair. This scenario also fits with the recently described
mechanism of competition of TTG1 and GL1 for binding to GL3 [122].

The requirement of two transcription factors for target gene expression allows for integration of
two or more signaling pathways through the regulation of protein abundance for both, the respective
bHLH and R2R3-MYB factor. A third layer is added through the required presence of TTG1, which is
needed in the scenario described above for initial complex formation. TTG1 might also be necessary to
protect the bHLH factor from degradation or inactivation to achieve a threshold of molecules which
jointly activate (with the respective MYB factor) the target gene’s transcription. Therefore, the rescue
of ttg1 mutants overexpressing the R gene from maize could be explained if R is not selective towards
its A. thaliana R2R3-MYB interaction partner. Moreover, its protein levels, due to the overexpression,
are high enough to compete with the negative regulation of the non-endogenous R protein.

In the above-described scenario, the competitors of the R2R3-MYB proteins for bHLH binding,
R3-MYB factors (e.g., [56]) that do not act as transcriptional activators, could act very efficiently:
they might bind to the TTG1-bHLH dimer also prior to DNA-binding (Figure 5d), evoke TTG1
release and thereby subject the bHLH protein to its negative regulators, e.g., the ubiquitin ligase
UBIQUITIN-PROTEIN LIGASE 3 (UPL3)/KAKTUS [124]. The transcription of the target gene through
an MBW(AtTTG1) complex is thereby counteracted.

The possible scenarios are still diverse and several might occur in different conditions, tissues and
developmental stages. Many regulatory aspects are still to be uncovered for these well-investigated
MBW(AtTTG1)-complexes. Careful hypothesis testing is required in the future and testing which
mechanisms also apply for the other AtTTG1-dependent traits. Therefore, it is worth summarizing
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the regulatory mechanism stemming not only from work on the flavonoid-related AtTTG1-dependent
traits. Which of these also act in flavonoid biosynthesis? Which evolved independently?

8. AtTTG1 and MBW(AtTTG1) Complexes: Modes of Regulation

Accumulating findings suggest that the AtTTG1-dependent regulation is more diverse than
initially expected and point to a multilayered regulation of the flavonoid biosynthesis core enzymes.
The relevance of TTG1 as a regulatory hub is pointed out by a plethora of regulatory pathways and
mechanisms regulating upstream, downstream TTG1 and even within MBW(AtTTG1) complexes.
This diverse AtTTG1-dependent trait regulation seems to require up- and down-stream partners either
within MBW(AtTTG1) complexes or additional partners. As transcriptional regulators like AtTTG1
are not expected to expand with organism complexity to the extent as transcription factor families like
R2R3-MYB or bHLH factors do [28], regulatory mechanisms centered on TTG1 might be conserved
between TTG1-dependent traits.

In the following, we are listing various modes of MBW(AtTTG1) regulation and provide example
publications. On the level of bHLH/MYB factors, the relevance of post-translational modifications has
been reviewed recently [125]. Many findings have extended the picture presented more than a decade
ago, e.g., by Broun in 2005 [38], already suggesting some scenarios for which supportive results were
found. Here, we do not differentiate between traits, as some of the mechanisms can be expected to be
utilized for more than one trait, but this remains to be investigated in the future:

• Differential complex formation (for an example of differential target regulation in seeds: [115]).
• Insights from trichome and root hair patterning: activator/inhibitor and lateral inhibition,

feedback loops’ de novo pattern formation (including cell-to-cell movement) [36,60,126,127].
• Trapping and deletion model [48,128].
• Competitors (R3-MYBs) [54–56,129,130].
• Competition of TTG1 and an R2R3-MYB factor for binding to a bHLH factor [122].
• Comparison of the ternary complex and bHLH-R2R3-MYBs activating target promoters [122].
• Phosphorylation, e.g., of TTG1 through BRASSINOSTEROID-INSENSITIVE 2 (BIN2) [49].
• Spatiotemporal accumulation and regulation of MBW(AtTTG1) components themselves

(e.g., reviewed for TT8 in [119]) [131].
• Regulatory sequences in introns [112].
• Not only AtGL3 is shown to bind directly to regulated promoters, but also AtTTG1 can bind to

the TTG2 promoter [123].
• Spatio-temporal expression of core enzymes and spatio-temporal accumulation of core substances

throughout the developmental stages and in different tissues [11,20,131,132].
• Protein stability and possible proteasomal-dependent degradation of MBW(AtTTG1) components:

the proteasomal-dependent degradation of TTG1 [128] and other MBW(AtTTG1) components
have been shown [124,133,134]. In particular, PRODUCTION OF ANTHOCYANIN PIGMENT
(PAP)2 and PAP1 are potential targets of COP1/SPA complexes that target transcription factors for
proteasomal degradation [134]. Therefore, protein stability in dependence of light might have a
regulatory influence on MBW(AtTTG1) complexes within flavonoid biosynthesis regulation [134].
UPL3 has been identified to mediate the proteasomal degradation of GL3 and ENHANCER OF
GLABRA3 (EGL3) [124].

• Interaction with other proteins that are putative up- or down-stream modulators of MBW(AtTTG1)
complex activity: e.g., interaction of TRANSPARENT TESTA1 (TT1) with TRANSPARENT
TESTA2 (TT2) and PAP1, TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP)3 with R2R3-MYB
factors and TTG2, SPL4, SPL5, BIN2, GEM or AT3G03960 with TTG1 [49–53,135–137]. Apart from
post-translational modifications, interactors might interfere with MBW(AtTTG1) complex
formation, lead to alternative complex formation and affect the MBW(AtTTG1) transcriptional
activity as suggested for the TTG1-SPL4/5 and TTG2 interactions [51,52].
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• Multilayered upstream (environmental) regulation, e.g., in the frame of sucrose and hormone
signaling pathways [113].

To transfer this wealth of knowledge not only from trait to trait, but also between species, an
evolutionary embedding of MBW(AtTTG1) components (here, emphasis on AtTTG1) is required.

9. AtTTG1: Evolutionary Embedding and Functional Orthologs

The flavonoid biosynthetic pathway is found in a wide range of land plants, even in the bryophytes
(mosses), and it has been suggested that synthesis of flavones, flavanones and flavonols may have
evolved, first, to provide chemical messengers and then UV sunscreens [10,23]. Maize (Zea mays),
petunia (Petunia hybrida) and snapdragon (Antirrhinum majus) emerged as the major models for the
study of flavonoid biosynthesis, and genes encoding R2R3-MYB and bHLH proteins were identified
as regulators of flavonoid structural genes, demonstrating broad conservation of this regulatory
mechanism in these plants [121,138–148]. By then, the relationship between WDR proteins and
the R2R3-MYB/bHLH transcriptional regulators had not been revealed. The first anthocyanin
regulatory locus that was cloned from petunia, AN11, encodes a protein containing five WD40
repeats [149]. Further support for the formation of an MBW complex in plants came from interaction
studies conducted in A. thaliana [40]. Similarly, the maize WDR PAC1 is specifically involved in the
flavonoid pathway, but can complement all ttg1 phenotypes in A. thaliana, and it became the first
identified TTG1-like protein in monocots [138,150]. Later, WDR proteins were found to regulate the
flavonoid biosynthetic pathway in other plants such as Arabis alpina, Perilla frutescens, Ipomoea nil,
Medicago truncatula, Malus domestica and many others (see Figure 6 and Table 2) [138,151–155].

Regularly, new orthologs are identified, which might be of relevance for breeding purposes.
Not only are allelism tests and rescue experiments within the respective species conducted (if
applicable) to explore the ortholog’s function, when mutants or TTG1 variants are identified. More
often, the function of the orthologs is estimated by using the model species A. thaliana. In cross-species
rescue experiments, TTG1 orthologs from other species are expected to take over AtTTG1 function at
least in part within respective MBW(TTG1) complexes. This year, for example, ectopic expression of
SiTTG1 (a newly identified AtTTG1 ortholog in Setaria italica) in the A. thaliana ttg1-13 background was
shown to fully rescue the glabrous trichome and the flavonoid phenotype. This suggests that SiTTG1
is a member of flavonoid biosynthesis regulators in monocots [156]. Another example is BrTTG1,
which was isolated from a brown-seeded hairy Brassica rapa and found to functionally complement an
A. thaliana ttg1 mutant, while another ortholog, isolated from Brassica rapa yellow-seeded glabrous
germplasm, was not functional [157].

It needs to be mentioned that promoter sequences and MBW components might have differentially
evolved in the respective other species and thereby led to shifts in MBW(TTG1) function. Nevertheless,
newly-identified orthologs also provide novel insights into the evolutionary aspects of MBW(TTG1)s.

MBW complexes have been identified as common and conserved flavonoid biosynthesis
regulators, similarly reported for various land plants; although in several cases, not all components
have been identified or characterized (Figure 6 and Table 2). Recently, MBW complexes
(PaWD40-1-PabHLH1/2-PaMYB29/32/33/35) were characterized in Norway spruce (Picea abies) and
shown to be involved in the regulation of the flavonoid biosynthesis pathway [94]. This reveals a full
MBW regulator in gymnosperms, which were previously thought to be devoid of TTG1 orthologs [31].

MBW complexes determine the spatiotemporal expression of flavonoid biosynthesis target
genes that account for tissue-specific accumulation of flavonoids. Some MBW complexes from
monocots can control the expression of enzymes of the entire pathway, while others specifically
control late flavonoid biosynthesis genes in eudicots [158]. Nevertheless, the bHLH interaction motif
([DE]Lx2[RK]x3Lx6Lx3R) found in R2R3-MYB members of MBW complexes is highly conserved among
higher plant species [125], suggesting that at least MYB and bHLH interactions arose early during the
event of land plant evolution.
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Figure 6. MBW proteins are common and conserved modules involved in regulating flavonoid
biosynthesis throughout the plant kingdom. The phylogeny of selected land plants is reflected by
time tree topology on the left (TimeTree (left) generated using the TimeTree database (www.timetree.
org) [159]). Functionally-characterized MBW proteins from different plant species are listed in the
middle (flavonoid pathway exclusive). Question marks indicate unidentified components. For a full
list of proteins and references, please refer to Table 2.

Interestingly, in the rosid clade, besides regulation of the flavonoid biosynthesis pathway,
combinatorial MBW complexes evolved several extra functions: for instance, trichome patterning,
root hair patterning and seed coat mucilage production in A. thaliana [41–43,45,128,160–165] or
Arabis alpina [155] and seed hair formation in cotton (Gossypium hirsutum) [166–169]. These observations
imply that a common regulatory MBW module has been adapted for controlling specific epidermal
cell fates in rosids.

However, such pleiotropic functions of MBW complexes have neither been observed in the
asterid clade nor in monocots. Based on this, a speculation is raised: new roles of MBW complexes in
controlling epidermal cell fate may have diverged since the evolutionary separation of these major
plant groups, although the details of this are still not clear [170,171]. This is supported by the findings
that multicellular trichome and conical cell formation in asterids, like Antirrhinum and Solanaceae
species, are regulated by MIXTA-like R2R3-MYB-related proteins in which the bHLH interaction
motif ([DE]Lx2[RK]x3Lx6Lx3R) is devoid. MIXTA gene overexpression in rosids does not affect
trichome formation [171–173]. AtGL1, a trichome patterning specific-R2R3-MYB protein, was grouped
phylogenetically together with AtPAP and AtTT2 that act in the regulation of the flavonoid biosynthesis
pathway. This clade is distinct from the MIXTA-like regulators branch [72,174,175]. It is assumed that
duplication and subsequent divergence, as known for other protein families [28], has been the driving
force to evolve new roles of MBW complexes and other epidermal cell fates in rosids as compared to
asterids [174].

Such divergence might have been revealed in Beta vulgaris where the dominating pigment is
betalain [176]. Betalain accumulation was shown to be regulated through BvMYB1 (gene at the beet
Y locus), an R2R3-MYB factor. The authors speculate that this can be seen as an evolutionary event
allowing betalains to functionally replace anthocyanidins [177]. Molecular evolution seems to have
occurred. Similar to the AmMIXTA R2R3-MYB-related protein, BvMYB1 cannot interact with bHLH
proteins. When mutating the interaction motif to the consensus plus an additionally conserved
amino acid, bHLH interaction was reconstituted [177]. With the genomic sequence, RNAseq data and
functional categorization at hand, a deeper insight into the changes and evolution of protein binding,
as well as cis regulatory motives is to be expected in the future [178].

www.timetree.org
www.timetree.org
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Table 2. MBW (R2R3-MYB-bHLH-WDR) proteins (putatively) regulating flavonoid biosynthesis from different plant species.

Species
MBW Proteins

References
WDR bHLH R2R3-MYB

Zea mays ZmPAC1 ZmR/B
ZmIN1 (repressor)

ZmC1; ZmPL
ZmP1 (independence of WDR and bHLH) [58,82,83,138,144,145,179–181]

Setaria italica SiTTG1 [156]

Oryza sativa
OsRa/Rb/Rc

OsB2
OsRc-bHLH

OsC1; OsRc-MYB1/2 [29,182–184]

Freesia hybrida FhTT8L
FhGL3L [185]

Antirrhinum majus AmDEL
AmMUT

AmROS1/2; AmVE
AmMYB308/330 (repressors) [147,186–188]

Perilla frutescens PfWD (cytosol) PfMYC [151]

Petunia hybrida PhAN11 (cytosol) PhAN1
PhJAF13

PhAN2/4; PhPH4
PhMYB27 (repressor) [139–143,147,149,175]

Nicotiana tabacum NtAN1a/b NtAN2 [189]

Ipomoea nil InWDR1
InWDR2 *

InbHLH2
InbHLH1/3 *

InMYB1
InMYB2/3 * [152]

Arabidopsis thaliana AtTTG1

AtTT8
AtGL3

AtEGL3
AtMYC1 *

AtPAP1/2; AtMYB113/114; AtTT2; AtMYB5
AtMYB4 (repressor) [15,27,34,42,46,47,165,190–196]

Arabis alpina AaTTG1 [155]

Brassica oleracea BoTTG1 BoTT8
BoEGL3 *

BoMYB2
BoMYB12 * BoTT2 * [197]

Brassica rapa BrTTG1 BrTT8 [198,199]

Gossypium hirsutum GhTTG1/3 GhDEL61/65 *
GhMYC1 * GhRLC1 [166–169]
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Table 2. Cont.

Species
MBW Proteins

References
WDR bHLH R2R3-MYB

Prunus persica PpWD40 PpbHLH3 PpMYB10.1/10.3; PpMYBPA1; PpMYB16
PpMYB111 (a repressor) [200–202]

Malus domestica MdTTG1
MdbHLH3

MdbHLH33
MdGL3

MdMYB1/9/10/11; MdMYBA [153,203,204]

Humulus lupulus HlWDR1 HlbHLH2 HlMYB2/3
HlMYB7 (a repressor) [205]

Lotus japonicus LjTTG1 LjTT8, LjEGL3
LjRHL1 * LjTAN1; LjTT2a/b/c [206,207]

Medicago truncatula MtWD40-1 MtTT8
MtEGL3 *

MtLAP1; MtPAR; MtMYB5/14
MtMYB2 (a repressor) [154,208–212]

Populus trichocarpa PtrTTG1 PtrTT8 PtrMYB134/115/116/117/118/119;
PtrMYB182 (a repressor) [213–215]

Vitis vinifera VvWDR1/2 VvMYCA1
VvMYC1 VvMYBPA1; VvMYBF1; VvMYBA1 [216–220]

Picea abies PaWD40-1 PabHLH1/2
PabHLH3 *

PaMYB29/32/33/35
PaMYB30/31/34 * [94]

Picea mariana PmMBF1 [221]

Pinus taeda PtMYB1/4/8/14 [222,223]

Physcomitrella patens PpRSL1/2 *(rhizoid
development) [29,224]

* Functions in flavonoid biosynthesis regulation remain to be confirmed. Note, not for all proteins have full MBW complexes been described (so far). Some might turn out not to be present
in these species as MBW complexes.
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10. Perspective

“Who does what, where, when and why?” There is constant progress in understanding the
spatiotemporal regulation mediated by MBW(TTG1) complexes in the model species A. thaliana,
but also in fruits and crops. Understanding changing flavonoid compositions, e.g., for the benefit
of pre- and post-harvest fruit quality in dependence of developmental and environmental cues
(see, e.g., [225,226]) includes understanding the activity of major regulators of the flavonoid
biosynthesis pathway like the MBW(TTG1) complexes. However, also biotechnological engineering of
the flavonoid biosynthesis might benefit from recent findings on the pathways’ regulation [116].

Why plants accumulate specific flavonoid compositions, especially a wide range of specific
derivatives in different tissues throughout development, is still not fully understood, and the function
of individual substances, as well as mixtures could be a central question driving future research.

11. Methods

Seven hundred and sixty reviews containing “flavonoid(s)” in the title were extracted with
EndNote X8 (Clarivate Analytics, Philadelphia, PA, USA) from the PubMed and Web of Science
databases in October 2017 and sorted by topic. The same databases were searched with EndNote X8 for
an initial overview of literature related to TTG1/URM23 (search for full gene name and abbreviation
in title/abstract/keywords). Additional references were manually selected. We apologize to any
researcher who′s work on the topic this review could not cover.
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Abbreviations

Aa Arabis alpina
Am Antirrhinum majus
AN (e.g., AN11) ANTHOCYANIN (e.g., ANTHOCYANIN11)
ANR ANTHOCYANIDIN REDUCTASE
ANS ANTHOCYANIDIN SYNTHASE
At, A. thaliana Arabidopsis thaliana
B BOOSTER
BAN BANYLUS
bHLH basic HELIX-LOOP-HELIX
BIN2 BRASSINOSTEROID-INSENSITIVE 2
Bo Brassica oleracea
Br Brassica rapa
C1 COLORLESS1
ChIP Chromatin Immunoprecipitation
Col Columbia
COP1 CONSTITUTIVELY PHOTOMORPHOGENIC 1
CPC CAPRICE
DEL DELILA
DFR DIHYDROFLAVONOL 4-REDUCTASE
EBG early biosynthetic gene
EGL3 ENHANCER OF GLABRA3
EMS Ethyl methanesulfonate
Est Estland
ETC ENHANCER OF TRY AND CPC1
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Fh Freesia hybrida
GEM GL2-EXPRESSION MODULATOR
g glabra
Gh Gossypium hirsutum
GL1 GLABRA1
GL3 GLABRA3
Hl Humulus lupulus
In Ipomoea nil
IN1 INTENSIFIER1
JAF JOHNANDFRANCESCA
LAP1 LEGUME ANTHOCYANIN PRODUCTION 1
LBG late biosynthetic gene
LDOX LEUCOANTHOCYANIDIN DIOXYGENASE
Ler Landsberg erecta
Lj Lotus japonicus
Md Malus domestica
Mt Medicago truncatula
MUT MUTABILIS
MYB MYELOBLASTOSIS (homolog)
MYBL MYB-like
MYBPA MYB transcription factors regulating PA synthesis
MYC MYELOCYTOMATOSIS (homolog)
Nt Nicotiana tabacum
Os Oryza sativa
P1 PERICARP COLOR1
Pa Picea abies
PAC1 PALE ALEURONE COLOR1
PAP PRODUCTION OF ANTHOCYANIN PIGMENT
PAR PROANTHOCYANIDIN REGULATOR
PAs proanthocyanidins
Pf Perilla frutescens
Ph Petunia hybrida
PH pH
PL PURPLE LEAF
Pm Picea mariana
Pp Physcomitrella patens
Pp Prunus persica
Pt Pinus taeda
Ptr Populus trichocarpa
R RED
RHL1 ROOT HAIRLESS1
RLC RED LEAF COTTON
ROS ROSEA
RSL ROOT HAIRT DEFFECTIVE SIX-LIKE
Si Setaria italica
SPA SUPPRESSOR OF PHYA-105
SPL SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
TAP TRANSCRIPTION-ASSOCIATED PROTEIN
TCP TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1
TCL TRICHOMELESS
T-DNA transfer-DNA
TRY TRIPTYCHON
tt transparent testa
TT1 TRANSPARENT TESTA1
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TT2 TRANSPARENT TESTA2
TT8 TRANSPARENT TESTA8
TTG1 TRANSPARENT TESTA GLABRA 1
TTG2 TRANSPARENT TESTA GLABRA 2
UPL3 UBIQUITIN-PROTEIN LIGASE 3
URM23 UNARMED23
UTR untranslated region
VE VENOSA
Vv Vitis vinifera
WDR WD40 repeat
WER WEREWOLF
Zm Zea mays
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