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Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor domain (VSD) and the cytoplasmic
domain with phosphoinositide-phosphatase activities. It operates as the voltage sensor and directly translates
membrane potential into phosphoinositide turnover by coupling VSD to the cytoplasmic domain. VSPs are
evolutionarily conserved from marine invertebrate up to humans. Recently, we demonstrated that ectopic expression of
the chick ortholog of VSP, Gg-VSP, in a fibroblast cell line caused characteristic cell process outgrowths. Co-expression
of chick PTEN suppressed such morphological change, suggesting that VSP regulates cell shape by increasing PI(3,4)P2.
However, the in vivo function of Gg-VSP remains unclear. Here, we showed that in chick embryos Gg-VSP is expressed
in the stomach, mesonephros, pharyngeal arch, limb bud, somites, floor plate of neural tube, and notochord. In
addition, both Gg-VSP transcripts and the protein were found in the cerebellar Purkinje neurons. These findings provide
an insight into the physiological functions of VSP.

VSP genes are widely conserved among deuterostome
genomes.1,2 Previous studies have indicated the possible role of
VSP in fertilization and development in ascidians.3,4 There is evi-
dence suggesting that VSP may play a role in the fertilization of
frog eggs.5 Moreover, VSP is expressed in tissues other than
reproductive organs.6-8 This indicates that VSP plays a role in
various aspects of development. Although intensive studies have
been done on the molecular mechanisms of VSP as a simple volt-
age sensor protein, little is known about the physiological func-
tions of VSP.

Recently we reported that ectopic expression of the chick VSP
ortholog, Gg-VSP, in DF-1 fibroblast cell line caused characteris-
tic cell process outgrowths. Co-expression of chick PTEN, which
can reduce the amount of PtdIns(3,4)P2, suppressed the morpho-
logical changes induced by Gg-VSP. In addition, Gg-VSP over-
expression changed the distribution of PtdIns(3,4)P2. These

findings suggested that Gg-VSP could play a role in the regula-
tion of cell shape by increasing PtdIns(3,4)P2.

9

In this study, to gain insight into the physiological role of Gg-
VSP, we investigated the expression pattern of Gg-VSP in chick
embryos. Domestic chicks of the Cobb strain (Gallus gallus
domesticus) were used. Fertilized eggs (3M, Nagoya, Japan) were
incubated at 37�C until embryos reached the appropriate stage.
Embryos were staged according to Hamburger and Hamilton.10

In a previous study, gene expression of a chick ortholog of VSP,
which the authors termed cTPTE, was reported in the epithelial
cells of the developing kidney.8 In contrast, we observed Gg-VSP
gene expression with a method that uses tyramide-based amplifi-
cation techniques to amplify weak signals for a more comprehen-
sive study.11 We could not detect clear positive signals in 2-day
chick embryos (HH stage 13). However, in the 4-day chick
embryos (HH stage 24) we detected Gg-VSP transcripts in the
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stomach (Fig. 1B, I), mesonephros (Fig. 1C,
J), surface layer of the pharyngeal arch
(Fig. 1D, K), limb bud (Fig. 1E, L), and the
somites (Fig. 1F, M, O). We also detected
Gg-VSP expression in the floor plate; how-
ever, clear signals were not detected in other
regions of the neural tubes (Fig. 1F, M, O).
The cells in the outside layer of the noto-
chord expressed Gg-VSP (Fig. 1G, N).
Gene expression in the mesonephros was
consistent with a previous study.8 Gg-VSP
transcripts were not uniformly distributed in
these tissues. In situ hybridization and
reverse transcription-polymerase chain reac-
tion (RT-PCR) of the brain tissue of 1-day
embryos revealed that Gg-VSP was expressed
in the brain.9 RT-PCR showed that gene
expression was most abundant in the cerebel-
lum.9 Therefore, we tested if in situ hybrid-
ization could detect gene expression in the
cerebellum. Positive signals were detected in
Purkinje neurons (Fig. 2A, B). Immunos-
taining of sections of the chick cerebellum
was also performed using an antibody raised
against Gg-VSP protein. Anti-Gg-VSP rab-
bit antibody was raised against the affinity-
purified GST-tagged cytoplasmic region of
Gg-VSP, corresponding to amino acids resi-
dues 187-511. The antibody was affinity-
purified using this antigen polypeptide.
Western blot analysis revealed that anti-
Gg-VSP had specifically reacted with the
Gg-VSP protein in the lysate of DF-1 fibro-
blast cells (Fig. 2E). Positive signals for
Gg-VSP were detected in Purkinje neurons
(Fig. 2C, D). Notably, positive signals were
not detected in all Purkinje neurons as in the
results of in situ hybridization (Fig. 2A, B).
Within Gg-VSP-positive Purkinje neurons,
signal was observed in both cell surface and
cytoplasm, suggesting the localization of
proteins in both plasma and intracellular
membranes.

Expression of VSP in Chick Embryos
and its Physiological Implications

There is substantial evidence suggesting
that electric fields are present in developing
animal tissues and play an important role as
a mediator of morphogenetic information in
many processes of embryonic develop-
ment.12,13 For example, currents and endog-
enous voltage gradients were shown to be
present during chick development, and

Figure 1. Expression patterns of Gg-VSP in the chick embryo. In situ hybridization of chick
embryos was performed as previously described,22 with somemodification. To synthesize the probe,
we cloned a partial Gg-VSP cDNA fragment corresponding to C1168-1470 base pairs of the anno-
tated mRNA sequences (Genbank accession number; XM_417079). (A-N) Sections of 4-day embryos
stained with antisense probe (A-G) and sense probe (H-N). The entire view of the sections (A, H),
stomach (B, I), mesonephroses (C, J), pharyngeal arches (D, K), limb buds (E, L), somite and neural
tube (F, M), and notochord (G, N) are shown. (O) Diagram of the position of somites, neural tube,
and floor plate for results shown in F and M. (P) Diagram of the lateral view of a 4-day chick embryo
for results shown in (A-N). The sections were prepared along the dotted line. Scale bars indicate
1 mm. The positions of the stomach (B, I), mesonephrose (C, J), and limb bud (E, L) are shown with
dotted line. Triangles indicate positive signals (D, F andG). The anterior side is always shown in left.
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shunting the current caused morphologi-
cal abnormalities in the tail and limb
bud.14,15 However, it remains unknown
how the membrane potential derived
from the electric field is transduced into
cytoplasmic molecular signaling. In this
study, we detected Gg-VSP gene expres-
sion in the stomach, mesonephros, surface
layer of the pharyngeal arch, limb bud,
somites, floor plate in the neural tube, and
notochord in the 4-day chick embryo
(HH stage 24). Interestingly, some of
these tissues are the sites where membrane
potential has been reported in developing
chick embryos: mesonephric nephrons of
chick embryos were reported to exhibit
measurable transepithelial potential differ-
ences,16 and ion current flowing out of
the limb buds and reversing it causes
major limb abnormalities.15 These expres-
sion patterns suggest that Gg-VSP can
function as a voltage-sensitive membrane
phosphatase during embryonic develop-
ment in these tissues.

A previous study demonstrated that
Gg-VSP expression was restricted to the
developing kidney in embryos from
HH stage 18 to stage 35.8 In contrast,
when we applied a method that uses
tyramide-based amplification techniques
to amplify weak signals, we were able
to detect Gg-VSP transcripts in the
stomach, surface layer of the pharyngeal
arch, limb bud, somites, floor plate,
and notochord in embryos at HH stage
24. In future, this amplification method
will be useful in addressing the issue of
whether Gg-VSP expression can be
detected in these tissues in later stage
embryos.

Expression of VSP in Neurons and
Physiological Implications

We demonstrated that Gg-VSP was
expressed in Purkinje neurons in the cere-
bellum. Gg-VSP may be involved in the
differentiation of Purkinje neurons. Ci-
VSP has been reported to be expressed in
the ascidian nervous system,3 and the
mouse VSP ortholog has been reported to
be expressed in embryonic brain.17 However, our present study
provides the first evidence at the cellular level among all animal
species that VSP is expressed in excitable cells. In VSP, the single
VSD is linked to the cytoplasmic phosphatase of which the

activity is tightly coupled to voltage sensing over a wide range of
voltages.18 This molecular nature of VSP differs from that of
voltage-gated ion channels where a sharp increase of ion conduc-
tance is achieved in response to a small change of membrane

Figure 2. Expression patterns of Gg-VSP in 1-day-old chick cerebellum. (A, B) In situ hybridiza-
tion for Gg-VSP. Sections of the cerebellum were probed with antisense or sense (control) RNA
probe. (C, D) A section of the cerebellum stained with anti-Gg-VSP antibody or control IgG. Trian-
gles point to positive signals in (A-D). (E) Western blot analysis of DF-1 cells expressing Gg-VSP by
using anti-Gg-VSP antibody (1:1000). Left Lane, DF-1 cells transfected with pIRES-Gg-VSP; right lane,
DF-1 cells without transfection. Each lane contained 50 mg of protein. The arrow indicates the posi-
tion of Gg-VSP. Scale bars indicate 75 mm.
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voltage through cooperativity among 4 voltage sensors within one
molecule. The molecular properties of VSP are rather suited for a
gradual change in membrane voltage. In fact, Ci-VSP is expressed
in the developing stomach and blood cells where rapid changes of
membrane potential such as action potentials in excitable cells is
not expected.19 It is unlikely that the activity of VSP follows indi-
vidual action potentials, given that the voltage sensor motion of
Gg-VSP, as seen by sensing currents,9 occurs in a more positive
range than the range of common action potentials. In addition, a
depolarization at 20 mV for few milliseconds is not sufficient to
activate the enzyme activity of Ci-VSP, which has a higher sensi-
tivity to depolarization than that of Gg-VSP (data not shown). It
is more likely that VSP activity is tuned by the persistent change
of subthreshold voltage or senses frequency of spikes, rather than
individual action potentials. Several studies that used voltage
probes, whose design was based on the voltage sensor of Ci-VSP,
showed that a florescence resonance energy transfer (FRET) sig-
nal from a cytoplasmic pair of 2 fluorescent proteins increases in
response to action potential frequency.20,21 Similar “decoding”
of action potential frequency may naturally occur in chick Pur-
kinje neurons. Notably, the use of both in situ hybridization and
immunohistochemistry demonstrated that not all Purkinje neu-
rons express Gg-VSP. It will be interesting to see whether gene
expression of Gg-VSP is induced by preceding neural activities or
the ontogenic history of neurons.
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