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Abstract

Summary: We present an R-based open-source software termed ProteoDisco that allows for flexible incorporation
of genomic variants, fusion genes and (aberrant) transcriptomic variants from standardized formats into protein
variant sequences. ProteoDisco allows for a flexible step-by-step workflow allowing for in-depth customization to
suit a myriad of research approaches in the field of proteogenomics, on all organisms for which a reference genome
and transcript annotations are available.

Availability and implementation: ProteoDisco (R package version � 1.0.0) is available on Bioconductor at https://doi.
org/doi:10.18129/B9.bioc.ProteoDisco and from https://github.com/ErasmusMC-CCBC/ProteoDisco/.

Contact: h.vandewerken@erasmusmc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rise and ease of current next-generation sequencing (NGS) tech-
niques, coupled with reduced costs in both NGS and high-resolution
mass-spectrometry, offers opportunity to incorporate sample-
specific protein variants during proteomics experiments for
increased accuracy and detection rates of, for instance, distinctive
proteotypic peptides in bottom-up proteomics experiments.
Expanding the repertoire of proteins and these proteotypic peptides
can provide novel insights into disease-specific protein variants,
their underlying molecular profiles and regulation, neoantigen pre-
diction and expand our knowledge on the genetic variations
encoded in proteomes (Mertins et al., 2016; Nesvizhskii, 2014;
Ruggles et al., 2016; Vasaikar et al., 2019; Wen et al., 2020). This is
further fueled by the standardization and publication of proteomics
resources which allows for the interrogation and combination of
existing datasets (Deutsch et al., 2017; Zahn-Zabal et al., 2020).

Rising global efforts in capturing the genetic sequences of diverse
organisms, disease-related genotypes and their transcriptomes with
subsequent proteome-resources warrants the implementation of a
flexible yet intuitive toolset. This toolset should provide a bridge

between genomic and transcriptomic variants and their incorpor-
ation within respective protein variants (proteogenomics) using
industry-standard infrastructure, such as Bioconductor (Gentleman
et al., 2004), and allow for flexibility in facilitating the myriad ex-
perimental settings applied in research. Therefore, we designed and
developed ProteoDisco, an open-source R software-package using
existing Bioconductor class-infrastructures to allow for the accurate
and flexible generation of variant protein sequences and their
derived proteotypic peptides from the incorporation of sample-
specific genomic and transcriptomic information. In addition, we
present the results of ProteoDisco and two similar open-source tools
which are frequently utilized within proteogenomics [customProDB
(Wang and Zhang, 2013) and QUILTS (Ruggles et al., 2016)] with
their performance in generating correct protein variants and respect-
ive proteotypic peptides from supplied genomic variants.

2 Approach

ProteoDisco incorporates genomic variants, splice-junctions
(derived from transcriptomics) and fusion genes within provided
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reference genome sequences and transcript annotations to generate
their respective protein variant sequence(s). These sequences can be
curated, altered and subsequently exported into a database in

FASTA format for use in downstream analysis. To limit the number
of generated protein variants, ProteoDisco provides filtering options

based on a minimal number of distinct proteotypic (identifiable)
peptides. The global workflow of ProteoDisco is summarized in six
steps as depicted within Figure 1. In addition, an extended overview

of how (novel) splice-junctions and gene-fusion events are incorpo-
rated is shown in Supplementary Figure S1.

To compare the accuracy of ProteoDisco against two com-
mon alternatives for proteogenomics studies [customProDB

(Wang and Zhang, 2013) and QUILTS (Ruggles et al., 2016)],
we utilized a manually curated dataset and two large independ-
ent proteomics studies. The manually curated dataset contained

28 genomic variants reported in COSMIC (Forbes et al., 2017)
comprising multiple variant classes; synonymous and non-syn-
onymous single-nucleotide variants (SNVs), multinucleotide var-

iants (MNVs) and in- and out-of-frame insertions/deletions
(InDels). In addition, we utilized recently published results from

large-scale colon and breast cancer cohorts within the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) to illustrate the
accuracy of ProteoDisco in generating identical proteotypic pep-

tides as detected within these studies (Mertins et al., 2016; Wen
et al., 2020). This comparison revealed that ProteoDisco correct-

ly generated proteotypic peptides from their respective genomic
variants after thorough checking and yielded the highest number
of expected and reconstructed proteotypic peptides within all

three datasets (Supplementary Fig. S2). This difference can be
attributed to ProteoDisco’s native flexibility in reference genome

selection, multiple incorporation strategies, sanity-checks such as
reference base verification and the correct incorporation of stop-
loss variants. In total, only four enigmatic genomic variants (of

three fragments) from Mertins et al. could not be reconstructed
to reproduce their proteotypic peptide(s).

3 Materials and methods

3.1 Technical design of ProteoDisco
ProteoDisco was programmed within the R statistical language
(v4.1.1) and built upon existing classes within the Bioconductor
infrastructure (v3.13) to allow flexible inheritance and future

extensions. Additional information on the usage and design of
ProteoDisco can found in the extended methodology

(Supplementary File S1).

3.2 Assessment of the correct integration of genomic

variants into protein variants
We generated a custom validation dataset containing established somat-
ic variants (SNVs, MNVs and InDels; n¼28) and their respective pro-
tein variants as listed within COSMIC (Forbes et al., 2017) (v92;
GRCh37; Supplementary Table S1). In addition, we utilized recent pro-
teogenomics studies from the CPTAC cancer cohorts containing genom-
ic variants and their respective in silico generated proteotypic peptides
which had been measured and identified using high-throughput proteo-
mics approaches (Mertins et al., 2016; Wen et al., 2020). In the Wen
et al. dataset (Wen et al., 2020, CPTAC—Colon Cancer), genomic var-
iants (and their respective proteotypic peptides) were split into sample-
specific VCF-files based on the data present within their published
Supplementary Data S1 (see reference Wen et al., 2020, sheet 1: ‘pro-
spective_colon_label_free_in’). The Mertins et al. dataset (Mertins et al.,
2016, CPTAC—Breast Cancer) was aggregated into a single VCF-file
based on the data present within their published Supplementary Table
S5 (see reference Mertins et al., 2016, sheet 2: ‘Variants’).

Using these three datasets, we ran ProteoDisco (v0.99),
customProDB (v1.30.1) and the web interface of QUILTS (v3.0; as
available from http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl;
accessed 13-04-2021) to generate custom protein-variant databases
using uniform UCSC/RefSeq (Frankish et al., 2019, GRCh37) tran-
script annotations and settings. The custom protein-variant data-
bases were generated based on two approaches within ProteoDisco.
The first approach incorporated each genomic variant independently
and the second allowed for the simultaneous incorporation of all
genomic variants per overlapping transcript annotation, e.g. two
variants on different coding exons would both be incorporated with-
in the resulting variant protein sequence. Incorporation of all pos-
sible combinations of mutant exons yields too many combinations
and is therefore not included amongst the options.

The generated variant protein sequences and respective proteo-
typic peptides from each customized protein-variant database were
compared against the proteotypic peptides as expected from
COSMIC or as detected within the respective CPTAC-studies using
all three tools (Supplementary Fig. S2). For example, if ProteoDisco
generated three distinct proteotypic peptides for a given genomic
variant and one of those was identified within CPTAC (or
COSMIC), it was counted as a concordant result.

4 Conclusion

In this article, we present ProteoDisco, a suitable, open-source and flex-
ible suite for the generation of protein-variant databases usable in
downstream proteogenomic studies and capable of correctly incorporat-
ing a diverse range of genomic variants and transcriptomic splice-
junctions. We report that ProteoDisco accurately produces protein

Fig. 1. Schematic overview of the ProteoDisco workflow. The global workflow of ProteoDisco can be categorized as six major steps. (1) Initialize a ProteoDiscography by uti-

lizing custom references sequence(s) and gene-annotation(s) or using pre-existing TxDb objects. (2) Import (sample-specific) genomic variants, splice-junctions or manual

sequences. Several sanity-checks are performed during importation, including the validation of matching reference nucleotide(s). (3) Dynamically view, extend, alter and cus-

tomize imported records and derived sequences. (4) Incorporation of genomic variants and splice-junctions into overlapping transcript annotations, translocations between

chromosomes can also be processed. The incorporation can be performed in a sample-specific manner, exon or transcript-specific manner or in an aggregated manner. (5)

Cleave derived protein variant sequences and determine proteotypic peptides, per protein, which are not present within the reference protein sequences (TxDb) or additional

protein databases (e.g. UniProKB). (6) Export the derived protein variant sequences into an external protein-sequence database(s) using FASTA format
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variant sequences harboring previously identified proteotypic fragments
from their respective genomic variants. Further examples and use-cases
can be found in the vignette of the ProteoDisco package.

4.1 Code availability
All source-code has been made available within Bioconductor

(https://doi.org/doi:10.18129/B9.bioc.ProteoDisco) and depos-
ited within GitHub (https://github.com/ErasmusMC-CCBC/
ProteoDisco) under the GPL-3 license.
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