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Quantification of microtubule stutters: dynamic 
instability behaviors that are strongly associated 
with catastrophe

ABSTRACT Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), 
a remarkable process involving phases of growth and shortening separated by stochastic 
transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first character-
izing and quantifying these dynamics, a subjective process that often ignores complexity in 
MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis 
(STADIA) that identifies and quantifies not only growth and shortening, but also a category 
of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length 
change tends to be smaller in magnitude than during typical growth or shortening phases. 
Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede 
most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting 
that stutters are mechanistically involved in catastrophes. Related to this idea, we show that 
the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to 
growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics 
compared with previous methods. The treatment of stutters as distinct and quantifiable DI 
behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their 
regulation by binding proteins.

1. INTRODUCTION
Microtubules (MTs) are protein-based biological polymers that have 
a central role in fundamental eukaryotic processes including cellular 
organization, chromosome separation during cell division, and in-
tracellular transport (Goodson and Jonasson, 2018). Crucial to the 
function of MTs in these processes is a well-known behavior termed 
dynamic instability (DI), where the polymers switch stochastically 
between periods of growth and shortening as seen in traditional 
MT length-history plots (Figure 1, A and B) (Mitchison and Kirschner, 
1984; Desai and Mitchison, 1997). Accurate quantification of MT DI 
behavior is essential for understanding its significance and mecha-
nism and also for investigating the activities of DI-regulating 
proteins and pharmaceutical agents (e.g., chemotherapy drugs, 
fungicides).
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1.1. Traditional DI measurements
Traditionally, MTs have been treated as two-state polymers; that is, 
MTs have been considered to be either growing or shortening, with 
abrupt, instantaneous transitions called catastrophes and rescues 
between these two phases (Figure 1, A, B, and D). In this framework, 
MT behavior is characterized by four quantities called DI parameters 
(Walker et al., 1988):

• Vgrowth—velocity of growth, commonly measured as the mean of 
the growth rates as averaged over the set of growth phases

FIGURE 1: Qualitative examples of MT behaviors that do not fit the two-state (growth-
shortening) framework. (A) An illustration of the classically recognized two-state representation 
of dynamic instability (DI), in which behavior is classified as either growth or shortening phases, 
with instantaneous transitions known as catastrophe and rescue events. (B, D) Zoomed-out 
length-history plots of simulation data (B, dimer-scale 13-protofilament model, temporal 
resolution of ~1650 dimer-scale events per second per MT, Materials and Methods Section 5.2) 
and experimental data (D, temporal resolution of 2 frames per second, note that 
depolymerizations were not tracked in their entirety in these experiments, Materials and 
Methods Section 5.1). Black rectangles in B and D indicate the zoomed-in portions shown in C 
and E, respectively. (C, E) Closer inspection of transitions shows ambiguous behavior that 
cannot clearly be categorized as either growth or shortening.

• Vshort—velocity of shortening, com-
monly measured as the mean of the 
shortening rates as averaged over the 
set of shortening phases

• Fcat—frequency of catastrophe, com-
monly measured as the number of catas-
trophes (transitions from growth to 
shortening) per time in growth

• Fres—frequency of rescue, commonly 
measured as the number of rescues 
(transitions from shortening to growth) 
per time in shortening

The specific procedures for measuring 
these DI parameters have varied among re-
search groups, but methods typically begin 
with the user specifying the minimal values 
(i.e., thresholds) of length change, time du-
ration, and/or velocity required for recog-
nizing phases of growth and shortening; 
sometimes pauses are also allowed, as 
discussed more below in Section 1.2. Then 
the length-history plot is partitioned into 
growth and shortening segments (Figures 
1A and 2, A and B). The endpoints of the 
segments are assumed to correspond to 
the events of catastrophe and rescue, and 
the slopes of the segments provide the 
growth or shortening velocities. In other 
words, the velocity of an individual growth 
or shortening phase is typically determined 
as the slope of a line drawn between the 
points of catastrophe and rescue (e.g., 
Zanic, 2016).

1.2. Limitations of common methods 
for quantifying dynamic instability
While determination of DI parameters as 
described above is a standard way to quan-
tify MT behavior (see, e.g., Portran et al., 
2017; Zwetsloot et al., 2018; Kapoor et al., 
2019, for recent examples), there are as-
pects of MT behavior that are not captured 
using this approach. First, it has long been 
recognized that both growth and shorten-
ing rates are variable. This variability occurs 
both with and without MT binding proteins 
(MTBPs), and it is observed both within and 
between individual growth phases and simi-
larly for shortening phases (e.g., Gilder-
sleeve et al., 1992; Pedigo and Williams, 
2002; Schek et al., 2007; Lawrence et al., 

2018). Spectral analysis of such variability in growth and shortening 
rates has suggested that the two-state (growth and shortening) 
model approximation agrees well with experimentally observed MT 
behavior when frequencies in the length-history data are analyzed at 
timescales longer than ∼1 min but underestimates the observed 
variability at timescales shorter than ∼1 min (Odde et al., 1996). 
These observations raise the concern that DI analysis methods that 
categorize an entire period between nucleation (or rescue) and ca-
tastrophe as a single growth or shortening phase could cause func-
tionally significant details of MT behavior to be missed.
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Second, pauses, attenuation phases, and other intermediate 
states have been observed in experiments and proposed in mod-
els, but the way these behaviors have been identified and defined 
has varied. Pauses are commonly observed in vivo (e.g., Sammak 
and Borisy, 1988; Schulze and Kirschner, 1988; Waterman-Storer 
and Salmon, 1997; Gierke et al., 2010; Kamath et al., 2010; Apple-
gate et al., 2011). Pauses have also been observed in vitro in the 
presence of MTBPs (e.g., Moriwaki and Goshima, 2016), cell ex-
tracts (e.g., Keller et al., 2008), and drugs (e.g., Toso et al., 1993), 

and occasionally for purified tubulin (e.g., Walker et al., 1988). 
Recognition of states other than growth and shortening has led 
various authors to consider theoretical three- or four-state models 
in which the additional states are pauses or an intermediate state 
(Odde et al., 1995; Tran et al., 1997; Jánosi et al., 2002; Maly, 
2002; Keller et al., 2008; Smal et al., 2010; Blackwell et al., 2017). 
Thus, it is clear that many researchers are interested in methods for 
identifying states beyond growth and shortening in data and the 
inclusion of such states in the development of theory. However, 

FIGURE 2: Comparison of classical DI analysis method and STADIA. Classical DI analysis method (A, B): Major peaks 
and valleys (blue triangles) are first identified (A), and these are defined as catastrophes and rescues (or nucleation 
events), respectively. Each period from a nucleation event or rescue to a catastrophe is defined as a growth phase, and 
each period from a catastrophe to a complete depolymerization or rescue is defined to be a shortening phase (B). Then, 
Vgrowth and Vshort are calculated from the slopes of straight line segments plotted between the transitions (B, orange 
lines) or alternatively, from regression lines fitted to the data points in each period. Fcat and Fres are calculated from the 
number of catastrophes or rescues divided by the total time in growth or shortening, respectively. STADIA (C–J): An 
initial approximation of inputted length-history data is produced by connecting major peaks and valleys with line 
segments (C, similar to classical methods). STADIA then iteratively adds segment endpoints to improve the 
approximation (D, this iterative process is regulated by user-defined parameters Maximum Error Tolerance and 
Minimum Segment Duration). The time duration, height change, and slope (velocity) of each line segment are measured 
(D) and visualized as a point in 3-dimensional space (E). The orange circles in (E, F) denote the approximate location of 
the data point corresponding the example line segment in (D). The line segments are grouped into “clusters” (see 
Figure 3), as indicated by the colors in the plots (F, G, J; key in left column of H). The clusters are named and grouped 
into larger behavior classes based on their average features (e.g., average slope) (H). STADIA then identifies multiple 
types of transitions (I), allowing the calculation of various metrics including (and expanding beyond) the traditional 
Vgrowth, Vshort, Fcat, and Fres. In (G, J), the white lines represent the raw length-history data, and the black lines represent 
the line segment approximation. Results Section 2.2 contains a more thorough overview of STADIA’s analysis procedure, 
and full details are provided in Materials and Methods Sections 5.4–5.6.
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there is not a general consensus on how these states should be 
defined.

In particular, as noted in Section 1.1, identification of growth, 
shortening, and pause phases in length-history data frequently re-
lies on fixed thresholds for velocity, length change, and/or time du-
ration. For example, it has been common to require a length-change 
threshold of at least 0.5 microns to recognize a growth or shortening 
phase, but the exact way in which this threshold was applied to data 
has varied among research groups (e.g., compare Sammak and 
Borisy, 1988; Dhamodharan and Wadsworth, 1995; Rusan et al., 
2001; Kamath et al., 2010; and Fees et al., 2017). Others have used 
combinations of thresholds on the speed of length change (e.g., in 
pixels per frame or microns per minute), length change itself, and/or 
number of data points involved (e.g., compare Panda et al., 1996; 
Gierke et al., 2010; Kiris et al., 2010; Matov et al., 2010; Yenjerla 
et al., 2010; Mahrooghy et al., 2015; and Moriwaki and Goshima, 
2016). It is important to be aware that thresholds have differed be-
tween analyses, because it is well-established (but perhaps not 
widely recognized) that thresholds can have dramatic effects on 
measurements of MT dynamics (e.g., Odde et al.,1996; Gierke 
et al., 2010; Matov et al., 2010; Smal et al., 2010; Prahl et al., 2014; 
Guo et al., 2018).

Finally, recent improvements in imaging technology have en-
abled acquisition of MT DI data with both high temporal and high 
spatial resolution, which allows for the possibility of analyzing 
length-history data at finer scales (e.g., Maurer et al., 2014; An-
drecka et al., 2016; Mickolajczyk et al., 2019). These data have veri-
fied the intrinsic variability of MT behavior. They have also demon-
strated that both growth and shortening phases can include 
significant time periods (e.g., a few seconds in duration or longer) 
during which the growth or shortening velocity slows significantly 
(Figure 1, C and E; see also Maurer et al., 2014; Duellberg et al., 
2016a,b; Rickman et al., 2017). These slowdown periods likely over-
lap with pauses discussed above, though it is important to note that 
“bona fide” pauses are often considered to be time periods “during 
which no polymerization or depolymerization occurs” (Gierke et al., 
2010) and so are separable from periods of slowed growth or short-
ening, at least in principle.

Significantly, these slowdown periods can also occur in associa-
tion with catastrophe (Maurer et al., 2014; Duellberg et al., 
2016a,b; see also predictions based on simulations in Margolin 
et al., 2012), making it difficult to determine with reasonable preci-
sion where transitions between phases begin and end. To illustrate 
this problem, consider the zoomed-out length-history plots that 
are typically used for DI analysis (Figure 1, B and D). Examination 
of these plots can make the task of determining when transitions 
occur look trivial. However, the zoomed-in views made possible by 
high-resolution data acquisition (Figure 1, C and E) demonstrate 
the difficulty of identifying the points of transition and/or catego-
rizing DI behaviors.

Thus, many researchers have recognized that MT DI behavior is 
more complex than a simple two-state system of growth and short-
ening with abrupt transitions. The four traditional DI parameters 
(Vgrowth, Vshort, Fcat, and Fres) would be sufficient to quantify such a 
two-state system but are not sufficient to quantify all aspects of ob-
served MT DI as discussed above. One previous approach to deal-
ing with the existence of slowdown periods has been to exclude 
them from quantification of DI parameters, because including these 
slowdown periods in either growth or shortening phases would re-
duce the magnitude of measured values of Vgrowth and Vshort (e.g., 
Rickman et al., 2017). However, entirely excluding these behaviors 
from analysis could result in the loss of information critical for under-

standing the mechanisms of phase transitions or their regulation by 
MTBPs. Furthermore, although previous publications have quanti-
fied some aspects of the slowdown periods (e.g., time durations 
[Maurer et al., 2014]), none of these to our knowledge have pre-
sented a set of velocities and transition frequencies that expands 
beyond the traditional four DI parameters. Capturing and quantify-
ing behaviors in addition to growth and shortening would be a key 
step toward further dissecting the recognized variations in growth 
and shortening rates, improving the precision of DI metrics, and 
elucidating mechanisms of DI.

To study MT dynamics more comprehensively than is possible 
with standard DI approaches, we developed the Statistical Tool for 
Automated Dynamic Instability Analysis (STADIA), an automated 
tool that uses established statistical methods to characterize and 
quantify MT behavior without prior assumptions about the number 
or characteristics of the behaviors detected. As shown in the Results 
below, STADIA can be used with both simulation- and experiment-
generated data, and it is compatible with a wide range of data ac-
quisition rates.

1.3. Summary of conclusions
Applying STADIA to in silico and in vitro MT length-history data 
demonstrated the prevalence of a category of intermediate behav-
iors that we propose calling “stutters.” Stutters share similar charac-
teristics with each other and are distinguishable from typical growth 
and shortening. The primary distinguishing factor is that during stut-
ters the overall rate of change in MT length is markedly smaller in 
magnitude compared with the velocities of classically recognized 
growth and shortening phases. Stutters are also distinguishable 
from pauses in that during true pauses “no polymerization or depo-
lymerization occurs” (Gierke et al., 2010). In contrast, during stutters 
dimer-scale dynamics continue, and during most stutters measur-
able length changes do occur although at slower velocities than 
during typical growth and shortening. Stutters, as recognized and 
quantified by STADIA, overlap with previously observed behaviors 
such as precatastrophe slowdowns (e.g., Maurer et al., 2014) and 
events that have been called “pauses” despite length changes oc-
curring (e.g., Kamath et al., 2010; Matov et al., 2010; Guo et al., 
2018). The relationship of our results to previous work is further cov-
ered in Discussion Section 3.3.

Analysis of length-history data using STADIA leads to two major 
observations regarding the relationship between stutters and 
catastrophes:

• Stutters precede most catastrophes in our in vitro control and in 
silico data sets.

• The MT stabilizing protein CLASP2γ reduces catastrophe in vitro 
by increasing the fraction of stutters that return to growth rather 
than entering shortening phases. Specifically, CLASP2γ reduces 
the frequency of growth-to-stutter-to-shortening (which we term 
transitional catastrophe) and increases the frequency of growth-
to-stutter-to-growth (which we term interrupted growth).

These results indicate that STADIA is able to recognize and 
quantify behaviors that are missed by classical methods of analyzing 
MT length-history data. Furthermore, these results suggest that 
stutters play a mechanistically significant role in the process of catas-
trophe. We conclude that identification of stutters as distinct from 
growth, shortening, or pause warrants their future inclusion in DI 
analyses and serves as a necessary step forward in gaining a better 
understanding of MTs, their dynamics, and their regulation by 
MTBPs.
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2. RESULTS
For ease of navigation and to allow readers to focus on the informa-
tion that is most relevant to them, we have divided the Results below 
into six sections. Section 2.1 introduces the in vitro and in silico data 
sets used in this work. Section 2.2 provides a general overview of our 
new tool, STADIA. Sections 2.3, 2.4, and 2.5 present the results of 
using STADIA to analyze our data sets. More specifically, in Section 
2.3, we use STADIA to identify and characterize MT behaviors, 
including a category of intermediate behaviors that we term 
“stutters.” In Section 2.4, we use STADIA to quantify characteristics 
of the behaviors identified in Section 2.3. This quantification includes 
studying the relationship between stutters and phase transitions, 
which shows that stutters are strongly associated with catastrophe. In 
Section 2.5, we further test the functional significance of stutters in 
catastrophe and demonstrate the utility of STADIA in studying 
MTBPs. More specifically, we use STADIA to analyze the dynamics of 
in vitro MTs growing in the presence of the anticatastrophe factor 
CLASP2γ, thus examining for the first time its effect on stutters. In 
Section 2.6, we test the effects of varying the values of STADIA’s in-
put parameters and demonstrate the robustness of the conclusions 
drawn in Sections 2.3–2.5.

2.1. Data sets used in this work: in vitro and in silico
In the analysis below (Sections 2.3–2.6), we used STADIA to analyze 
length-history data sourced from both laboratory experiments (in 
vitro) and computational simulations (in silico). We provide a brief 
overview of the data sets here, with additional information in 
Materials and Methods Sections 5.1 and 5.2.

We analyzed two in vitro data sets: a control with purified tubulin 
+ EB1 and a treatment data set with purified tubulin + EB1 + 
CLASP2γ. The data sets were obtained using total internal reflection 
fluorescence (TIRF) microscopy with images taken at 2 frames per 
second (fps). A subset of the experimental data used here was previ-
ously analyzed using other methods (in Lawrence et al., 2018). The 
in vitro data sets enabled us to test STADIA on data from physical 
experiments and to test STADIA’s utility in analyzing the effects of a 
MTBP on DI behavior.

The in silico data set was obtained using our dimer-scale 13-pro-
tofilament (PF) kinetic Monte Carlo model of MT dynamics (Margo-
lin et al., 2012). The model simulates attachment/detachment of 
tubulin dimers to/from PFs, formation/breaking of lateral bonds be-
tween dimers in neighboring PFs, and hydrolysis converting GTP-
bound dimers to GDP-bound dimers. The values of kinetic rate con-
stants governing these biochemical events are input by the user. 
The observed DI behavior is an emergent property that arises as a 
consequence of the dimer-scale events. The input parameters for 
the model were tuned based on experimental measurements from 
Walker et al. (1988). The MT length-history data outputted by the 
simulation have spatial resolution at the scale of individual tubulin 
dimers (8 nm in length) and temporal resolution at the scale of the 
biochemical events described above (>1000 events per second per 
MT for the parameters used here).

Including the in silico data in our analysis is useful for several 
reasons. First, our in silico data allow us to test STADIA on a data set 
that has quantitatively different DI behavior as compared with the in 
vitro data sets. Note that the in silico data are not intended to repli-
cate any numerical values from the in vitro data sets used here. 
Rather, using STADIA on quantitatively different data sets provides a 
test of the generality of the qualitative conclusions that we draw. 
Further, the detection of stutters in the in silico data demonstrates 
that stutters can arise as an emergent property of the dimer-scale 
biochemical events described above. Additionally, because the in 

silico data are recorded at the scale of the addition and loss of indi-
vidual tubulin dimers, the in silico data have higher resolution than 
is currently possible in in vitro experiments. Therefore, comparison 
of the in silico and in vitro data sets demonstrates that STADIA is 
able to process data from a wide range of spatial and temporal reso-
lutions. Relatedly, the high temporal resolution makes the in silico 
data set ideal for testing the robustness of STADIA to changes in 
data acquisition rates, because the full-resolution in silico data can 
be compared with data with imposed slower acquisition rates 
(Section 2.6).

2.2. STADIA: a novel tool for characterizing and quantifying 
MT dynamics
2.2.1. Goals of STADIA. To meet the goal of identifying, 
categorizing, and quantifying the range of MT behaviors in length-
history data more precisely than with previous methods, we created 
STADIA. Specific aims for the development of STADIA were that it 
have the following attributes: 1) Automated to create a consistent 
and reproducible method with minimal user input; 2) Impartial such 
that it does not presuppose that MT dynamics are restricted to two 
states (i.e., limited to growth and shortening); 3) Adaptive to handle 
data from systems with qualitatively and quantitively different DI 
behaviors (e.g., different types of tubulin and/or the presence of 
MTBPs); 4) Compatible with classical DI analysis, enabling 
comparison to and continuity with previous work; 5) Capable of 
analyzing data from a range of spatial and temporal resolutions 
(e.g., from computational simulations or laboratory experiments). 
The features of STADIA that collectively satisfy these goals are 
described in the remainder of Section 2.2.

2.2.2. Brief summary of STADIA. STADIA’s analysis procedure con-
sists of three major stages: segmentation, classification, and phase 
and transition analysis. In the segmentation stage, STADIA approxi-
mates inputted length-history data with a series of straight-line seg-
ments that are connected to each other at their endpoints (Figure 2, 
C and D) and then measures characteristics of each line segment 
(Figure 2D). In the classification stage, STADIA uses the characteris-
tics of the line segments from the segmentation stage (Figure 2, E 
and F) to identify how many distinguishable DI behaviors exist in the 
set of line segments and then groups line segments into named DI 
behaviors (Figure 2H). For visualization purposes, color labels cor-
responding to the named behaviors from the classification stage are 
applied to each line segment in the length-history approximation 
(Figure 2G). In the phase and transition analysis stage, STADIA mea-
sures aggregate phase metrics (e.g., total time in growth) as well as 
the frequencies of various transitions beyond typical catastrophe 
and rescue (Figure 2I). These three stages are summarized here in 
Sections 2.2.3–2.2.5, with more details provided in Materials and 
Methods Section 5.5. Limitations of STADIA and guidance for users 
are also discussed in Materials and Methods Section 5.6.

2.2.3. Segmentation stage. The first step in the segmentation 
stage is to generate an initial approximation of inputted length-his-
tory data by identifying major peaks and valleys (Figure 2C), similar 
to more classical DI analysis methods (Figure 2, A and B). However, 
unlike classical methods, STADIA does not go directly from this step 
to calculating DI parameters. Instead, to improve the initial linear 
approximation, STADIA implements an iterative process to add new 
segment endpoints, which mark where the MT velocity changes as 
shown in Figure 2D. The user regulates how closely the segments 
approximate the raw data through the values of two input parame-
ters: 1) the maximum error allowed between the line segments and 
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the raw length-history data at each timepoint; 2) the minimum time 
duration for any line segment. Together these two parameters en-
able the user to avoid overfitting or underfitting the data relative to 
the scale of the dynamics the user wishes to study. As demonstrated 
in Section 2.6, proper tuning of these parameters enables STADIA 
to be compatible with data sets that have a wide range of temporal 
resolutions.

Note that the segmentation process imposes no restrictions on 
the slope of the segments and makes no assumptions about the 
number or type of behaviors present. These attributes are in con-
trast to the more traditional DI analysis methods described above, 
which use thresholds (e.g., on length change or velocity) to seek out 
segments corresponding to predefined behaviors (e.g., growth, 
shortening, pauses).

Effectively, the approximation produced by the segmentation 
stage of STADIA resembles the raw data more closely (Figure 2D) 
than does the approximation from classical methods (Figure 2, 
A–C). In particular, there are two fundamental differences be-
tween the segmentations resulting from classical methods and 
Stage 1 of STADIA. First, an individual segment of growth or 
shortening as identified by classical methods (Figure 2, A and B) 
may be identified as multiple segments of various slopes in the 
STADIA analysis (Figure 2D). Second, STADIA’s refined approxi-
mation identifies segments of shallower slope that are not sepa-
rated out from longer growth and shortening segments in classi-
cal methods.

2.2.4. Classification stage. This stage identifies the number of be-
havior types observed in the output from the segmentation stage 
and bins similar segments into behavior classes. To do this, STADIA 
measures three key features of each line segment (namely length 
change, time duration, and velocity; Figure 2D) and then plots a 
data point corresponding to each line segment in three-dimensional 
(3-D) space (Figure 2E). Line segments that share similar values of 
the three features (i.e., data points that are near each other in the 
3-D space) are grouped into “clusters.” STADIA uses established 
statistical methods (Box 1) to determine the optimal number of dis-
tinguishable clusters and to assign each line segment to a cluster 
(Figures 2F and 3). Note that this clustering step avoids assuming 
that any cluster corresponds to a predetermined DI phase/behavior.

After the line segments are assigned to clusters, the average fea-
tures (e.g., average slope) of the segments in each cluster are used 
to assign each cluster to a named DI behavior (Figure 3G). Clusters 
containing segments with similar slopes are “bundled” into DI 
phase/behavior classes (Figure 2H). In particular, clusters of shallow-
slope segments are bundled into “stutters,” clusters of steep posi-
tive slope segments are bundled into “growth,” and clusters of 
steep negative slope segments are bundled into “shortening.”

2.2.5. Phase and transition analysis stage. For each cluster identi-
fied in the classification stage, STADIA calculates the following met-
rics: total number of segments (counts obtained from the piecewise 
linear approximation) in each cluster, percent time spent in each 

FIGURE 3: Overview of the clustering process in the Classification Stage of STADIA. As shown in Figure 2C–D, STADIA 
begins by approximating inputted length-history data with a series of line segments. For each line segment, three 
features are measured: time duration, height change, and slope (Figure 2D). Using these three features, a data point 
corresponding to each line segment is plotted in 3-dimensional space (A, replotted from Figure 2E). The orange circles in 
(A, C, E, F) denote the approximate location of the data point corresponding the example line segment in Figure 2D. 
Then, line segments that share similar values of time duration, length change, and slope (i.e., data points that are near 
each other in the 3-dimensional space) are grouped together into “clusters”. As initial preparation for this grouping 
process, segments with slopes that are very near zero are identified by user-defined thresholds and assigned to one 
group (called “flat stutters”; see Section 5.5.2.1 for more information). In the next step of the process, applied separately 
to the remaining positive and negative slope segments (B,C), STADIA uses established statistical methods (described in 
Box 1 and Materials and Methods Sections 5.4.3 and 5.5.2.2) to determine the number of distinguishable clusters and 
then to assign each line segment to a cluster (D, E). After the segments are grouped into clusters, the average features 
(e.g., average slope) of the segments in each cluster are used to label each cluster with a named DI behavior (G).
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Box 1:
For interested readers, Box 1 summarizes how established statis-
tical methods are used in the clustering step of STADIA’s Classi-
fication Stage (more details in Materials and Methods Sections 
5.4.3 and 5.5.2.2).

We first note that STADIA can be run in two modes: Diagnos-
tic Mode (used to inform the number of distinguishable clusters 
in the data set), and Automated Mode (used for performing full 
DI analysis after Diagnostic Mode work is complete). Automated 
Mode performs all three stages: segmentation, classification, 
and phase and transition analysis (Figure 2, C–I; workflow dia-
gram in Supplemental Figure S1.1). Diagnostic Mode stops after 
a modified version of the classification stage.

The clustering process, applied separately to the positive 
slope segments and the negative slope segments, uses an es-
tablished algorithm called k-means clustering (Macqueen, 1967; 
Lloyd, 1982). K-means groups together data points that share 
similar characteristics, that is, data points that are near each 
other in a relevant feature space (in our case, the log-transformed 
and standardized 3-D space defined by segment time duration, 
height change, and slope [Figure 3, B–E]).

The k-means algorithm requires that the number of clusters, 
k, be provided in advance. The value of k is informed by running 
STADIA in Diagnostic Mode. When run in Diagnostic Mode, 
STADIA repeats the k-means clustering process with the value of 
k set equal to each integer from 1 to 12. For each of these k-
values, STADIA calculates a measurement called the gap statis-
tic, which quantifies how well the data can be separated into k 
many clusters (Tibshirani et al., 2001). Analysis of the gap statistic 
data from Diagnostic Mode as well as visual examination of the 
clusters plotted in the feature space (Supplemental Figures S1.4 
and S1.5) informs the choice of the optimal k-value, which the 
user then inputs into Automated Mode.

cluster, percent height change corresponding to each cluster and 
average velocity of each cluster. These metrics can also be calcu-
lated for each of the larger bundled phase/behavior classes (i.e., 
growth, shortening, stutters.

Next, STADIA examines the chronological occurrences of the 
phases in the length-history data to identify all examples of transi-
tions to/from growth and shortening, with or without stutters. Spe-
cifically, STADIA automatically categorizes the following types of 
phase transitions (Figure 2, I and J):

• “Abrupt Catastrophe”: growth ➔ shortening directly

• “Abrupt Rescue”: shortening ➔ growth directly

• “Transitional Catastrophe”: growth ➔ stutter ➔ shortening

• “Transitional Rescue”: shortening ➔ stutter ➔ growth

• “Interrupted Growth”: growth ➔ stutter ➔ growth

• “Interrupted Shortening”: shortening ➔ growth ➔ shortening

Similar chronological orderings of phases have previously been 
considered with pauses in experiments performed in the presence 
of cell extracts (Keller et al., 2008).

After identifying all occurrences of the above transitions, STADIA 
calculates the frequency of each type of transition (see Materials and 
Methods Section 5.5.3 for formulas). For continuity with previous 
methods, the traditional transition frequencies can be calculated: 
the total catastrophe frequency, Fcat, is the sum of the frequencies of 
abrupt and transitional catastrophes, and the total rescue frequency, 

Fres, is the sum of the frequencies of abrupt and transitional 
rescues.

The STADIA process as outlined here enables extraction of tradi-
tional DI parameters as well as information about more complex 
behaviors and transitions. STADIA thus characterizes and quantifies 
MT dynamics without predefined assumptions about the number of 
behaviors or their defining attributes.

2.3. MT behaviors identified and characterized using 
STADIA
2.3.1. STADIA identifies multiple types of behavior within the 
groups of positive and negative slope segments. If MT growth 
and shortening each corresponded to one behavior (with variation), 
one would expect that the positive slope line segments from the 
approximation of the length-history plot would all fall into one 
cluster (i.e., one group of line segments); similarly, all the negative 
slope segments would be expected to fall into one cluster.

Contrary to these expectations, STADIA identified three clusters 
within the positive slope segment data of each data set (i.e., the in 
silico data set and the in vitro control and CLASP2γ data sets; Supple-
mental Figure S1.4). Examination of the characteristics of the three 
clusters shows that they can be described as follows (Figure 4, A–C, 
and Supplemental Figures S1.4, B, D, F, and H, and S1.8, A and B):

• segments with steep slopes and long time durations (positive 
slope cluster 1);

• segments with steep slopes and short time durations (positive 
slope cluster 2);

• segments with shallow slopes and short time durations (positive 
slope cluster 3).

Similarly, when analyzing the negative slope segments from the 
in silico data, STADIA identified three clusters (Supplemental Figure 
S1.5, A–D), which have the following characteristics (Figure 4, D and 
F, and Supplemental Figures S1.5, B and D, and S1.8, C and D):

• segments with shallow slopes and short time durations (negative 
slope cluster 1);

• segments with steep slopes and short time durations (negative 
slope cluster 2);

• segments with steep slopes and long time durations (negative 
slope cluster 3).

For technical reasons, the in vitro data sets contain the begin-
nings of shortening phases (Figure 1D), but not full depolymeriza-
tions of MTs to near-zero length as were present in the simulation 
data set (Figure 1B). Consistent with this information, STADIA’s 
analysis of the in vitro negative slope segments (Figure 4E) did not 
find a cluster of long-time-duration segments (i.e., no cluster anal-
ogous to negative slope cluster 3 in the in silico data in Figure 4D). 
Nonetheless, STADIA did find evidence for two distinguishable 
clusters of short-duration negative-slope segments in the in vitro 
data: negative slope cluster 1 with shallow slope segments, and 
negative slope cluster 2 with steep slope segments (Figure 4, E 
and F, and Supplemental Figures S1.5, E–H, and S1.8, C and D). 
For illustration purposes, a “ghost” region was added to Figure 
4E, where we expect the missing third negative slope cluster 
would reside if full depolymerization events had been captured in 
the experiments.

In summary, our simulations and experiments lead to a similar 
conclusion: the data argue against the idea that MT DI can be char-
acterized as a two-state process consisting of only growth and 
shortening with instantaneous transitions. Instead, the results 
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provide evidence for considering more complexity, including multi-
ple types of behavior within both the positive and negative slope 
segments.

In the next two sections (Sections 2.3.2 and 2.3.3), we examine the 
average characteristics of the length-history segments in each cluster 
to determine how these clusters might correspond to recognizably 
different DI behaviors.

2.3.2. Growth and shortening phases consistent with classical DI 
analysis are among the multiple types of behavior identified by 
STADIA. Examining the average characteristics of the segments in 
each cluster (Figure 4, Supplemental Figure S1.8, and Table 1) 
shows that, for both the in silico and in vitro data, some of the clus-
ters correspond to the well-recognized growth and shortening 
phases of DI. More specifically, two of the positive segment clusters 

FIGURE 4: Results of STADIA’s Classification analysis of in silico and in vitro datasets. (A, B, D, E) Color-coded clustering 
results for the in silico data (A, D) and in vitro control data (B, E); the clustering results for the in vitro CLASP2γ dataset are 
in Supplemental Figures S1.4 H, S1.5 H. Each data point in these plots corresponds to one line segment from the 
length-history approximations (see Figures 2D–F, 3). The scales of each axis reflect log-transformation and standardization 
of the data (see Figure 3). (C, F) Box plots of growth rates (C) and shortening rates (F) (i.e., segment slopes) for segment 
clusters as indicated. Outliers were excluded from the box plots (but not from the cluster plots) using the default definition 
in MATLAB (i.e., any value more than 1.5 times the interquartile range away from the bottom or top of the box is 
considered an outlier). (G, H) MT length-history plots with each segment labeled according to its assigned cluster. Zoomed-
in portions of previously ambiguous length-history data are now clearly labeled (compare to Figure 1B–E). (I) Clusters with 
similar average slopes (panels C, F) bundled (grouped together) into larger behavior classes (see also Supplemental Figure 
S1.8). Notes: The raw length-history data have temporal resolution of ∼1650 events per second per MT in silico and 2 
frames per second in vitro. Materials and Methods Section 5.4.3 and Supplemental Figures S1.4, S1.5 provide justification 
for identifying three clusters each of positive and negative slope segments in most of our datasets (two clusters were used 
for the in vitro negative slope segments because complete depolymerizations to the seeds were not captured).
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(positive slope clusters 1 and 2 from Figure 4, A and B) have slopes 
(rates of length change) similar to growth rates reported in classical 
DI analysis (compare STADIA results in Figure 4C and Table 1 to 
classical analysis results in Table 1). Similarly, negative slope cluster 
2 (in silico and in vitro, Figure 4, D and E) and negative slope cluster 
3 (in silico, Figure 4D) have slopes similar to shortening rates re-
ported in classical DI analysis (compare Figure 4F and Table 1). 
Based on this information, STADIA classifies length-history segments 
as “growth” if they belong to one of the clusters with a steep posi-
tive slope (positive slope cluster 1 or 2 in Figure 4, C and I) and as 

“shortening” if they belong to a cluster with a steep negative slope 
(negative slope cluster 2 or 3 in Figure 4, F and I).

The two clusters of steep positive slope segments (and of steep 
negative slope segments for the in silico data) differ primarily by 
time duration, so we refer to them as “brief” or “sustained” (Figure 
4I and Supplemental Figure S1.8, B, D, and E). It is also notable that 
the brief growth/shortening clusters have greater variation in slope 
than the sustained growth/shortening clusters (Figure 4, C and F, 
and Supplemental Figure S1.8, A and C), which suggests that the 
most rapid velocities are not sustainable over long periods of time. 

TABLE 1: Comparison of DI measurements from classical two-state analysis, STADIA two-state analysis (i.e., STADIA with k = 1), and STADIA 
analysis with full classification. Top row of each subtable: classical two-state analysis method (Materials and Methods Section 5.3) performed by 
identifying only major peaks and valleys (Figure 2 A–B). Second row of each subtable: STADIA analysis with classification limited to two states: 
only growth and shortening. Third row of each subtable: STADIA analysis with classification limited to growth, shortening, and flat stutters. 
Bottom row of each subtable: STADIA analysis using full results of the classification stage (Figure 4; Results Section 2.3). All STADIA analyses 
used the fine-grained length-history approximation generated by the segmentation stage of STADIA (Figure 2D) but differed in the settings for 
the classification stage. These data show that there is general, but not exact, agreement between the analysis methods as applied to each 
dataset. Vgrowth and Vshort measurements are listed as mean ± standard deviation over the set of all segments identified in each type of behavior. 
See Supplemental Figure S1.9 for the number of segments in each cluster from the STADIA full analysis. See Materials and Methods Sections 
5.1.4 and 5.2.2 for the number of MTs and total observation times in each dataset.  
†,‡: Because depolymerizations in the in vitro datasets were not captured in their entirety (see examples in Figure 1D), rescue frequencies are 
not reported (†), and negative slope segments were separated into only two clusters, yielding only two Vshort measurements in the full STADIA 
analysis (‡), instead of three as seen with the in silico data.
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These observations may be evidence of different behaviors of ta-
pered or split tips relative to the rest of the MT (e.g., as observed by 
Coombes et al., 2013; Doodhi et al., 2016; and Aher et al., 2018); 
such structures might be able to extend or retract faster than the 
bulk MT lattice in the absence of lateral bonds. Future work is 
needed to investigate whether the differences between brief and 
sustained growth (or shortening) relate to tip structure.

2.3.3. STADIA detects and characterizes “stutters”: a category 
of dynamic behaviors distinct from growth, shortening, and 
pause. Examination of Figure 4, A–F, shows that, in addition to clus-
ters of segments with slopes that correspond to rates of length 
change seen in classical growth or shortening behaviors, STADIA 
also identifies clusters of segments with much shallower slopes (pos-
itive slope cluster 3 and negative slope cluster 1 in Figure 4, A–F; 
Table 1). Moreover, the segments in these shallow-slope clusters 
have time durations shorter than typical segments classified as sus-
tained growth and sustained shortening, though typically longer 
than those classified as brief growth and brief shortening segments 
(Supplemental Figure S1.8). We term these clusters of shallow-slope 
segments “stutters” to convey the idea that these sections of 
length-history data exhibit high-frequency, low-amplitude fluctua-
tions throughout which the overall rate of MT length change is slow 
from a macro-level perspective. Within the category called “stut-
ters,” we name the clusters based on their slopes (Figure 4I): “up 
stutters” (positive slope cluster 3), “down stutters” (negative slope 
cluster 1), and “flat stutters” (relatively rare near-zero slope seg-
ments identified before analyzing the positive and negative slope 
segments as described in the Figure 3G legend and Section 5.5.2.1).

In summary, stutters are a category of intermediate behaviors 
that share similar characteristics with each other and are distinguish-
able from typical growth and shortening. Distinguishing the various 
behaviors described above involved the use of segment slope, time 
duration, and height change, as explained in Materials and Methods 
Section 5.5. For any one of these three features individually, there is 
overlap between different clusters identified in the data (Figure 4, 
A–F, and Supplemental Figures S1.3 and S1.8). Of the three seg-
ment features, slope is the primary feature distinguishing stutters 
from typical growth and shortening (Figure 4C and F, and Supple-
mental Figure S1.8, A and C). In other words, the rate of change in 
MT length tends to be slower during stutters than during growth 
and shortening. In regard to time durations, up and down stutters, 
respectively, have similar or somewhat longer time durations than 
brief growth and shortening segments, but shorter time durations 
than sustained growth and shortening segments (Supplemental 
Figure S1.8, B and D).

2.3.4. Stutters overlap with previously observed slowdown peri-
ods but are distinguishable from pauses. Note that most stutters 
are distinguishable from previously identified “pauses” during 
which the MT neither grows nor shortens detectably (e.g., Gierke 
et al., 2010; Yenjerla et al., 2010). In contrast to pauses, MT lengths 
do indeed change measurably during most periods identified as 
stutters (for examples, see insets in Figure 4, G and H), with a net 
rate of change that is small but nonzero (Figure 4, C and F). In addi-
tion, it is notable that events categorized as pauses are typically 
described as being rare (<1% of total experiment time duration) in 
the absence of MT stabilizing proteins (e.g., Walker et al., 1988; 
Moriwaki and Goshima, 2016). In contrast, stutters are relatively 
common, as discussed more below (Section 2.4.3 and Supplemen-
tal Figure S1.9). These observations support the conclusion that 
most stutters are different from events previously classified as 

pauses, though there is likely some overlap, particularly between 
the relatively rare flat stutters (Supplemental Figure S1.9) and cases 
where pauses were allowed to be short in duration (e.g., Walker 
et al., 1988; Guo et al., 2018). Stutters as described above likely do 
encompass the periods of slowed growth or shortening previously 
noted (but not quantified or characterized in detail) in recent DI 
data of in vitro MTs acquired at high spatiotemporal resolution (e.g., 
Maurer et al., 2014; Duellberg et al., 2016a,b; Rickman et al., 2017; 
see also Margolin et al., 2012). In contrast to this previous work, 
here we have quantified spontaneously occurring stutters and ex-
amined their relationship to other DI behaviors.

2.3.5. Negative control: two-state growth-shortening model. As 
a negative control to verify that the observation of stutters is not an 
artifact of STADIA’s analysis process, we ran STADIA on length-his-
tory simulation data from a model designed to have only two states: 
growth and shortening. As would be expected, STADIA analysis of 
the length-history data from the two-state model did not identify 
behaviors comparable to the stutters detected in our main data sets 
(i.e., the dimer-scale simulation data and the in vitro data). For a 
description of the two-state simulations and the analysis results, 
please see Supplemental Material Section S4, “Negative Control: 
Simulations of a Two-State (Growth-Shortening) Model,” and Sup-
plemental Figures S4.1, S4.2, and S4.3.

2.4. Quantification of MT dynamics using STADIA
2.4.1. Comparison of the traditional DI parameters as measured 
by STADIA versus a classical DI analysis method. For each of the 
three data sets, Table 1 contains a comparison of results obtained 
using STADIA with three different sets of conditions in the 
classification stage to results from a classical DI analysis method 
(top row of each subtable; the classical analysis procedure is 
described in Materials and Methods Section 5.3). In the first set of 
STADIA conditions (second row), meant to approximate classical DI 
analysis, we restricted the classification stage of STADIA to 
recognizing only growth and shortening, that is, all positive slope 
segments were classified as growth and all negative slope segments 
were classified as shortening. In the next set of conditions (third 
row), we allowed STADIA to separate out near-zero slope segments 
as flat stutters but constrained the classification of the remaining 
positive and negative slope segments to one cluster each of growth 
and shortening. The final STADIA analysis (bottom row) utilized all 
clusters identified in the classification results in Section 2.3.

Within each data set in Table 1, the measured values of the stan-
dard DI parameters (Vgrowth, Vshort, Fcat, and Fres) are similar across 
the different analysis approaches. The differences in measured val-
ues between the classical analysis and STADIA constrained to only 
growth and shortening occur because of differences in the segmen-
tation. More specifically, the line-segment approximation produced 
by the segmentation stage of STADIA (Figure 2D) resembles the raw 
length-history data more closely than does the approximation from 
the classical method (Figure 2, A–C). Thus, STADIA can produce 
measurements of the traditional DI parameters but does so by using 
a finer linear approximation of the length-history data than the 
classical analysis, resulting in differences in the measured values of 
the DI parameters (Table 1).

2.4.2. Quantification of velocities and transition frequencies 
beyond the traditional DI parameters. While STADIA can provide 
measurements of the four traditional DI parameters that are similar 
to the measurements obtained from classical approaches, the 
multiple clusters (i.e., multiple types of behaviors) detected in the 
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full classification results (Section 2.3) indicate that the traditional DI 
parameters alone are inadequate to capture the full range of MT 
dynamics. Expanding beyond the traditional Vgrowth and Vshort, the 
full STADIA analysis provides quantification of the intrinsic variability 
in growth and shortening rates by separately measuring the veloci-
ties for each cluster (Table 1, bottom row of each subtable). Expand-
ing beyond the traditional Fcat and Fres, STADIA measures the fre-
quencies of additional types of phase transitions (Figure 2I; 
Supplemental Figure S1.10).

2.4.3. MTs spend a significant fraction of time in stutters. We 
begin to investigate the significance of stutters by first examining 
the fraction of time that MTs spend in stutters. As one might expect, 
both in silico MTs and physical MTs spend the majority of their time 
in growth phases. However, in both the simulations and experi-
ments, MTs spend a substantial amount of time in behaviors catego-
rized as stutters. Notably, in our in silico data sets, the MTs spent 
more time in stutters (8%) than in shortening (6%) (Figure 5A; Sup-
plemental Figure S1.9). The in vitro MTs spent a substantial amount 
of the time in stutters (Supplemental Figure S1.9), but direct com-
parison to time spent in shortening phases is not conclusive be-
cause depolymerizations were not fully captured. These observa-
tions indicate that stutters contribute appreciably to MT behavior as 
assessed in length-history plots.

2.4.4. Catastrophes are usually preceded by stutters in silico and 
in vitro. To investigate the functional significance of stutters, we 
used STADIA to examine how transitions between phases occur. 
More specifically, STADIA considers all possible transitions into and 
out of growth or shortening, with or without stutters (see Figure 2I 
for schematic, Figure 5, D–I, for in silico examples, Figure 6 for in 
vitro examples with corresponding kymographs, Figure 7, D–I, 
for additional in vitro examples, and Supplemental Figure S1.10 for 
frequencies).

Notably, in both the simulation data and the experimental control 
data, the majority of catastrophes involved a stutter between the 
growth and shortening phases (i.e., they were transitional catastro-
phes). In particular, 78% of the catastrophes in the simulation data 
were transitional (Figure 5B). A related observation in the simulation 
data is that almost half (44%) of stutters that occurred after a growth 
segment ended in catastrophe as opposed to returning to growth 
(i.e., they occurred as part of a transitional catastrophe as opposed 
to interrupted growth; Figure 5C). A similar but more dramatic as-
sociation between stutters and catastrophe was observed in the in 
vitro control data: 86% of catastrophes involved a stutter (Figure 7A), 
and 75% of stutters from growth ended in a catastrophe (Figure 7B).

In contrast to catastrophes, rescues as observed in the in silico 
data set rarely occurred with stutters. More specifically, only 5% of in 
silico rescues were transitional (i.e., few rescues involved a stutter) 
(Figure 5B), and only 8% of stutters that occurred during shortening 
resulted in a rescue (Figure 5C). Because we do not have sufficient 
data for rescues in vitro, we cannot make strong conclusions on the 
correlation between stutters and rescue in physical MTs. However, 
these results do suggest that catastrophe and rescue are not simply 
the mechanistic opposites of each other.

2.5. Dissecting the effects of a MT binding protein: 
CLASP2γ reduces the frequency of catastrophe by 
increasing the prevalence of interrupted growth
To further test STADIA’s utility in analyzing DI and to examine both 
the prevalence and the significance of stutters, we compared the 
control in vitro data set to the in vitro data set with the MTBP 

CLASP2γ, which has been previously characterized as an anticatas-
trophe factor (Aher et al., 2018; Lawrence and Zanic, 2019). CLASP2 
proteins are of interest to the biomedical community because they 
have been implicated in functions as diverse as kinetochore attach-
ment (Girão et al., 2020), nervous system development (Dillon 
et al., 2017), and the insulin response (Kruse et al., 2017).

Recall that the clustering results, including detection of stutters, 
are similar for the control and CLASP2γ data sets (Supplemental 
Figures S1.4 and S1.5). However, dramatic differences in the transi-
tion frequencies between the CLASP2γ data and control in vitro data 
were observed when these data were examined quantitatively by 
STADIA.

First, the overall frequency of catastrophe in the presence of 
CLASP2γ was significantly reduced (Figure 7C and Supplemental 
Figure S1.10). This observation itself is not surprising, given that 
previous work has shown that CLASP2γ reduces the frequency of 
catastrophe (e.g., Sousa et al., 2007; Aher et al., 2018; Lawrence 
et al., 2018; Majumdar et al., 2018). However, STADIA provides 
additional insight by distinguishing transitional catastrophes 
(growth-stutter-shortening) from abrupt catastrophes (growth-
shortening). In particular, our results demonstrate that the reduc-
tion in overall catastrophe frequency was due to a large decrease 
in transitional catastrophe frequency, while the abrupt catastrophe 
frequency actually increased somewhat (Figure 7A and Supple-
mental Figure S1.10).

Second, CLASP2γ slightly reduced the frequency of growth-to-
stutter occurrences (i.e., FTransCat + FIntGrowth; Figure 7C) but not 
enough to account for the large decrease in transitional catastrophe 
frequency.

Third, and most striking, CLASP2γ increased the frequency of 
interrupted growth (growth-stutter-growth) (Supplemental Figure 
S1.10). More specifically, among transitions that began as growth-
to-stutter, CLASP2γ increased the proportion of transitions that re-
sulted in interrupted growth (growth-stutter-growth) and decreased 
the proportion of transitions that proceeded to transitional catastro-
phes (growth-stutter-shortening) (Figure 7B). This change in propor-
tions is the factor that accounts for most of the decrease in transi-
tional catastrophe frequency.

Taken together, these data demonstrate that STADIA analysis 
provides information about CLASP2γ function not supplied by tra-
ditional analysis and indicate that CLASP2γ suppresses catastrophe 
at least in part by enabling stuttering MTs to reenter growth (i.e., 
CLASP2γ tends to convert would-be transitional catastrophes into 
interrupted growths). This idea is supported by recent reports that 
MTs can withstand greater growth rate variability without undergo-
ing catastrophe in the presence of CLASP2γ (Lawrence et al., 2018; 
Lawrence and Zanic, 2019) and that CLASP2γ can protect against 
catastrophe in the presence of lagging PFs (Aher et al., 2018).

2.6. Robustness of conclusions over varied values of input 
parameters and data acquisition rates
Note that this section assumes that readers are familiar with STA-
DIA’s analysis procedure as described in Section 2.2 and Box 1.

The results in the preceding sections led to the following main 
conclusions: 1) stutters (previously observed but not quantified in 
detail) are distinguishable from typical growth and shortening 
(Section 2.3); 2) stutters are strongly associated with spontaneously 
occurring catastrophes, both in silico and in vitro (Section 2.4.4); 
3) the anticatastrophe factor CLASP2γ reduces catastrophe by in-
creasing the fraction of stuttering microtubules that return to growth 
rather than entering shortening phases (Section 2.5). An important 
remaining question is whether these conclusions are robust to 
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variations in the STADIA input parameters. To address this question, 
we performed sensitivity analyses, which are summarized here, with 
full details provided in Supplemental Material Sections S2 and S3.

2.6.1. STADIA input parameter sensitivity analysis. To test the ef-
fects of STADIA’s input parameters, we analyzed all three data sets 
(i.e., in silico as well as in vitro with and without CLASP2γ), using a 

range of values for each of the key user-defined segmentation 
parameters in STADIA, namely the Minimum Segment Duration and 
the Maximum Error Tolerance. Directly, the values of these parame-
ters determine how closely the segmentation stage’s continuous 
piecewise linear approximation matches the raw length-history 
data inputted into STADIA. Indirectly, these parameters have 
downstream effects on the results of the classification stage and the 

FIGURE 5: Results of STADIA’s Phase and Transition Analysis of the dimer-scale in silico data. (A) Percent time spent in 
each class of phases/behaviors (top) and percent height (MT length) change occurring during each class of phases/
behaviors (bottom). These data show that a large majority of time is spent in growth. Notably, the in silico MTs spend 
more time in stutters than in shortening, emphasizing the importance of studying stutter behaviors. Most height change 
occurs during growth and shortening phases, as expected. (B) Percentages of catastrophes (top) and rescues (bottom) 
that are transitional or abrupt (see Figure 2I and Section 2.2.5 for transition definitions). These data show that most 
catastrophes are transitional, whereas rescues are overwhelmingly abrupt. (C) Examination of stutter fate. These data 
show that when growth-to-stutter occurs (top), interrupted growth is slightly more likely than transitional catastrophe. 
However, when shortening-to-stutter occurs (bottom), interrupted shortening is much more likely than transitional 
rescue. (D–H) Examples of abrupt/transitional catastrophes (D, F), abrupt/transitional rescues (E, G), and interrupted 
growth/shortening (H, I). As noted earlier, the in silico dataset has temporal resolution of approximately 1650 events per 
second per MT (see Materials and Methods Section 5.2 for more information). 
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FIGURE 6: Alignment of STADIA length-history plots (top of each panel) and their corresponding kymographs (bottom 
of each panel) from the in vitro control dataset (with STADIA colors as in Figure 4 and scale bars as indicated). 
(A, B) Examples of abrupt catastrophes, where a growth phase (green) is followed directly by a shortening phase (red). 
(C, D) Examples of transitional catastrophes, where one or more types of stutter (blue, purple) occurs between a growth 
phase (green) and a shortening phase (red). Note also the numerous stutters (blue, purple) that interrupt growth phases 
(green). These length histories include examples of all three types of stutters that we distinguish based on slope: up 
stutters (light blue), flat stutters (dark blue), and down stutters (purple). The kymographs and the length-history traces 
inputted into STADIA were generated from the in vitro imaging data (2 fps) as described in Materials and Methods 
Section 5.1. The movies corresponding to each kymograph are provided as Supplemental Materials. Note that the 
movies are presented at 3.5 × real time (i.e., 3.5 × the time labeled on the kymographs and length-history plots).
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phase and transition analysis stage (for overview of STADIA stages, 
see Section 2.2, Figure 2, and Supplemental Figure S1.1). The re-
sults of the sensitivity analysis show how changes to the above input 
para meters impact STADIA outputs (e.g., number of behaviors de-
tected, classification of segments as illustrated by labeled length-
history plots, transition frequencies).

Briefly, results of this analysis (Supplemental Material Section S2) 
indicate that the three main conclusions enumerated above are in-
deed robust as long as the user-defined parameters are kept within 
ranges relevant to the scale of the dynamics being studied. In the 
first part of the sensitivity analysis, we examined how changing the 

user-defined parameters affects the number of behaviors detected 
(as determined by the number of clusters, i.e., k-values as described 
in Box 1 and Materials and Methods Sections 5.4.3 and 5.5.2.2). The 
results show that to detect stutter clusters, one must use spatial and 
temporal parameters that are sufficiently fine to distinguish the mul-
tiple behaviors detected (see the classification results in Sections 
2.3.1–2.3.3) but not so fine that the analysis is affected by experi-
mental noise or MT length fluctuations below the scale of the dy-
namics being studied. For our in silico data set, ideal ranges for 
these parameters were empirically determined to be from 15 to 25 
dimer lengths (i.e., 120–200 nm) for the Maximum Error Tolerance 

FIGURE 7: Results of STADIA’s transition analysis of in vitro data (2 fps): Effect of CLASP2γ on the nature of 
catastrophes and the fate of stuttering MTs. See Section 2.2.5 for transition definitions. (A) The majority of catastrophes 
for in vitro MTs without CLASP2γ are transitional (top). However, introduction of CLASP2γ increases the fraction of 
catastrophes that are abrupt (bottom). (B) Most growth-to-stutter occurrences for the in vitro MTs without CLASP2γ 
(top) result in catastrophe. Addition of CLASP2γ (bottom) decreases the probability that a growth-to-stutter occurrence 
will proceed to shortening and increases the probability of returning to growth. (C) CLASP2γ decreases the overall 
frequency of catastrophe without greatly reducing the frequency of stutter-to-growth occurrences. Taken together 
(A–C), these data indicate that CLASP2γ reduces catastrophes by promoting growth following stutters. More 
specifically, transitions that would have been transitional catastrophes without CLASP2γ tend to become interrupted 
growths with CLASP2γ. (D–I) Examples of transitions as observed for the in vitro MTs both without CLASP2γ (top) and 
with CLASP2γ (bottom). 
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and 2 s or less for the Minimum Segment Duration (Supplemental 
Figures S2.1, S2.3, S2.5, and S2.7). For our in vitro control data set, 
ideal ranges were determined to be from 15 to 20 dimer lengths 
(120–160 nm) for the Maximum Error Tolerance and 1 s or less for 
the Minimum Segment Duration (Supplemental Figures S2.2, S2.4, 
S2.6, and S2.8). Note that while these ranges meet strict standards 
for detecting all of the behaviors studied, the analysis can tolerate a 
wider range of parameter values and still detect multiple types of 
behaviors including stutters within the positive and negative slope 
segments, thus demonstrating further robustness (see Supplemen-
tal Section S2).

In the next part of the sensitivity analysis, we examined the tran-
sition frequencies measured from running STADIA with varied val-
ues of the Minimum Segment Duration and the Maximum Error Tol-
erance while using the number of behaviors detected in the full 
classification results in Sections 2.3.1–2.3.3 (i.e., the analysis used 
the k-values selected in Materials and Methods Section 5.4.3). For 
the in silico data, both the values of the frequencies of abrupt and 
transitional catastrophe and the ratio between them are relatively 
insensitive to changes in the Maximum Error Tolerance in the range 
of 10–40 dimer lengths (i.e., 80–320 nm) (Supplemental Figure 
S2.9). Moreover, the conclusion that most catastrophes are transi-
tional is robust for Minimum Segment Duration values of 1 s or less. 
However, for Minimum Segment Duration values of 1.5 s or greater, 
abrupt catastrophes become more common (Supplemental Figure 
S2.9), likely due to fewer stutters being detected and therefore 
fewer catastrophes being recognized as transitional. This observa-
tion is illustrated in examples of the labeled length-history plots 
(Supplemental Figure S2.7). Notably, the overall catastrophe fre-
quency (the sum of abrupt and transitional) is less sensitive to 
changes in Minimum Segment Duration and Maximum Error Toler-
ance than are the abrupt and transitional catastrophe frequencies. 
The situation is similar, though somewhat noisier, for the in vitro data 
(Supplemental Figures S2.8, S2.10, and S2.11).

Significantly, the conclusion that CLASP2γ reduces catastrophe 
by promoting the growth of stuttering MTs is robust to changes 
across wide ranges of both Minimum Segment Duration and Maxi-
mum Error Tolerance (Supplemental Figures S2.10, S2.11, and 
S2.12). More specifically, for almost all parameter combinations 
tested, the presence of CLASP2γ decreased the frequency of 
transitional catastrophe and increased the frequency of interrupted 
growth relative to the in vitro control, even as the values of the fre-
quencies themselves changed with varying the segmentation pa-
rameters (Supplemental Figures S2.10, B and C, S2.11, B and C, and 
S2.12, C–H). These results are particularly relevant to demonstrating 
STADIA’s usefulness in studying the effects of MTBPs.

2.6.2. Data acquisition rate sensitivity analysis. To test the effect of 
varying the acquisition rate of length-history data inputted into STA-
DIA, we took the original full-resolution in silico data set and resam-
pled the length-history data at varied fixed data acquisition time 
steps (Supplemental Material Section S3). Examining a wide range of 
data acquisition rates is feasible because the in silico data set records 
every dimer-scale biochemical event (bond formation/breaking, hy-
drolysis; on the scale of >1000 data points per second per MT; see 
Materials and Methods Section 5.2). For comparison, frame rates in 
physical experiments vary from more than 100 fps (e.g., Mickolajczyk 
et al., 2019) to fewer than 0.3 fps (e.g., Gierke et al., 2010).

The resulting analysis (Supplemental Figures S3.1–S3.9) shows 
that the conclusion that “up stutters” exist is robust for data acquisi-
tion time steps up to 3 s, and similarly for “down stutters” at data 
acquisition time steps up to 1 s, assuming reasonable choices for 

Maximum Error Tolerance and Minimum Segment Duration (see Sec-
tion 2.6.1). However, even when stutters are detected as distinct clus-
ters, the number of stutter segments detected generally decreases 
for larger data acquisition time steps (i.e., slower data acquisition 
rates). This observation is not surprising because some stutters, par-
ticularly down stutters for the in silico data, have time durations on 
the order of 1 s or less (Supplemental Figure S1.8), and with frame 
rates slower than 1 s, such stutters would be undetectable.

Note that the in vitro data set was obtained using a frame rate of 
2 fps, which was determined to be near the slower end of the range 
of acceptable data acquisition rates for some of the conclusions. As 
continued technological improvements allow physical experiments 
to have faster frame rates, in vitro data may tolerate a wider range 
of STADIA parameters (similar to the in silico data set). Significantly, 
short data acquisition time steps do not introduce problems (in-
deed, they are ideal, as seen with the full-resolution in silico data set) 
because the Maximum Error Tolerance and Minimum Segment Du-
ration parameters prevent the segmentation (i.e., the continuous 
piecewise linear approximation) of MT length-history data from con-
taining arbitrarily short segments.

3. DISCUSSION
Here we have presented STADIA, a data-driven, automated tool for 
performing DI analysis using length-history data as input. Using 
STADIA, we have quantified stutters and their associated transitions 
(Figures 4–7, Table 1, and Supplemental Figures S1.8–S1.10). Stut-
ters are a set of dynamic behaviors that can be distinguished from 
typical growth or shortening; the primary differentiating factor is 
that stutters on average have slower rates of MT length change 
(Section 2.3). Stutters are also distinguishable from pauses in that a 
pause is typically described as a period of time when the MT neither 
grows nor shortens. Our analysis shows that stutters (i.e., slowdown 
periods, previously observed but not quantified in detail) are 
strongly associated with spontaneously occurring catastrophes, 
both in silico and in vitro (Section 2.4.4). Our STADIA analysis also 
indicates that the anticatastrophe factor CLASP2γ reduces catastro-
phe by increasing the fraction of stutters that return to growth rather 
than entering shortening phases (Section 2.5).

Importantly, we have shown that these results are robust across a 
range of STADIA parameter values (Section 2.6.1) and are compati-
ble with data acquired across a range of temporal resolutions 
(Section 2.6.2). More specifically, as shown by the temporal resolu-
tion sensitivity analysis and the fact that our full-resolution simula-
tion data set includes every subunit attachment and detachment 
event, STADIA is compatible with data acquired at temporal resolu-
tions ranging from those produced by iSCAT (which can be as high 
as 1000 fps) to those used in TIRF experiments (e.g., 2 fps). This 
sensitivity analysis further shows that STADIA can also be used with 
data at lower temporal resolutions, but the ability to quantify stut-
ters is reduced.

3.1. Mechanisms of stutters and implications for the process 
of catastrophe
What causes stutters, especially those that disrupt growth, and why 
are they associated with catastrophe? A fundamental component to 
answering this question comes from recognizing that when transi-
tioning from growth to stutter, there is a net decrease in the number 
of subunits (tubulin dimers) that are incorporated into the MT per 
unit time. This net decrease could occur because new subunits at-
tach to the tip less frequently than during normal growth, or be-
cause bound subunits leave the tip more frequently than during 
growth, or a combination of these two.
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While simple stochastic fluctuations in subunit arrival or depar-
ture could potentially contribute to stutters, examination of length-
history plots (Figures 4–7) suggests that the stochastic fluctuations, 
which occur throughout growth, shortening and stutter segments, 
are too short in duration to account for the sustained decrease in 
growth rate that occurs when going from growth to stutter. Alterna-
tively, changes in rates of attachment and detachment could also 
result from changes in tip structure. However, one could argue that 
the rate of subunit attachment should not vary with tip structure: 
assuming that longitudinal bonds form first, there are always 13 
landing sites for new subunits (Castle and Odde, 2013). Therefore, 
we suggest that stutters following growth segments likely result 
from a situation where an unusually large fraction of incoming sub-
units detach from the tip structure without being fully incorporated 
into the lattice (e.g., because tip taper or other structural features 
like the presence of GDP-tubulin make it difficult for lateral bonds 
to form). In other words, we suggest that stutters occur when the 
structure of the tip is such that the subunit detachment rate is un-
usually high compared with the average detachment rate during 
growth.

This reasoning provides a potential explanation for the correla-
tion between stutters and catastrophe: if the fraction of incoming 
subunits incorporated into the lattice is smaller than during normal 
growth periods, the stabilizing cap of GTP-tubulin at the MT end will 
become smaller, the likelihood of exposing GDP-tubulin subunits 
will increase, and the possibility of complete cap loss (catastrophe) 
will rise. At present, these ideas are speculation, but future work 
may be able to shed light on these hypotheses (see also related 
discussions in VanBuren et al., 2005; Howard and Hyman, 2009; 
Gardner et al., 2011; Margolin et al., 2012; Coombes et al., 2013; 
Zakharov et al., 2015; and McIntosh et al., 2018).

Furthermore, the mechanisms could vary for different types of 
stutters. As demonstrated in the results, STADIA distinguishes up, 
down, and flat stutters and distinguishes stutters that occur as part 
of interrupted growth, interrupted shortening, transitional catastro-
phe, and transitional rescue. Thus, as a tool for comprehensively 
identifying multiple types of stutters, STADIA lays the groundwork 
for future mechanistic studies.

3.2. Comparison of the in silico and in vitro results
The behaviors observed in the dimer-scale simulation data and the 
experimental data are qualitatively similar. In particular, both types 
of data support the prevalence of stutters throughout length histo-
ries and the role of stutters in catastrophes. The differences in the 
particular numerical values of measured quantities are not surpris-
ing, because the simulation parameters were tuned in Margolin 
et al. (2012) based on an experimental data set (Walker et al., 1988) 
different from the experimental data sets used here (a subset of 
which was used in Lawrence et al., 2018). The qualitative similarities 
between the results from the different data sets provide evidence 
that the observed trends are not specific to one experimental prep-
aration or one type of tubulin (e.g., 10 µM pure porcine tubulin in 
Walker et al., 1988, vs. 12 µM bovine tubulin with EB1 and with or 
without CLASP2γ here and in Lawrence et al., 2018). Furthermore, 
comparison with the negative control (two-state growth-shortening 
model; Supplemental Material Section S4) demonstrates that the 
existence of stutters in the dimer-scale simulations and the in vitro 
data is not manufactured by STADIA.

3.3. Relationship to previous work
3.3.1. Distinguishing stutters and previously identified pauses.  
Pauses have most frequently been observed in vivo (see citations in 

the Introduction) and are likely caused by MTBPs (Moriwaki and 
Goshima, 2016) and other factors external to the MTs themselves 
(e.g., reaching the cell edge [Rusan et al., 2001; Komarova et al., 
2002]). Furthermore, in vitro pauses in the absence of drugs or 
MTBPs are rare (Walker et al., 1988). In contrast, the observation 
that stutters are prevalent in both our in silico and in vitro data sets 
suggests that stutters are an intrinsic component of DI itself.

Gierke et al. (2010) have described “bona fide pauses” as phases 
“during which no polymerization or depolymerization occurs.” Due 
to physical detection limits, true pauses would be indistinguishable 
from periods of very slow polymerization or depolymerization that 
do not meet the detection threshold (Gierke et al., 2010). Particu-
larly in older data sets with large thresholds (e.g., a length-change 
threshold of 0.5 microns), some stutters may have been considered 
pauses while others may not have been separated out from larger 
growth or shortening phases at all. With newer imaging technology, 
data can be obtained at higher temporal and spatial resolution (e.g., 
Maurer et al., 2014; Duellberg et al., 2016a,b; Rickman et al., 2017; 
Guo et al., 2018; Mickolajczyk et al., 2019), which can enable the 
distinction of stutters and pauses.

For most stutters, a measurable net length change does occur 
over the course of the stutter segment: up and down stutters occur 
much more often than flat stutters. Using this information about 
stutters from our results and definitions of pauses already existing in 
the literature, we propose the following operational criteria for dis-
tinguishing pauses and stutters: pauses are periods during which no 
detectable length change occurs, whereas stutters are periods dur-
ing which the MT structure changes but with slower net rates of 
length change than typical growth and shortening phases. In data 
sets that contain both stutters and pauses, the current version of 
STADIA would classify “bona fide pauses” as flat stutters. Future 
work is needed to determine whether it would be meaningful to 
apply criteria to distinguish flat stutters, which generally have very 
short time durations, from pauses.

3.3.2. Previously observed behaviors that are similar to particu-
lar types of stutters. Maurer et al. (2014) observed short episodes 
of pause or slow growth before catastrophes in experiments with 
EB1. These precatastrophe slowdowns are analogous to transitional 
catastrophes in our terminology. Pauses or slowdowns before catas-
trophe have also been observed in cases where the catastrophe is 
induced by outside factors such as mechanical force (Janson and 
Dogterom, 2004) or reduction in tubulin concentration (Duellberg 
et al., 2016a,b), similar to predictions based on simulations in 
Margolin et al. (2012). In contrast, the catastrophes in our data sets 
occur spontaneously as part of DI; in the in vitro data sets, EB1 and 
CLASP2γ affect the frequency of catastrophe, but the catastrophes 
still occur stochastically over time, as opposed to being induced by 
an experimenter at a particular moment.

The episodes of slow growth in Rickman et al. (2017) bear some 
similarity to stutters interrupting growth as identified by STADIA. 
However, the slow growth episodes of Rickman et al. occurred rarely 
(two to five occurrences; ∼0.26% to ∼6.1% of the time analyzed, 
depending on tubulin concentration). These episodes appear to 
correspond to the most extreme of our stutters, meaning the stut-
ters with the longest time durations or with the most variability in 
length during the stutter.

Based on analysis of variability in growth rates in experimental 
data, Odde et al. (1996) proposed a model with multiple substates 
of growth and “near catastrophes,” which are similar to stutters inter-
rupting growth. They suggested that the largest of the “near catas-
trophes” may correspond to previously observed pauses and that 
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the smaller “near catastrophes” would not be easily detected by eye 
(the time between data points in their analysis was ∼3 s).

Building beyond this previous work, STADIA provides a compre-
hensive method for detecting and quantifying multiple types of stut-
ters and distinguishing phase transitions that include stutters from 
those that do not.

3.3.3. Differences between STADIA and previous segmentation/
classification methods. Although STADIA identifies DI phases at a 
finer scale than many existing DI analysis methods, it differs from 
methods that simply consider individual displacements between 
frames and label them as growth, shortening, or pause using thresh-
olds on the length change (e.g., Komarova et al., 2002; Guo et al., 
2018). In contrast to such methods, STADIA identifies larger-scale 
segments during which a MT exhibits a consistent behavior.

Similar to STADIA, many existing time-series analysis methods 
that have been used in other applications (e.g., identifying runs and 
pauses in the transport of organelles along MTs by motor proteins 
[Zaliapin et al., 2005]) involve a segmentation step (e.g., Zaliapin 
et al., 2003) that is often followed by a classification step (e.g., Fu, 
2011). To our knowledge, such methods have not been previously 
applied to MT DI data. In contrast, many DI analysis methods es-
sentially perform classification before segmentation, by setting 
thresholds for classifying growth, shortening, and possibly pause or 
slowdown periods, and then applying the thresholds to identify seg-
ments in the data (e.g., Dhamodharan and Wadsworth, 1995; Kiris 
et al., 2010; Fees et al., 2017). Additionally, unlike existing methods 
that use predefined thresholds on segment features (length change, 
time duration, and/or slope), STADIA uses a data-driven approach 
to identify emergent clusters in the segment feature data (e.g., stut-
ters have shallow slopes, but shallow is relative to the slopes of 
other segments in a given data set).

3.3.4. Differences between STADIA and previous phase tran-
sition analysis. In regard to phase transition analysis, several previ-
ous articles grouped their pauses with growth when defining catas-
trophe and rescue; by their definitions, a catastrophe is a transition 
from growth or pause to shortening, and a rescue is a transition from 
shortening to growth or pause (Dhamodharan et al., 1995; Dham-
odharan and Wadsworth, 1995; Panda et al., 1996; Rusan et al., 
2001; Kamath et al., 2010; Kiris et al., 2010; Yenjerla et al., 2010; 
Moriwaki and Goshima, 2016). By these definitions or analogous 
definitions with stutter in place of pause, an episode of interrupted 
shortening would be labeled as a rescue followed by a catastrophe, 
whereas an interrupted growth would not be distinguished from un-
interrupted growth.

STADIA improves upon typical transition analysis by considering 
all possible transitions between growth, shortening, and stutters 
(similar to the transitions among growth, shortening, and pause that 
were considered in Keller et al., 2008). Such transition analysis 
enables more in-depth investigation of the mechanisms of DI and 
DI-regulating proteins. For example, the observation that CLASP2γ 
tends to convert would-be transitional catastrophes into interrupted 
growths would not have been possible without a method that is 
able to identify transitional catastrophes and interrupted growths.

4. CONCLUSIONS
Our work has four major conclusions: 1) STADIA can quantify and 
examine “stutters,” a previously observed category of behaviors 
during which MTs undergo slow rates of overall length change com-
pared with growth or shortening phases; 2) stutters are strongly as-
sociated with catastrophe in dimer-scale in silico and TIRF-imaged in 

vitro data; 3) the anticatastrophe factor CLASP2γ reduces catastro-
phe by increasing the fraction of stutters that return to growth rather 
than enter shortening phases; 4) STADIA provides an improved ana-
lytical tool for quantification of MT behavior, as exemplified by the 
first three points. Our results concerning the detection of stutters 
differ from those of previous work in that STADIA comprehensively 
and systematically identifies all types of stutters (up stutter, flat stut-
ter, down stutter) across length-history data and considers all possi-
ble transitions among growth, shortening, and stutters. We suggest 
that quantification of stutters in future DI analysis through STADIA or 
similar tools will enable improved analysis of MT dynamics that is 
more complete, precise, and reproducible. The clearer picture that 
results from this analysis will facilitate investigation of the mecha-
nisms of catastrophe and rescue as well as the activities of the 
MTBPs that regulate these transitions.

5. MATERIALS AND METHODS
The methods are presented in the following order: Sections 5.1 and 
5.2, respectively, describe the acquisition of the in vitro and in silico 
data sets. Section 5.3 summarizes our classical DI analysis method, 
used for comparison with STADIA. Section 5.4 outlines our use of STA-
DIA to analyze the data sets in this article. Section 5.5 describes STA-
DIA’s analysis procedure in more detail than the overview in Results 
Section 2.2. Section 5.6 provides guidance for users of STADIA.

5.1. Data acquisition: in vitro microtubule experiments
The in vitro MT data were obtained from two sets of conditions: a 
control group (tubulin + EB1) and a group with the MTBP CLASP2γ 
(tubulin + EB1 + CLASP2γ). A subset of these data was previously 
published in Lawrence et al. (2018).

5.1.1. Protein preparation. His-CLASP2γ and His-EB1 were puri-
fied as previously described (Zanic et al., 2013; Lawrence et al., 
2018). Bovine brain tubulin was purified using the high-molarity 
method (Castoldi and Popov, 2003). Tubulin was labeled with 
TAMRA and Alexa Fluor 488 (Invitrogen) according to the standard 
protocols, as previously described (Hyman et al., 1991).

5.1.2. TIRF microscopy. Imaging was performed using a Nikon 
Eclipse Ti microscope with a 100×/1.49 n.a. TIRF objective; an 
Andor Neo sCMOS (complementary-metal–oxide–semiconduc-
tor) camera; 488- and 561- solid-state lasers (Nikon Lu-NA); a Fin-
ger Lakes Instruments HS-625 high-speed emission filter wheel; 
and standard filter sets. An objective heater was used to maintain 
the sample at 35°C. Microscope chambers were constructed as 
previously described (Gell et al., 2010). In brief, 22 × 22 mm and 
18 × 18 mm silanized coverslips were separated by strips of 
Parafilm to create a narrow channel for the exchange of solution 
(Gell et al., 2010). Images were acquired using NIS-Elements 
(Nikon).

5.1.3. Dynamic MT assay. GMPCPP-stabilized MTs were prepared 
according to standard protocols (Hyman et al., 1992; Gell et al., 
2010). Dynamic MT extensions were polymerized from surface-im-
mobilized GMPCPP-stabilized templates as described previously 
(Gell et al., 2010). The imaging buffer consisted of BRB80 supple-
mented with 40 mM glucose, 40 µg/ml glucose oxidase, 16 µg/ml 
catalase, 0.5 mg/ml casein, 100 mM KCl, 10 mM dithiothreitol, and 
0.1% methylcellulose. Purified proteins and 1 mM GTP were added 
to the imaging buffer, and the solution was introduced into the im-
aging chamber. Dynamic MTs were grown with 12 µM Alexa 488–la-
beled tubulin and 200 nM EB1 with or without 400 nM CLASP2γ 
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and imaged at 2 fps using TIRF microscopy as described above 
(pixel size of 70 nm). Alexa 488–labeled tubulin was used at a ratio 
of 23% of the total tubulin.

5.1.4. In vitro MT length-history data. Length-history data for in 
vitro MTs were obtained from 30-min experiments using both a 
control group and a group with the stabilizing MTBP, CLASP2γ. 
Kymographs of dynamic microtubules (examples in Figure 6) were 
generated using the KymographClear macro for ImageJ, and the 
dynamic MT tip positions as a function of time were determined in 
KymographClear, using a thresholding-based, edge-detection 
method that can trace the microtubule tip position in kymographs 
with subpixel accuracy (Mangeol et al., 2016). Note that long short-
ening phases were not well-captured by this process for technical 
reasons including photobleaching. Therefore, the position-time 
data from a given MT were broken into samples that typically con-
sisted of a growth phase followed by an initial depolymerization and 
then termination of that observation (e.g., Figure 1D).

The control group data set was acquired from 68 MT seeds, from 
which 776 individual traces were observed. The group with CLASP2γ 
was acquired from 29 MT seeds, from which 85 individual traces 
were observed. The control group and the group with CLASP2γ 
yielded total time durations of more than 21 h and 3.5 h, respec-
tively. The in vitro MT lengths were measured in nanometers and 
then divided by 8 nm per dimer length to convert to units of dimer 
lengths.

5.2. Data acquisition: in silico microtubule experiments
This section outlines the details regarding the acquisition of the di-
mer-scale simulation MT data, analyzed in the Results and in Sup-
plemental Sections S1, S2, and S3, including information about 
both the model and the parameters used.

5.2.1. The computational model: stochastic model for simulating 
13-protofilament MTs. The computational MT model used in this 
paper to generate the in silico length-history data is an updated ver-
sion of the detailed, stochastic 13-PF MT model published in Mar-
golin et al. (2012) and utilized in Margolin et al., 2011; Gupta et al., 
2013; Li et al., 2014; Duan et al., 2017; Mauro et al., 2019; Jonasson 
et al., 2020). The model tracks the state of individual subunits (rep-
resenting tubulin dimers bound to either GTP or GDP) in the entire 
13-PF MT structure. The events that occur in the model are attach-
ment/detachment of subunits to/from a PF, formation/breaking of 
lateral bonds between subunits in neighboring PFs, and hydrolysis 
of GTP subunits to GDP subunits. The values of the biochemical 
kinetic rate constants for each type of event are user inputs and 
depend on the state (GTP-bound or GDP-bound) of the subunits 
involved in the event. To carry out the simulation, the event that oc-
curs at each step and the times between events are sampled using 
the Gillespie algorithm (Gillespie, 1976, 1977), which is a kinetic 
Monte Carlo algorithm. At each event, the simulation outputs the 
time of the event and the length of the MT. The DI behavior, includ-
ing stutters, and the values of DI parameters are emergent proper-
ties that arise as a consequence of the subunit-scale events. This 
feature is in contrast to two-state growth-shortening DI models, 
where the four traditional DI parameters are inputs (e.g., negative 
control in Supplemental Section S4; Verde et al., 1992; Dogterom 
and Leibler, 1993).

A key difference between the previous versions of our 13-PF MT 
computational model and the current implementation is strict ad-
herence to the assumption that only one of the many possible bio-
chemical events occurs at a time. The previous detailed-level 13-PF 

MT model approximated hydrolysis events by allowing several sub-
units to hydrolyze simultaneously after one of the other four reaction 
events (lateral bonding/breaking or subunit gain/loss) has occurred. 
Individual hydrolysis events are now considered as a possible event 
in the same way that the other events are handled. This modification 
resulted in very little change in macro-level behavior of in silico MTs, 
but the ability to output dedicated observations of each dimer-level 
event provides a more accurate representation of MT biochemistry. 
The overall result of the simulation is in silico MTs that exhibit macro-
level DI behaviors in agreement with those observed previously 
(Margolin et al., 2012).

5.2.2. Simulation setup and parameters. The dimer-scale kinetic 
parameters used in this study to simulate a 13-PF MT using the 
model described above were tuned in Margolin et al. (2012) based 
on in vitro DI measurements from Walker et al. (1988); a detailed list 
of parameters can be found in Supplemental Table S1.2. For the 
purposes of this analysis, a single MT was simulated at a constant 
[free tubulin] of 10 µM for 10 h of simulation time. For the kinetic 
parameters and tubulin concentration used here, approximately 
1650 subunit-scale reaction events occurred per second on average 
over the course of the simulation.

To generate the length-history data passed into STADIA, we 
used either the max PF length (i.e., the length of the longest of the 
13 PFs) or the mean PF length (i.e., the mean of the 13-PF lengths) 
as the length of the MT. Comparisons of results using the mean or 
max PF length are shown in Supplemental Figures S1.4, S1.5, S1.6, 
S1.9, and S1.10. The clustering profiles in Supplemental Figure S1.4 
show better agreement with the in vitro data used here when using 
the max PF length instead of the mean PF length. Thus, all the in 
silico results are presented for the max PF length unless otherwise 
indicated. Each dimer has a length of 8 nm. The max and mean PF 
lengths are both reported in units of dimer lengths; this is not the 
same as the number of dimers in the MT, which would be 13 times 
the mean PF length.

5.3. Classical DI analysis
For purposes of comparison to STADIA, we used our implementa-
tion of classical DI analysis, a custom program written in MATLAB 
and described in the Supplemental Methods of Jonasson et al. 
(2020). Briefly, this method segments growth and shortening phases 
by first identifying major peaks and valleys in the length-history 
data using the MATLAB function “findpeaks.” Then the ascent to 
each major peak is classified as a growth segment, and the descent 
from the peak is classified as a shortening segment. Each major 
peak is classified as a catastrophe, where the end of growth and the 
start of shortening are identified as occurring at the same time 
point. A major valley is classified as a rescue only if the MT length at 
the time of the major valley is greater than or equal to a user-de-
fined value called the “minimum rescue length,” in which case the 
end of shortening and the start of growth are identified as the same 
point. For a major valley that occurs below the minimum rescue 
length, the end of shortening can be identified as an earlier point in 
time than the start of growth, in which case the time between these 
points would correspond to a nucleation period near the MT seed 
(see Supplemental Methods of Jonasson et al., 2020, for additional 
details).

For the classical DI analysis in this paper, the minimum promi-
nence for major peaks (i.e., minimum height change between a ma-
jor peak and the nearest major valley) in the classical method was 
set equal to the same value that we used for the Maximum Error 
Tolerance in STADIA (Supplemental Table S1.1). The minimum peak 
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height and the minimum rescue length in the classical method were 
each set equal to the sum of the values of the Nucleation Height 
Threshold plus the Maximum Error Tolerance in STADIA (Supple-
mental Table S1.1).

In the classical method results shown in Table 1, the Vgrowth and 
Vshort calculations relied on linear regressions fitted to each growth 
or shortening segment. Vgrowth was calculated as the arithmetic 
mean of the slopes of the regression lines for all growth segments 
whose linear regression had an R2 value of at least 95%. Vshort was 
calculated in the same manner using the shortening segments. Fcat 
was calculated as the total number of catastrophes divided by the 
total time spent in growth phases. Similarly, Fres was calculated as 
the total number of rescues divided by the total time spent in short-
ening phases. Note that linear regressions and R2 values are used 
here in our classical analysis but not in STADIA.

5.4. Using STADIA for the analyses in this article
5.4.1. Data input and preprocessing. The simulation data (Section 
5.2) were inputted into STADIA as one long length-history time series 
from an individual MT. For each of the two in vitro data sets (Section 
5.1), individual length-history traces (which typically consisted of a 
growth phase followed by the beginning of a shortening phase; e.g., 
Figure 1D) were inputted from multiple MTs recorded over shorter 
periods of observation. As described below (Section 5.5.1.1), when 
multiple length-history traces are inputted into STADIA, STADIA 
“stitches” the traces into a single time-series representation, but with 
separators between the traces to avoid artifactually introducing 
rescues, catastrophes, or any other transitions. Thus, for our inputted 
in vitro data, STADIA automatically stitched all of the traces for all of 
the MTs within each experiment into a single time-series representation 
(one with CLASP2γ and one without).

5.4.2. Input parameter values (Supplemental Table S1.1). In both 
Diagnostic and Automated Modes, STADIA analysis requires that 
the user provide values for the following five user-defined parame-
ters: Minimum Segment Duration, Maximum Error Tolerance, Nucle-
ation Height Threshold, Maximum Height Change Magnitude for 
Flat Stutters, and Maximum Slope Magnitude for Flat Stutters. The 
role of each of these parameters in STADIA is further described in 
Sections 5.5.1 and 5.5.2.1 below.

The Minimum Segment Duration and Maximum Error Tolerance 
parameters regulate the accuracy of the continuous piecewise lin-
ear approximations. For all analyses in the main text and Supple-
mental Material Section S1, they were set to the following values: 
Minimum Segment Duration = 0.5 s; Maximum Error Tolerance = 
20 dimer lengths. These segmentation parameters were varied 
over a range of values in Supplemental Material Sections S2 and 
S3 for the purposes of the sensitivity analysis, which is summarized 
in Section 2.6.

The Nucleation Height Threshold sets the minimum MT length 
required for further DI analysis. Segments where the MT length is 
entirely below the Nucleation Height Threshold are classified as 
“nucleation” at the beginning of the classification stage and then 
omitted from analysis thereafter. For all analyses in this article, we 
set the Nucleation Height Threshold to 75 dimer lengths.

STADIA identifies a segment as a flat stutter if the absolute value 
of its net height change is less than the user-input Maximum Height 
Change Magnitude for Flat Stutters and/or the absolute value of its 
slope is less than the Maximum Slope Magnitude for Flat Stutters. In 
our analyses, we set the Maximum Height Change Magnitude for 
Flat Stutters to 3 dimer lengths and the Maximum Slope Magnitude 
for Flat Stutters to 0.5 dimer lengths/second.

5.4.3. Determination of the number of clusters (i.e., values of k) 
for k-means clustering. In Automated Mode, STADIA requires that 
the user provide the number of clusters (i.e., values of k) for the k-
means clustering step. As discussed more in Section 5.5.2, the value 
of k is set separately for the positive and negative slope line seg-
ments of each length-history data set and is informed by first running 
STADIA in Diagnostic Mode. Briefly, the Diagnostic Mode of STADIA 
outputs gap statistic plots and cluster plots (Supplemental Figures 
S1.4 and S1.5), which provide information that aids in choosing the 
optimal number of clusters (i.e., k-values) to input into Automated 
Mode. The gap statistic is a quantity that is calculated at each possi-
ble value of k to provide a measure of how well the data can be de-
scribed by k clusters. Though there are various ways to interpret gap 
statistic plots, one rule of thumb is to choose the k-value correspond-
ing to the first local maximum of the gap statistic plot (Maechler, 
2021) (see also Tibshirani et al., 2001; Hastie et al., 2009, for related 
information). However, because these plots can have ambiguities, 
visual examination of the gap statistic plots and cluster plots is useful 
for interpreting the results in the context of the particular application 
and thus determining an appropriate number of clusters.

In our analyses of the Diagnostic Mode outputs for each data set, 
the k-value corresponding to the first local maximum of the gap 
statistic plot was usually chosen as the optimal number of clusters. 
In particular, for the simulation data, we chose k = 3 for each of the 
positive and negative slope segment groups, as indicated by the 
first local maximum of the gap statistic plots (Supplemental Figures 
S1.4C and S1.5C). However, the situation was more complicated for 
the in vitro data. First, for the negative slope segments in each in 
vitro data set, we chose k = 2, consistent with the first local maxi-
mum of the gap statistic plots (Supplemental Figure S1.5, E and G); 
as discussed in Results Section 2.3.1, k = 2 for negative slope seg-
ments was appropriate for these data sets (in contrast to the k = 3 for 
negative slope segments in the in silico data set) because full depo-
lymerizations to the seed were not captured in the in vitro data sets 
for technical reasons. For the positive slope segments in the in vitro 
CLASP2γ data set, we chose k = 3, again consistent with the first lo-
cal maximum of the gap statistic plot (Supplemental Figure S1.4G). 
However, for positive slope segments in the in vitro control data set, 
we chose the second local maximum (k = 3) instead of the first local 
maximum (k = 1) based on qualitative inspection of the cluster pro-
files (Supplemental Figure S1.4, E and F). More specifically, the clus-
ter profile for the in vitro control positive slope segments (Supple-
mental Figure S1.4F) displays three appendages, similar to the 
cluster profiles for the positive slope segments in the in vitro 
CLASP2γ data set (Supplemental Figure S1.4H) and the in silico data 
set (Supplemental Figure S1.4D), where the gap statistic plots indi-
cate k = 3 (Supplemental Figure S1.4, C and G).

After choosing the k-values based on the results of running STA-
DIA in Diagnostic Mode, we inputted these k-values into Automated 
Mode to perform the full STADIA analysis.

5.5. STADIA’S analysis procedure
This section provides an in-depth description of the three major 
stages of STADIA analysis (Segmentation, Classification, and Phase 
and Transition Analysis; Figure 2; Supplemental Figure S1.1). For 
readers interested in a shorter overview of STADIA’s analysis proce-
dure, please see Results Section 2.2.

5.5.1. Segmentation stage. In the segmentation stage, STADIA 
takes MT length-history data and generates a continuous piecewise 
linear approximation of the MT length-history plot (Figure 2, A–D). 
The approximation is a series of straight-line segments (i.e., the 
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approximation is “piecewise linear”), where the endpoint of each 
line segment coincides with the start point of the next line segment 
(i.e., there are no discontinuities in the approximation). The segmen-
tation stage includes a preprocessing step that prepares the user’s 
length-history data for input into STADIA and a postprocessing step 
that prepares the results of the segmentation stage for classification.

5.5.1.1. Preprocessing of input length-history data. As an initial 
step, STADIA automatically formats the inputted MT length-history 
data into a single time series of length-history data points. MT 
length-history data can be inputted into STADIA either as a long-
time observation of a single MT (possible with simulations) or as a 
series of length histories of multiple MTs (common with experimen-
tal data). In the latter case, STADIA automatically connects, or 
“stitches,” the data from multiple MTs (with separators in between) 
into a single time-series representation of MT length-history data 
(e.g., Figure 1D). Note that special treatment of the stitching separa-
tor between observations allows STADIA to avoid misclassification 
of stitch boundaries as transitions. This preprocessing step allows 
STADIA to conduct analysis for both simulation data and experi-
mental data in a similar and consistent manner.

5.5.1.2. Segmentation process. STADIA takes the single time-series 
length-history graph produced by the preprocessing step and per-
forms segmentation as an adaptive, iterative process. As described 
in this section, how closely the segmentation fits the length-history 
plot is regulated by two user-defined parameters: Maximum Error 
Tolerance and Minimum Segment Duration.

The segmentation process begins by identifying major peaks 
and valleys (i.e., local extrema) in MT length-history data using the 
“findpeaks” function in MATLAB. The “findpeaks” function uses in-
puts of minimum peak prominence (i.e., minimum vertical distance 
between a major peak and nearest major valley) and minimum peak 
height. The values that STADIA uses for the minimum peak promi-
nence and the minimum peak height in “findpeaks” are the same 
values, respectively, as the user-input values of the Maximum Error 
Tolerance and the Nucleation Height Threshold.

Consecutive extrema are connected by line segments to form an 
initial linear approximation of the length-history data (Figure 2C). An 
initial list of vertices is defined by these peaks and valleys.

New vertices are added to mark the locations where the MT 
length crosses the user-input Nucleation Height Threshold, gener-
ally chosen to be near the lower limit of observation in experimental 
conditions. When a MT crosses from below to above the threshold 
(i.e., a growing MT), the vertex is added at the last data point less 
than or equal to the Nucleation Height Threshold. When a MT 
crosses from above to below the threshold (i.e., a shortening MT), 
the vertex is added at the first data point less than or equal to the 
Nucleation Height Threshold. At the classification stage described 
below (Section 5.5.2), segments that are entirely below the Nucle-
ation Height Threshold are excluded from further analysis because 
these segments are generally not experimentally detectable (note 
that in our in vitro data sets none of the tracked lengths are below 
the nucleation threshold).

Then, the iterative process seeks to include new vertices to de-
fine line segment endpoints. This improves the approximation ac-
curacy by constructing a continuous piecewise linear approximation 
that satisfies the user-defined parameters of Maximum Error Toler-
ance and Minimum Segment Duration mentioned above (Figure 
2D). Note that the segmentation algorithm implemented in STADIA 
is similar, but not identical, to the “top-down” category of algo-
rithms reviewed in Keogh et al. (2001).

STADIA’s segmentation algorithm can be explained in the follow-
ing steps:

1. Let x x x, , , N1 2{ }…  represent the initial list of vertices (i.e., seg-
ment endpoints), where x1 and xN are the first and last points of 
the length-history data, respectively, and x x, , N2 1{ }… −  are the 
consecutive peaks, valleys, and nucleation threshold points de-
scribed above.

2. For any i = 1, …, N –1, define the ith region as the interval be-
tween the consecutive pair of initial vertices, xi and xi+1. Con-
struct a line segment with endpoints as x xi i

1 =  and x xi i
2

1= +  
such that the vertices corresponding to the ith region are 
x x, ,i

M
i

1 �{ }, where initially M = 2, but we seek to grow this list in 
the following steps.

3. For j = 1 …, M –1, consider the jth line segment in the ith region 
defined by x j

i  and x j
i

1+ . Calculate the error (absolute value of the 
difference) between this line segment and the corresponding 
points in the original length-history data.

 ◦ If the maximum error is greater than the user-defined Maxi-
mum Error Tolerance, then the error condition is not satisfied, 
and an additional data point needs to be included in the ver-
tex list. Proceed to step 4.

 ◦ If the maximum error from this segment is less than the user-
defined Maximum Error Tolerance, then the error condition is 
satisfied for the jth line segment in the ith region. Proceed to 
step 6.

4. Define the data point where the greatest error occurs in step 3 as 
xnew

i

 ◦ If xnew
i  violates the user-defined Minimum Segment Duration, 

attempt to choose the closest point in the length-history data 
that would satisfy both the Maximum Error Tolerance and 
Minimum Segment Duration.

5. Include the newly identified vertex into the list of vertices for the 
ith region. This will require reindexing to preserve ordering. For 
example, for the first new vertex added to the ith region, the 
original single segment in the ith region is now broken into two 
segments, and the list of vertices corresponding to the ith region 
is now defined as

x x x x x x, , , ,i i i i
new
i i

1 2 3 1 2{ } { }=

where the vertex list on the right side is indexed according to 
the preceding iteration and the updated vertex list on the left 
side replaces the list defined in step 2, such that < +x xj

i
j
i

1 for all 
j = 1, …, 1, M – 1.

6. Repeat steps 3–5 until the error condition is satisfied without 
adding more vertices into the ith region.

7. Repeat steps 2–6 for all i ≤ N – 1.

The final result is a continuous piecewise linear approximation 
of the inputted length-history data set (excerpts of the full length-
history approximation are illustrated in Figure 2D, orange lines, 
and Figure 2, G and J, black lines). The vertices of the piecewise 
linear approximations provide line segments with endpoints at 
moments where significant changes in slope occur in length-his-
tory plots. Thus, the activity covered by each segment between 
endpoints represents a consistent period of MT length-history be-
havior that can be identified as belonging to a DI phase in the 
classification stage.
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5.5.1.3. Justification for segmentation method. To create a more 
accurate approximation of MT length-history data as compared 
with more classical methods that identify segment endpoints only 
at peaks and valleys (Figure 2, A–C), STADIA employs the iterative 
approach described above in Section 5.5.1.2 to create an im-
proved continuous piecewise linear approximation of the MT 
length-history data. The resulting approximation satisfies the user-
defined Maximum Error Tolerance and Minimum Segment Duration 
(Figure 2D). We chose this approach because it provides a simple 
method for identifying points that may not necessarily be peaks or 
valleys, but where a change from one sustained MT behavior to 
another occurs. Through the Maximum Error Tolerance choice, the 
user is able to regulate the accuracy of the linear approximation. 
Through the Minimum Segment Duration choice, the user is able to 
perform the analysis of MT length-history data at the desired times-
cale. An assumption of performing segmentation in this manner is 
that MT behavior follows a linear trend at the timescale being ana-
lyzed. Finally, we note that this segmentation method in STADIA 
produces a continuous piecewise linear approximation, whereas 
some other segmentation methods produce discontinuous approx-
imations (e.g., Zaliapin et al., 2003).

5.5.1.4. Postprocessing to prepare for classification. For each line 
segment from the continuous piecewise linear approximation, STA-
DIA measures the slope, time duration, and height change of the 
segment (Figure 2D); this set of measurements provides a 3-D fea-
ture space where the segments reside (Figure 2E).

5.5.1.5. Justification for using all three of slope, time duration, and 
height change in the classification feature space. Mathematically, 
knowing the values of any two of the segment variables (time dura-
tion, height change, and slope) provides sufficient information to 
calculate the value of the remaining third variable. However, we use 
all three variables in the clustering step because some data points 
that are well separated in the 3-D space would become indistin-
guishable for all practical purposes if only two of the variables were 
used (Supplemental Figures S1.2 and S1.3). Additionally, which data 
points become indistinguishable would depend on which pair of 
variables was used (time duration and height change, time duration 
and slope, or height change and slope).

The slope = height/time surface (Supplemental Figures S1.2A 
and S1.3E) could be parameterized with only two variables in a way 
that would maintain the separation present in the 3-D space. How-
ever, these two new variables would be some combination of the 
original three variables, and these combinations would not neces-
sarily have clear physical meanings. We therefore chose to use all 
three of the basic variables (time duration, height change, and 
slope) to maintain a more direct connection to the biology.

The inclusion of nonlinear combinations of variables (i.e., interac-
tion terms) is not uncommon in statistics (e.g., Rawlings et al., 1998; 
Karaca-Mandic et al., 2012; Matuschek and Kliegl, 2018). Additional 
combinations of our three basic variables as well as other variables 
may be worth exploring in future work that aims to further dissect 
MT length-history behaviors. For the purposes of the present work, 
the three basic variables are sufficient for verifying the existence of 
distinguishable clusters within the positive and negative slope 
groups.

5.5.2. Classification stage. The purpose of the classification stage 
in STADIA is to group the segments from the segmentation stage 
into subsets that share similar attributes. In the classification proce-
dures, each segment from the approximation of the MT length-his-

tory data is represented as a point in the 3-D space generated by 
segment time duration, height change, and slope (Figure 2, D and 
E). The classification stage is where differences arise between the 
two modes of STADIA: Diagnostic Mode aids the user in selecting 
the number of clusters to use but ends after the clustering step, 
which is described below in Section 5.5.2.2; Automated Mode re-
quires that the number of clusters be provided as input but per-
forms all other stages of the analysis.

5.5.2.1. Classification first steps—identification of nucleation seg-
ments and flat stutters. First, segments that are entirely below the 
user-input Nucleation Height Threshold described above (Section 
5.5.1.2) are classified as “nucleation.” These nucleation segments 
are excluded from further analysis and therefore are excluded from 
the 3-D plots of segment features (e.g., Figure 3).

Next, STADIA identifies any segments that satisfy either or both 
of the following criteria:

• the absolute value of the segment’s net height change is less 
than the user-input Maximum Height Change Magnitude for Flat 
Stutters;

• the absolute value of the segment’s slope is less than the Maxi-
mum Slope Magnitude for Flat Stutters.

These near-flat segments clearly lack the qualities characteristic 
of traditionally recognized growth or shortening and thus already 
qualify as a subset of points that share attributes different from the 
remaining points requiring classification. Therefore, STADIA assigns 
them into a class labeled “flat stutters.”

We remark that in comparison to the up stutters and down stut-
ters that are identified by the next step of classification (Section 
5.5.2.2), flat stutters are relatively rare, in terms of both number of 
segments and total time spent in each type of segment (Supple-
mental Figure S1.9). Thus, flat stutters account for only a small share 
of all stutter behaviors detected.

Removing flat stutters from the rest of the collection of points 
creates a clear boundary between points that represent positive 
and negative slope segments. However, we do not simply label 
the remaining segments as growth and shortening. Instead, fur-
ther analysis is warranted for two reasons. First, attempting to 
execute the rest of the classification procedures on the positive 
and negative slope segments together fails to produce conclu-
sive results (Supplemental Figure S1.6), suggesting that the posi-
tive and negative groups should be analyzed separately. Second, 
complex geometric structures of distinguishable appendages 
observed in both the positive and negative slope point groups 
(Figure 3, B and C) suggest that multiple types of behaviors are 
present within each subset.

5.5.2.2. k-means clustering step of the classification stage. To con-
tinue the classification stage, STADIA takes the segments that are 
now segregated into positive and negative slope line segments and 
analyzes them using k-means clustering (Macqueen, 1967; Lloyd, 
1982), where the number of clusters, the k-value, is suggested by 
the gap statistic (Tibshirani et al., 2001).

Justification for using k-means clustering. As an unsupervised 
clustering algorithm commonly used in machine learning, k-means 
does not require prior knowledge of the characteristics of the clus-
ters to be found in order for the algorithm to identify boundaries 
that separate them. Rather, k-means groups together data points 
that share similar characteristics (i.e., data points that are near each 
other in a relevant feature space). The k-means algorithm also has 
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the advantages of its ease of use and interpretability. Ideal data sets 
for k-means have globularly shaped clusters (i.e., each cluster would 
follow a Gaussian distribution). Although the clusters resulting from 
our data are not Gaussian per se, k-means still provides an objective 
methodology to find substructures in the overall data structure. The 
observation that k-means enables us to identify and quantify stut-
ters (behaviors that have been noted previously but not quantified 
in detail) indicates that it provides a useful methodology for catego-
rization and quantification of MT behavior.

Preprocessing of segment data for input into k-means cluster-
ing. k-means clustering uses Euclidean distance (i.e., straight-line 
distance) between points in the feature space (3-D space for our 
data) as the primary measurement in its algorithm to classify data. 
Therefore, all features should exist on the same scale to give each 
feature equal weight in the k-means classification process. To meet 
this requirement, the segment features (slope, height change, and 
time duration values) are transformed by first being log-scaled and 
then standardized with respect to each feature’s statistics (i.e., by 
subtracting the mean and dividing by the SD) (Figure 3, B and C). 
Scaling and standardizing the data in this way is a common practice 
for analysis utilizing k-means clustering (Hastie et al., 2009).

Determining appropriate number of clusters for each data set. As 
noted in Section 2.2.1, one of the goals for STADIA development 
was that it be impartial in determining the number of behaviors ex-
hibited by MTs, thus avoiding any assumptions about MT dynamics 
being restricted to two behaviors (i.e., only growth and shortening). 
The k-value (i.e., number of clusters to use in k-means) is deter-
mined for positive and negative slope segments separately and is 
informed by running the Diagnostic Mode of STADIA.

Though various approaches exist for determining the k-value 
with which to perform the clustering (reviewed by Pham et al., 2005; 
Steinley, 2006), STADIA utilizes a quantity called the gap statistic, 
which is calculated at each potential value of k (Supplemental 
Figures S1.4 and S1.5, left column) (Tibshirani et al., 2001). The gap 
statistic aids in answering the question, “what number of clusters 
results in the best separation between the clusters?” More techni-
cally, the gap statistic measures the within-cluster dispersion com-
pared with a null reference distribution.

When examining the values of the gap statistic at different val-
ues of k to seek the optimal number of clusters that best separates 
the data, higher values of the gap statistic indicate better separa-
tion between clusters. However, a significant increase in the value 
of the gap statistic is generally considered necessary to justify us-
ing an additional cluster. Tibshirani et al. (2001) formalized this 
idea with the following criterion: choose the smallest value of k 
such that

Gap(k) ≥ Gap(k + 1) – one standard error of Gap(k + 1).

In words, this criterion means choose the smallest value of k such 
that the value of the gap statistic does not increase by more than 
one standard error when going to the next value of k. Other possi-
ble criteria include choosing the first local maximum of the gap sta-
tistic plot or the smallest k-value such that the gap value is within 
one standard error of the first local maximum (Hastie et al., 2009; 
Maechler, 2021). Depending on the particular data set, the different 
criteria may yield the same k-value as each other or different 
k-values.

The Diagnostic Mode of STADIA outputs the k-value chosen by 
the Tibshirani et al. (2001) criterion. However, when choosing k-val-
ues to input into Automated Mode, it is also recommended for the 

user to examine the gap statistic plots and cluster profiles (Supple-
mental Figures S1.4 and S1.5) to check how well the number of 
clusters suggested by the gap statistic describes the data set quali-
tatively. For example, in some cases, qualitative inspection of the 
data may suggest that the second local maximum of the gap statis-
tic plot describes the data better than the first local maximum (e.g., 
as seen in Supplemental Figure S1.4. E and F).

Measuring the gap statistic in Diagnostic Mode. For the purpos-
es of informing the optimal k-value for use in k-means clustering, 
the Diagnostic Mode of STADIA repeats the clustering procedure 
for each potential value of k ranging from 1 through 12, using 
100 random starts for each value (a single run of k-means cluster-
ing does not necessarily converge to a global optimum, so mul-
tiple starts are required to determine optimal centroid locations). 
Using the clustering results at each k-value, STADIA measures 
the value of the gap statistic for each value of k (Supplemental 
Figures S1.4 and S1.5).

k-means clustering in Automated Mode. As noted above, the pur-
pose of k-means clustering is to group together data points that 
share similar characteristics (i.e., data points that are near each other 
in the feature space of segment slope, height change, and time 
duration). Once the optimal number of clusters is determined for 
both positive and negative slope segments using the Diagnostic 
Mode of STADIA, the user inputs these k-values and runs STADIA in 
Automated Mode. In Automated Mode, STADIA performs k-means 
clustering, on the positive and negative slope segments separately, 
using 500 random starts. Centroid locations that attain the lowest 
sum of squared distances between the centroids and each point 
in their respective clusters are chosen for further analysis. The cho-
sen centroid locations are indicted by x-symbols in the cluster plots 
(e.g., Figure 3, D and E).

5.5.2.3. Phase/behavior bundling step of the classification 
stage. After k-means clustering is performed on the log-trans-
formed and standardized data, the resulting cluster assignments 
are applied to the original segment data (i.e., the data before 
applying log-transformation and standardization; Supplemental 
Figure S1.7). Statistics such as average slopes, average time dura-
tion, and average height change are calculated for each cluster 
(slopes in Figure 4, C and F; slopes and time durations in Supple-
mental Figure S1.8) and then utilized for naming the clusters 
(Figure 3G). Clusters with similar average slopes are bundled to-
gether to form larger groups, which we refer to as “phase classes” 
or “behavior classes” (Figures 2H and 4I). Groups of clusters with 
large positive slopes are classified as growth, while those with 
large negative slopes are classified as shortening. The remaining 
clusters with segment slopes considerably smaller in magnitude 
(i.e., flatter) are grouped into the category of behaviors called 
“stutters” (along with the “flat stutters,” which were separated 
out before the clustering process).

At this point, every segment identified during the segmentation 
stage has been classified as growth, shortening, stutter, or nucle-
ation. Applying these phase class labels to each segment in the 
length-history plot is illustrated in Figure 2, G and J.

5.5.3. Phase and transition analysis stage. After classifying seg-
ments into clusters and then bundling the clusters into larger phase/
behavior classes as described above (Section 5.5.2), classical 
methods of calculating DI metrics are adapted to account for stut-
ters in addition to growth and shortening.
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5.5.3.1. Phase analysis. For each cluster, STADIA calculates the av-
erage velocity of the segments in the cluster (Table 1, bottom row of 
each subtable). STADIA also calculates the following cluster attri-
butes (Supplemental Figure S1.9):

• total number of segments (counts obtained from the piecewise 
linear approximation) in each cluster,

• percent time spent in each cluster 

= ×






sum of segment time durations in cluster

total time of data set
100% ,

• and percent height change corresponding to each cluster 

= ×






sum of segment height change magnitudes in cluster

sum of all segment height change magnitudes
100% .

These attributes can be determined for each of the larger phase/
behavior classes (i.e., growth, shortening, stutters) by combining the 
measurements for the clusters in each class (Figure 5A).

5.5.3.2. Transition analysis. Transition frequencies are calculated in 
a manner similar to what has been done classically. However, when 
considering stutters in addition to growth and shortening, there are 
additional transitions to quantify (Figure 2I). In particular, it is neces-
sary to determine whether catastrophes and rescues are or are not 
directly preceded by stutters. Catastrophes and rescues are identi-
fied as either abrupt (occurring without detectable stutters) or tran-
sitional (occurring via a stutter) (Figures 5–7). Additionally, our analy-
sis quantifies interrupted growth (growth → stutter → growth) 
(Figures 5H, 6, and 7, H and I) and interrupted shortening (shorten-
ing → stutter → shortening) (Figure 5I).

As mentioned above in Section 5.5.2.1, MTs shorter than the 
user-defined Nucleation Height Threshold are considered to be in 
“nucleation” phases. Transitions into or out of nucleation phases are 
not analyzed by the current version of STADIA because such MTs 
would be difficult to detect in experiments, and their behavior might 
be influenced by proximity to the seed.

In agreement with what has been done in classic DI analyses, 
frequencies of catastrophe and rescue are calculated as the ratio of 
the number of catastrophe or rescue events to the total time spent 
in growth or shortening, respectively (Table 1). For the additional 
types of transitions identified by STADIA (Figure 2I), the frequencies 
are calculated in a similar manner: the frequency of each type of 
transition out of growth or shortening is calculated as the ratio of the 
number of transition events of that type to the total time spent in 
growth or shortening, respectively (Supplemental Figure S1.10). 
More specifically,

F
# of abrupt catastrophes

total time spent in growth
,AbruptCatastrophe =

F
# of transitional catastrophes

total time spent in growth
,TransitionalCatastrophe =

F
# of growth interruptions

total time spent in growth
,InterruptedGrowth =

F
# of abrupt rescues

total time spent in shortening
,AbruptRescue =

F
# of transitional rescues

total time spent in shortening
,TransitionalRescue =

F
# of shortening interruptions

total time spent in shorteningInterruptedShortening = ⋅

The total Fcat equals FAbruptCatastrophe + FTransitionalCatastrophe 
(Figure 7C; Supplemental Figure S1.10), and the total Fres equals 
FAbruptRescue + FTransitionalRescue (Supplemental Figure S1.10). Similarly, 
the total frequency of growth-to-stutter transitions equals FTransition-

alCatastrophe + FInterruptedGrowth (Figure 7C), and the total frequency of 
shortening-to-stutter transitions equals FTransitionalRescue + 
FInterruptedShortening.

5.6. Guidance for users: expectations for input data and 
effect of thresholds
STADIA is ideally intended for use on data sets with moderate or high 
temporal resolution, for example, at least 2 fps. For lower resolution 
data sets, we suggest that STADIA will provide more systematic anal-
ysis than manual methods, but the resolution of the data themselves 
will be a limiting factor in what conclusions can be supported.

We expect that the most common difficulty will be obtaining a 
total amount of data that is large enough for effective clustering 
during the classification stage. The clustering process performs bet-
ter as the amount of data increases; more specifically, determining 
the optimal number of clusters and assigning segments to the ap-
propriate cluster is done more accurately when there are more data 
points in the segment feature space (e.g., Figure 3). The total time 
duration of MT length-history data required will generally be on the 
order of hours, not minutes. To determine whether one has a suffi-
cient quantity of data, we recommend two possible tests. First, us-
ers should examine the error bars in the gap statistic plots gener-
ated by Diagnostic Mode; if the error bars are too large to 
conclusively choose an optimal k-value, then more data may be 
needed. Second, we suggest that users run STADIA on their entire 
data set and on half of their data set; if both cases yield similar clus-
tering results, this indicates that the user has a sufficient quantity of 
data. If one has an insufficient amount of data for effective cluster-
ing, STADIA can still be used to perform segmentation, detection of 
flat stutters with user-defined parameters, and clustering with k = 1 
(one cluster each for positive and negative slope segments), be-
cause these analyses do not depend on the number of data points 
in the feature space; on the contrary, the number of data points in 
the feature space depends on the number of segments in the seg-
mentation. However, DI metrics resulting from sparse data sets 
should be treated with caution.

As one specific example of the amount of data needed, in the in 
silico results presented here, we used 10 h of simulation time to 
ensure that enough segments were generated for effective cluster-
ing. Testing different total time durations of data yielded consistent 
results for simulations that ran for 7.5 h or longer when using STA-
DIA in Diagnostic Mode. However, using significantly shorter length-
history data sets (e.g., 2.5 h) did not provide acceptable clustering 
results. On the other hand, if the number of clusters (i.e., k-values) is 
preestablished (e.g., from a similar but larger data set), then STADIA 
can be used in Automated Mode to calculate DI metrics from signifi-
cantly fewer data (e.g., at least 2.5 h).

It is important for users to be aware that the values of inputted 
thresholds will affect the numerical values of results of STADIA (as 
well as any other DI analysis method; e.g., Odde et al., 1996; Gierke 
et al., 2010; Matov et al., 2010; Smal et al., 2010; Prahl et al., 2014; 
Guo et al., 2018). For examples of the effects of changing these 
values, see the analyses with varied values of the Minimum Segment 
Duration and Maximum Error Tolerance in STADIA and the data 
acquisition rate of the length-history data as shown in Supplemental 
Sections S2 and S3. We recommend that users try at least a few dif-
ferent values of thresholds to test the strength of any conclusions 
they draw. In articles using STADIA, users should report the values 
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of the input parameters that they use in STADIA, in addition to re-
porting the resolution of their measurements, quantity of data, and 
values of any other relevant quantities.

At the segmentation stage, users should examine the piecewise 
linear approximation to ensure that the approximation is not overfit-
ting or underfitting the raw data. The user’s choices for the values of 
the Minimum Segment Duration and Maximum Error Tolerance de-
termine how closely the piecewise linear approximation will fit the 
raw length-history data. When choosing the values of these thresh-
olds, the user should take into account the resolution and noise level 
of their data as well as the timescale of the dynamics that the user 
wishes to study. For example, there are small-amplitude stochastic 
fluctuations that occur within growth, shortening, and stutter seg-
ments; if the user is studying phases at a scale similar to what we 
study in this article, which is a larger scale than the small-amplitude 
fluctuations, then the Minimum Segment Duration and Maximum Er-
ror Tolerance should not be so small as to pick up these fluctuations.

Note that for certain combinations of the Minimum Segment Du-
ration and Maximum Error Tolerance, STADIA will produce “irrecon-
cilable errors.” These errors occur because it is not always possible 
to satisfy both the Minimum Segment Duration and the Maximum 
Error Tolerance. In such cases, STADIA outputs a warning to the user 
for each error. Such errors are most likely to occur if the user has 
chosen a long Minimum Segment Duration with a small Maximum 
Error Tolerance. The specific values of Minimum Segment Duration 
and Maximum Error Tolerance that result in irreconcilable errors will 
depend on the particular data set being analyzed. If such errors oc-
cur, the user should either change the parameter values or recog-
nize that some segments of the piecewise linear approximation will 
not meet the input criteria.

If the user is aiming to identify one set of input parameter values 
or a small number of parameter sets that are ideal for their particu-
lar data set, then we recommend that the user choose input para-
meter values that minimize the number of irreconcilable errors. Our 
parameter sensitivity analysis (Section 2.6 and Supplemental Mate-
rial Sections S2 and S3) indicates that the number of irreconcilable 
errors is more sensitive to the Maximum Error Tolerance than to the 
Minimum Segment Duration. For our in silico data set, the percent-
age of segments that have irreconcilable errors has a local mini-
mum at Maximum Error Tolerance = 20 dimer lengths. The percent-
age of segments that have irreconcilable errors is also low for 
Maximum Error Tolerance > 40 dimer lengths but is very high for 
Maximum Error Tolerance < 15 dimer lengths. If the user is perform-
ing a parameter sensitivity analysis with a large range of parameter 
values (similar to the range used in Supplemental Material Sections 
S2 and S3), then the user should be aware that some parameter 
combinations may result in a large number of irreconcilable errors.

For further instructions on how to use the STADIA MATLAB 
code, we refer readers to Patel et al. (2020). Note that the input 
parameter called the “Minimum Segment Duration” here was re-
ferred to as the “minimum time step” in Patel et al. (2020).

Software and data availability
STADIA software (MATLAB code) and tutorials can be downloaded 
from GitHub (https://github.com/GoodsonLab/STADIA/). Data ana-
lyzed in this paper are available from the authors upon request.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation (NSF) 
grants MCB-1244593 to H.V.G. and M.A., MCB-1817966 to H.V.G., 
and MCB-1817632 to E.M.J., National Institutes of Health (NIH) 
grant R35GM119552 to M.Z., and National Institutes of Health 

Integrated Biological Systems Training in Oncology training grant 
T32CA119925 to E.J.L. M.Z. also acknowledges the Searle Scholars 
Program. Portions of the work were also supported by funding from 
the University of Massachusetts Amherst (A.J.M.), NSF-GFRP DGE-
1313583 (K.S.M.), and a fellowship from the Dolores Zohrab 
Liebmann Fund (S.M.M.). We thank the members of the Goodson 
laboratory and the Chicago Cytoskeleton community for their 
insightful discussions.

REFERENCES
Aher A, Kok M, Sharma A, Steinmetz MO, Dogterom M, Akhmanova A 

(2018). CLASP suppresses microtubule catastrophes through a single 
TOG Domain. Dev Cell 46, 40–58.

Andrecka J, Arroyo JO, Lewis K, Cross RA, Kukura P (2016). Label-free 
imaging of microtubules with sub-Nm precision using interferometric 
scattering microscopy. Biophys J 110, 214–217.

Applegate KT, Besson S, Matov A, Bagonis MH, Jaqaman K, Danuser G 
(2011). PlusTipTracker: quantitative image analysis software for the mea-
surement of microtubule dynamics. J Struct Biol 176, 168–184.

Blackwell R, Sweezy-Schindler O, Edelmaier C, Gergely ZR, Flynn PJ, 
Montes S, Crapo A, Doostan A, McIntosh JR, Glaser MA, et al. (2017). 
Contributions of microtubule dynamic instability and rotational diffusion 
to kinetochore capture. Biophys J 112, 552–563.

Castle BT, Odde DJ (2013). Brownian dynamics of subunit addition-loss 
kinetics and thermodynamics in linear polymer self-assembly. Biophys J 
105, 2528–2540.

Castoldi M, Popov AV (2003). Purification of brain tubulin through two 
cycles of polymerization–depolymerization in a high-molarity buffer. 
Protein Expr Purif 32, 8388.

Coombes CE, Yamamoto A, Kenzie MR, Odde DJ, Gardner MK (2013). 
Evolving tip structures can explain age-dependent microtubule catastro-
phe. Curr Biol 23, 1342–1348.

Desai A, Mitchison TJ (1997). Microtubule polymerization dynamics. Annu 
Rev Cell Dev Biol 13, 83–117.

Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995). 
Vinblastine suppresses dynamics of individual microtubules in living 
interphase cells. Mol Biol Cell 6, 1215–1229.

Dhamodharan R, Wadsworth P (1995). Modulation of microtubule dynamic 
materials and in vivo by brain microtubule associated proteins. J Cell Sci 
108(Pt 4), 1679–1689.

Dillon GM, Tyler WA, Omuro KC, Kambouris J, Tyminski C, Henry S, Haydar 
TF, Beffert U, Ho A (2017). CLASP2 links reelin to the cytoskeleton dur-
ing neocortical development. Neuron 93. 1344–1358.

Dogterom M, Leibler S (1993). Physical aspects of the growth and regula-
tion of microtubule structures. Phys Rev Lett 70, 1347–1350.

Doodhi H, Prota AE, Rodríguez-García R, Xiao H, Custar DW, Bragsten K, 
Katrukha EA, Hilbert M, Hua S, Jiang K, et al. (2016). Termination of pro-
tofilament elongation by eribulin induces lattice defects that promote 
microtubule catastrophes. Curr Biol 26, 1713–1721.

Duan AR, Jonasson EM, Alberico EO, Li C, Scripture JP, Miller RA, Alber 
MS, Goodson HV (2017). Interactions between Tau and different confor-
mations of tubulin: implications for Tau function and mechanism. J Mol 
Biol 429, 1424–1438.

Duellberg C, Cade NI, Holmes D, Surrey T (2016a). The size of the EB cap 
determines instantaneous microtubule stability. eLife 5, e13470.

Duellberg C, Cade NI, Surrey T (2016b). Microtubule aging probed by 
microfluidics-assisted Tubulin washout. Mol Biol Cell 27, 3563–3573.

Fees CP, Estrem C, Moore JK (2017). High-resolution imaging and analysis 
of individual astral microtubule dynamics in budding yeast. J Vis Exp 
2017, 55610.

Fu TC (2011). A review on time series data mining. Engineering Applications 
of Artificial Intelligence 24, 164–181.

Gardner MK, Charlebois BD, Jánosi IM, Howard J, Hunt AJ, Odde DJ 
(2011). Rapid microtubule self-assembly kinetics. Cell 146, 582–592.

Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, Friel CT, Helenius J, 
Nitzsche B, Petzold H, Ribbe J, et al. (2010). Microtubule dynamics 
reconstituted in vitro and imaged by single-molecule fluorescence 
microscopy. Methods Cell Biol 95, 221–245.

Gierke S, Kumar P, Wittmann T (2010). Analysis of microtubule polymeriza-
tion dynamics in live cells. Methods Cell Biol 97, 15–33.

Gildersleeve RF, Cross AR, Cullen KE, Fagen AP, Williams RC (1992) Micro-
tubules grow and shorten at intrinsically variable rates. J Biol Chem 267, 
7995–8006.



Volume 33 March 1, 2022 STADIA quantifies MT stutters | 25 

Gillespie DT (1976). A general method for numerically simulating the 
stochastic time evolution of coupled chemical reactions. J Comput Phys 
22, 403–434.

Gillespie DT (1977). Exact stochastic simulation of coupled chemical reac-
tions. J Phys Chem 81, 2340–2361.

Girão H, Okada N, Rodrigues TA, Silva AO, Figueiredo AC, Garcia Z, 
Moutinho-Santos T, Hayashi I, Azevedo JE, Macedo-Ribeiro S, et al. 
(2020). CLASP2 binding to curved microtubule tips promotes flux and 
stabilizes kinetochore attachments. J Cell Biol 219, e201905080.

Goodson HV, Jonasson EM (2018). Microtubules and microtubule-associ-
ated proteins. Cold Spring Harb Perspect Biol 10, a022608.

Guo Y, Li Di, Zhang S, Yang Y, Liu J-J, Wang X, Liu C, Milkie DE, Moore RP, 
Tulu US, et al. (2018). Visualizing intracellular organelle and cytoskeletal 
interactions at nanoscale resolution on millisecond timescales. Cell 175, 
1430–1442.

Gupta KK, Li C, Duan A, Alberico EO, Kim OV, Alber MS, Goodson HV (2013). 
Mechanism for the catastrophe-promoting activity of the microtubule 
destabilizer Op18/Stathmin. Proc Natl Acad Sci USA 110, 20449–20454.

Hastie T, Tibshirani R, Friedman J (2009). Springer Series in Statistics: 
The Elements of Statistical Learning, 2nd ed., New York: Springer 
Science+Business Media, LLC.

Howard J, Hyman AA (2009). Growth, fluctuation and switching at microtu-
bule plus ends. Nat Rev Mol Cell Biol 10, 569–574.

Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, Steffen P, Wordeman L, 
Mitchison T (1991). Preparation of modified tubulins. Methods Enzymol 
196, 478–485.

Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ (1992). Role 
of GTP hydrolysis in microtubule dynamics: information from a slowly 
hydrolyzable analogue, GMPCPP. Mol Biol Cell 3, 1155–1167.

Jánosi IM, Chrétien D, Flyvbjerg H (2002). Structural microtubule cap:s, 
catastrophe, rescue, and third state. Biophys J 83, 1317–1330.

Janson ME, Dogterom M (2004). Scaling of microtubule force-velocity curves 
obtained at different tubulin concentrations. Phys Rev Lett 92, 248101.

Jonasson EM, Mauro AJ, Li C, Labuz EC, Mahserejian SM, Scripture JP, 
Gregoretti IV, Alber M, Goodson HV (2020). Behaviors of individual 
microtubules and microtubule populations relative to critical concentra-
tions: dynamic instability occurs when critical concentrations are driven 
apart by nucleotide hydrolysis. Mol Biol Cell 31, 589–618.

Kamath K, Oroudjev E, Jordan MA (2010). Determination of microtubule 
dynamic instability in living cells. Methods Cell Biol 97, 1–14.

Kapoor V, Hirst WG, Hentschel C, Preibisch S, Reber S (2019). MTrack: 
automated detection, tracking, and analysis of dynamic microtubules. 
Sci Rep 9, 3794.

Karaca-Mandic P, Norton EC, Dowd B (2012). Interaction terms in nonlinear 
models. Health Serv Res 47, 255–274.

Keller PJ, Pampaloni F, Lattanzi G, Stelzer EHK (2008). Three-dimensional 
microtubule behavior in xenopus egg extracts reveals four dynamic 
states and state-dependent elastic properties. Biophys J 95, 1474–1486.

Keogh E, Chu S, Hart D, Pazzani M (2001). An online algorithm for segment-
ing time series. In: Proceedings—IEEE International Conference on Data 
Mining, ICDM, 289–296.

Kiris E, Ventimiglia D, Feinstein SC (2010). Quantitative analysis of MAP-
mediated regulation of microtubule dynamic instability in vitro-focus on 
tau. Methods Cell Biol 95, 481–503.

Komarova YA, Vorobjev IA, Borisy GG (2002). Life cycle of MTs: persistent 
growth in the cell interior, asymmetric transition frequencies and effects 
of the cell boundary. J Cell Sci 115, 3527–3539.

Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, Højlund K, 
Mandarino LJ, Langlais PR (2017). Characterization of the CLASP2 
protein interaction network identifies SOGA1 as a microtubule-associ-
ated protein. Mol Cell Proteomics 16, 1718–1735.

Lawrence EJ, Arpag G, Norris SR, Zanic M (2018). Human CLASP2 specifi-
cally regulates microtubule catastrophe and rescue. Mol Biol Cell 29, 
1168–1177.

Lawrence EJ, Zanic M (2019). Rescuing microtubules from the brink of catas-
trophe: CLASPs lead the way. Curr Opin Cell Biol 56, 94–101.

Li C, Li J, Goodson HV, Alber MS (2014). Microtubule dynamic instability: 
the role of cracks between protofilaments. Soft Matter 10, 2069–2080.

Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 
28, 129–136.

Macqueen J (1967). Some methods for classification and analysis of multivari-
ate observations. In: Proceedings of the Fifth Berkeley Symposium on 
Mathematical Statistics and Probability, Volume 1: Theory of Statistics, 
5.1, 281–297. Berkeley and Los Angeles, CA: University of California 
Press.

Maechler M (2021). R: gap statistic for estimating the number of clusters, 2021. 
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/clusGap.html.

Mahrooghy M, Yarahmadian S, Menon V, Rezania V, Tuszynski JA (2015). The 
use of compressive sensing and peak detection in the reconstruction 
of microtubules length time series in the process of dynamic instability. 
Comput Biol Med 65, 25–33.

Majumdar S, Kim T, Chen Z, Munyoki S, Tso S-C, Brautigam CA, Rice LM. 
(2018) An isolated CLASP TOG domain suppresses microtubule catas-
trophe and promotes rescue. Mol Biol Cell 29, 1359–1375.

Maly IV (2002). Diffusion approximation of the stochastic process of micro-
tubule assembly. Bull Math Biol 6, 213–238.

Mangeol P, Prevo B, Peterman EJG (2016). KymographClear and 
Kymograph Direct: two tools for the automated quantitative analysis of 
molecular and cellular dynamics using kymographs. Mol Biol Cell 27, 
1948–1957.

Margolin G, Goodson HV, Alber MS (2011). Mean-field study of the role of 
lateral cracks in microtubule dynamics. Phys Rev E 83, 041905.

Margolin G, Gregoretti IV, Cickovski TM, Li C, Shi W, Alber MS, Goodson 
HV (2012). The mechanisms of microtubule catastrophe and rescue: 
implications from analysis of a dimer-scale computational model. Mol 
Biol Cell 23, 642–656.

Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann 
T (2010). Analysis of microtubule dynamic instability using a plus-end 
growth marker. Nat Methods 7, 761–768.

Matuschek H, Kliegl R (2018). On the ambiguity of interaction and nonlinear 
main effects in a regime of dependent covariates. Behav Res Methods 
50, 1882–1894.

Maurer SP, Cade NI, Bohner G, Gustafsson N, Boutant E, Surrey T (2014). 
EB1 accelerates two conformational transitions important for microtu-
bule maturation and dynamics. Curr Biol 24, 372–384.

Mauro AJ, Jonasson EM, Goodson HV (2019). Relationship between dy-
namic instability of individual microtubules and flux of subunits into and 
out of polymer. Cytoskeleton 76, 21557.

McIntosh RJ, O’Toole E, Morgan G, Austin J, Ulyanov E, Ataullakhanov F, 
Gudimchuk N (2018). Microtubules grow by the addition of bent guano-
sine triphosphate tubulin to the tips of curved protofilaments. J Cell Biol 
217, 2691–2708.

Mickolajczyk KJ, Geyer EA, Kim T, Rice LM, Hancock WO (2019). Direct ob-
servation of individual tubulin dimers binding to growing microtubules. 
Proc Natl Acad Sci USA 116, 7314–7322.

Mitchison T, Kirschner M (1984). Dynamic instability of microtubule growth. 
Nature 312, 237–242.

Moriwaki T, Goshima G (2016). Five factors can reconstitute all three phases 
of microtubule polymerization dynamics. J Cell Biol 215, 357–368.

Odde DJ, Buettner HM, Cassimeris L (1996). Spectral analysis of micro-
tubule assembly dynamics. AlChE J 42, 1434–1442.

Odde DJ, Cassimeris L, Buettner HM (1995). Kinetics of microtubule catas-
trophe assessed by probabilistic analysis. Biophys J 69, 796–802.

Panda D, Jordan MA, Chu KC, Wilson L (1996). Differential effects of vin-
blastine on polymerization and dynamics at opposite microtubule ends. 
J Biol Chem 271, 29807–29812.

Patel RJ, Murray KS, Martin PO, Sinclair M, Scripture JP, Goodson HV, 
Mahserejian SM (2020). Using STADIA to quantify dynamic instability in 
microtubules. Methods Cell Biol 158, 117–143.

Pedigo S, Williams RC (2002). Concentration dependence of variability in 
growth rates of microtubules. Biophys J 83, 1809–1819.

Pham DT, Dimov SS, Nguyen CD (2005). Selection of K in K-means cluster-
ing. Proc Inst Mech Eng Part C J Mech Eng Sci 219, 103–119.

Portran D, Schaedel L, Xu Z, Théry M, Nachury MV (2017). Tubulin acetyla-
tion protects long-lived microtubules against mechanical ageing. Nat 
Cell Biol 19, 391–398.

Prahl LS, Castle BT, Gardner MK, Odde DJ (2014). Quantitative analysis of 
microtubule self-assembly kinetics and tip structure. Methods Enzymol 
540, 35–52.

Rawlings J, Pantula S, Dickey D (eds.) (1998). Applied Regression Analysis. 
Applied Regression Analysis (Second Edition), New York, NY: Springer-
Verlag.

Rickman J, Duellberg C, Cade NI, Griffin LD, Surrey T (2017). Steady-state 
EB cap size fluctuations are determined by stochastic microtubule 
growth and maturation. Proc Nat Acad Sci USA 114, 3427–3432.

Rusan NM, Fagerstrom CJ, Yvon AMC, Wadsworth P (2001). Cell cycle-
dependent changes in microtubule dynamics in living cells expressing 
green fluorescent protein-α tubulin. Mol Biol Cell 12, 971–980.

Sammak PJ, Borisy GG (1988). Direct observation of microtubule dynamics 
in living cells. Nature 332, 724–726.



26 | S. M. Mahserejian, J. P. Scripture, et al. Molecular Biology of the Cell

Schek HT, Gardner MK, Cheng J, Odde DJ, Hunt AJ (2007). Microtubule 
assembly dynamics at the nanoscale. Curr Biol 17, 1445–1455.

Schulze E, Kirschner M (1988). New features of microtubule behaviour 
observed in vivo. Nature 334, 356–359.

Smal I, Grigoriev I, Akhmanova A, Niessen WJ, Meijering E (2010). Micro-
tubule dynamics analysis using kymographs and variable-rate particle 
filters. IEEE Trans Image Process 19, 1861–1876.

Sousa A, Reis R, Sampaio P, Sunkel CE (2007). The Drosophila CLASP 
homologue, mast/orbit regulates the dynamic behaviour of interphase 
microtubules by promoting the pause state. Cell Motil Cytoskeleton 64, 
605–620.

Steinley D (2006). K-means clustering: a half-century synthesis. Br J Math 
Stat Psychol 59, 1–34.

Tibshirani R, Walther G, Hastie T (2001). Estimating the number of clusters 
in a data set via the gap statistic. J R Statist Soc Series B Methodol 63, 
411423.

Toso RJ, Jordan MA, Farrell KW, Matsumoto B, Wilson L (1993) Kinetic 
stabilization of microtubule dynamic instability in vitro by vinblastine. 
Biochemistry 32, 1285–1293.

Tran PT, Walker RA, Salmon ED (1997). A metastable intermediate state of 
microtubule dynamic instability that differs significantly between plus 
and minus ends. J Cell Biol 138, 105–117.

VanBuren V, Cassimeris L, Odde DJ (2005). Mechanochemical model 
of microtubule structure and self-assembly kinetics. Biophys J 89, 
2911–2926.

Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S (1992). Control of 
microtubule dynamics and length by cyclin a- and cyclin B-dependent 
kinases in xenopus egg extracts. J Cell Biol 118, 1097–1108.

Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, 
Salmon ED (1988). Dynamic instability of individual microtubules ana-
lyzed by video light microscopy: rate constants and transition frequen-
cies. J Cell Biol 107, 1437–1448.

Waterman-Storer CM, Salmon ED (1997). Actomyosin-based retrograde 
flow of microtubules in the lamella of migrating epithelial cells influ-
ences microtubule dynamic instability and turnover and is associated 
with microtubule breakage and treadmilling. J Cell Biol 139, 417–434.

Yenjerla M, Lopus M, Wilson L (2010). Analysis of dynamic instability of 
steady-state microtubules in vitro by video-enhanced differential 
interference contrast microscopy with an appendix by emin oroudjev. 
Methods Cell Biol 95, 189–206.

Zakharov P, Gudimchuk N, Voevodin V, Tikhonravov A, Ataullakhanov FI, 
Grishchuk EL (2015). Molecular and mechanical causes of microtubule 
catastrophe and aging. Biophys J 109, 2574–2591.

Zaliapin I, Gabrielov A, Keilis-Borok V (2003). Multiscale trend analysis. 
Fractals 12, 275–292.

Zaliapin I, Semenova I, Kashina A, Rodionov V (2005). Multiscale trend 
analysis of microtubule transport in melanophores. Biophys J 88, 
4008–4016.

Zanic M (2016). Measuring the effects of microtubule-associated proteins 
on microtubule dynamics in vitro. In: The Mitotic Spindle, New York: 
Humana Press, 47–61.

Zanic M, Widlund PO, Hyman AA, Howard J (2013). Synergy between 
XMAP215 and EB1 increases microtubule growth rates to physiological 
levels. Nat Cell Biol 15, 688–693.

Zwetsloot AJ, Tut G, Straube A (2018). Measuring microtubule dynamics. 
Essays Biochem 62, 725–735.




