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Abstract: As one of the most important prosthetic implants for amputees, current commercially
available prosthetic hands are still too bulky, heavy, expensive, complex and inefficient. Here, we
present a study that utilizes the artificial tendon to drive the motion of fingers in a biomimetic
prosthetic hand. The artificial tendon is realized by combining liquid crystal elastomer (LCE) and
liquid metal (LM) heating element. A joule heating-induced temperature increase in the LCE tendon
leads to linear contraction, which drives the fingers of the biomimetic prosthetic hand to bend in
a way similar to the human hand. The responses of the LCE tendon to joule heating, including
temperature increase, contraction strain and contraction stress, are characterized. The strategies
of achieving a constant contraction stress in an LCE tendon and accelerating the cooling for faster
actuation are also explored. This biomimetic prosthetic hand is demonstrated to be able to perform
complex tasks including making different hand gestures, holding objects of different sizes and shapes,
and carrying weights. The results can find applications in not only prosthetics, but also robots and
soft machines.

Keywords: liquid crystal elastomer; electric current; strain; stress

1. Introduction

Prosthetic hands (Figure 1a [1]), as one of the most important implants serving am-
putees, have attracted a lot of research effort in the last few decades. However, the ideal
characteristics required for prosthetic hands, including high performance, lightweight,
bionic look, and affordability [2–5], are still lacking. Various improvements have been
implemented, leading to Vincent hand [6], ILimb [7], Bebionic hand [8], and Michelange
hand [9]. All these commercial prosthetic hands are still based on mechanical designs that
utilize stiff joints and low degrees of freedom. This limitation leads to the bulky, heavy,
complex and expensive products. To overcome these challenges, new mechanical designs
have been investigated. For example, a tendon driven design has been introduced and was
able to mimic the natural movements of human hands [10–19]. However, such design still
depends on DC motors, as the actuation mechanism, and thus weight, performance, and
affordability issues cannot be resolved.

The key resolution to these challenges could lie in the mechanisms of actuation;
therefore, utilizing smart materials as the actuation mechanisms has been a focus of research.
For example, a prosthetic arm equipped with a thermal pneumatic artificial muscle was
successfully demonstrated [20–26]. Other pneumatics-powered health care and aid devices
have been developed as well [27]. Shape memory alloys were also shown to be promising
actuators for prosthetic hands and other parts [28–34]. More recently, dielectric elastomers
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were integrated into prosthetic systems, and have shown good performances [35–41].
Other examples include a nylon-based thermal actuator [42], a haptic actuator [43], and
pneumatic actuators [44–49]. Among all these smart materials, liquid crystal elastomers
(LCEs) can provide actuation in ways most similar to natural muscles, including large
deformation, linear actuation, and fiber-like form factor, and, therefore, could be a good
candidate for the next-generation actuation mechanism for prosthetics [50–68]. When
synthesized, the LCEs are in the polydomain state. After being programmed using the
stretching method, they transition to the monodomain state. During actuation, heating up
the LCEs causes the transition from the monodomain state back to the polydomain state,
leading to contraction deformation [69–80]. Then, cooling down changes the LCEs back
to their programmed monodomain state, leading to extension deformation. Due to their
excellent mechanical characteristics, previous studies have shown interesting applications
of LCEs, including actuation [81], cell culture [82] and tissue repair [83].

In this paper, we present a material system based on liquid metal (LM) as the heater
material and LCE as the soft actuator, and we demonstrate a biomimetic prosthetic hand
actuated by LCE tendons. The LCEs were prepared using procedures described in previous
studies [68,84–86]. Each tendon was constructed by sandwiching a liquid metal heating
element (25% gallium and 75% indium) between a very high bond (VHB) (VHB, 3M) tape
and an LCE film. Different from conventional metal heating elements, the liquid metal
heating element can be deformed extremely together with the matrix, without increasing
the stiffness or introducing resistance to the artificial muscle deformation, and thus is far
more superior. Characterizations show that the LCE tendon can generate as much as 43.6%
contraction strain and 536 kPa contraction stress during actuation, enabling a wide range of
actuation modes in the prosthetic hand. We demonstrate that a biomimetic prosthetic hand
driven by such LCE tendons can accomplish complex and delicate tasks, including showing
complex hand gestures, holding objects of different sizes and shapes, and lifting weights.

2. Results

Figure 1b shows the anatomy of a finger of a human’s hand [87]. Its flexion motion is
driven by the flexor tendon, protected by the sheath and held by the pulleys. Inspired by
the human’s finger, a biomimetic prosthetic hand is presented in Figure 1c. The flexion of
the fingers is driven by liquid crystal elastomer (LCE) tendons, held by silicone pulleys. An
exploded view of the LCE tendon design is demonstrated in Figure 1d. It consists of a very
high bond (VHB, 3M) tape support and bonding layer (10 mm wide and 25 µm thick) at the
bottom, a liquid metal (LM) (25% gallium and 75% indium) heating element (1 mm wide
and 0.5 mm thick) in the middle, and an LCE layer (1 mm thick) on the top. Copper wires
are used to connect the LM heating element with an external power source. The fabrication
of an LCE tendon started with patterning an LM heating element on top of the sticky side
of a VHB layer using screen printing method. Two copper wires were connected at the end
of the LM heating element. The LCE was prepared using a two-stage thiol-acrylate Michael
addition-photopolymerization (TAMAP) reaction. 4-bis-[4-(3-acryloyloxypropypropyloxy)
benzoyloxy]-2-methylbenzene (RM257, 4 g), pentaerythritol tetrakis(3-mercaptopropionate)
(PETMP, 0.217 g), 2,2-(ethylenedioxy) diethanethiol (EDDET, 0.9157 g), (2-hydroxyethoxy)-
2-methylpropiophenone (HHMP, 0.0257 g) and dipropylamine (DPA, 0.568 g) were dis-
solved in toluene solution, and casted on top of the VHB bonding layer and LM heating
element. After curing at 80 ◦C for 12 h, the sandwiched structure was pre-stretched from
the original length L1 to a programming length L2, as illustrated in Figure 1e. UV light
was then used for fixing the programed state, which completed the fabrication of an LCE
tendon. When an electric current is applied through the copper wires, the LM heating
element heats up the LCE, leading to shrinking of the LCE tendon to its original length
L1. When cooled down, the LCE tendon returns to the programmed length L2. In the
following, the LCE tendons were prepared with an original length of L1 = 40 mm and
were stretched by 200% to L2 = 120 mm during programming. In the design of the LCE
tendon, because the thickness of the VHB layer (25 µm) is much smaller than that of the
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LCE (1 mm), and the LM heating element is in liquid state, their mechanical resistance to
mechanical actuation is negligible, and therefore, the LCE tendon can actuate in a linear
fashion, similar to flexor tendons in human fingers.
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The LCE tendon was characterized using an Instron mechanical testing system (MTS),
and a thermal camera (FLIR-T630) was placed nearby to record the temperature change
and actuation strain, as shown in Figure 2a. A current generator was used to supply
constant and stable electric current to the LM heating element. Joule heating led to phase
transformation and contraction of the LCE tendon. In the first characterization, in order to
measure the contraction strain in the LCE tendon, one end of the LCE tendon was fixed on
the clamp while the other end was kept free. When enough current passed through the
LM heating element, temperature increase caused the LCE tendon to shrink freely from
the programming length L1 to the original length L2, as shown in Figure 2b and Video S1.
The thermal camera recorded both the actuation strain and temperature distribution on
the surface of the LCE tendon. In the experiment, three different current values were
supplied: 1.5 A, 2 A, and 2.5 A, and at least three tests were carried out for each current.
The temperature in LCE tendon versus time for three currents is presented in Figure 2c,
which shows the maximum temperatures that can be reached for each current, and the
time required to reach the maximum temperature. For 1.5 A, 2 A and 2.5 A currents, the
maximum temperatures that can be reached are 98 ◦C, 141 ◦C, and 160 ◦C, and the times
required to reach these temperatures are 65 s, 50 s, and 30 s, respectively. The current
was then cut off after the LCEs reached the maximum temperatures. The cooling of LCE
tendons after heating was similar for the three different currents. Figure 2d exhibits the
maximum contraction strain in each sample versus the supplied current. The average
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contraction strain increases from 26.5% at 1.5 A, to 40% at 2.0 A and 43.6% at 2.5 A. This
clearly demonstrates the effect of increasing current on increasing the contraction strain of
the LCE tendon in a shorter time.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 11 
 

 

 

(a) 

 

(b) 

 

(c) 

(d) 

 

(e) 

Figure 1. Design and fabrication of LCE tendon and biomimetic prosthetic hand. Comparison of the design and structure 
between (a) a robot hand [1], (b) a human hand [87], and (c) the biomimetic prosthetic hand. (d) The design and multilayer 
structure of the LCE tendon. (e) Programming of the LCE tendon during fabrication process. 

 

(a) 

 

(b) 

 

(c) 
Micromachines 2021, 12, x FOR PEER REVIEW 6 of 11 
 

 

 

(d) 

 

(e) 

Figure 2. Characterization of LCE tendon. (a) Experimental setup for LCE tendon characterization. (b) Temperature dis-
tribution and length change of an LCE tendon at the initial state (left, room temperature) and full contraction state (right, 
heated). (c) The LCE tendon surface temperature versus time during joule heating due to different electric currents. (d) 
The maximum contraction strain can be reached in LCE tendons at different electric currents. (e) The contraction stress in 
LCE tendon versus heating time. 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Characterization of LCE tendon. (a) Experimental setup for LCE tendon characterization. (b) Temperature
distribution and length change of an LCE tendon at the initial state (left, room temperature) and full contraction state (right,
heated). (c) The LCE tendon surface temperature versus time during joule heating due to different electric currents. (d) The
maximum contraction strain can be reached in LCE tendons at different electric currents. (e) The contraction stress in LCE
tendon versus heating time.

A second characterization was carried out with both ends of the LCE tendon fixed
on the clamps of the MTS. When electric current was supplied to the LM heating element,
temperature increase-induced LCE contraction was prevented by the MTS clamps, and the
contraction force/stress was recorded by the MTS. The contraction stress versus heating
time for the three different currents is shown in Figure 2e. When the current increased from
1.5 A to 2 A, the maximum stress increased from 352 kPa to 546 kPa, and the time required
to reach the maximum stress decreased from 109 s to 42 s. Further increasing the current
to 2.5 A meant that the time required to reach maximum stress decreased to 21 s, but the
maximum stress that could be reached decreased to 483 kPa. This is because a vast amount
of heat was generated at 2.5 A, leading to debonding of the VHB layer with LCE, as well as
localized polymer burning of the LCE artificial muscle.

There are situations that need the fingers of a prosthetic hand to stay at certain deformed
configurations for a period of time, such as showing gestures, holding an object and lifting



Micromachines 2021, 12, 736 5 of 11

weights. These situations require the LCE tendon to be able to stay at a contracted state or to
apply a constant force for a period of time. In order to achieve this, we explored a strategy
to alternately control on and off of the electric power supplied to an LCE tendon. From
Figure 2c, it is clear that the higher the electric current is, an LCE tendon heats up faster
and thus reaches the maximal contraction strain and stress faster. Our experimental results
indicate that an LCE tendon can easily break if the temperature reaches 120 ◦C for a long
period of time. Therefore, the temperature of LCE tendons was kept at 110 ◦C in these tests.
At this temperature, the performance of an LCE tendon can meet the requirements of most
operating conditions. Additionally, in order to accelerate the heating of LCE tendons in
order to achieve fast actuation, an electric voltage of 6 V and current of 4.5 A were used. As
shown in Figure 3a, after 2 s of heating, the temperature of the LCE tendon reached ~120 ◦C.
Then, turning off and on the electric power for 1.6 and 0.15 s alternately and repeatedly (see
current vs. time control strategies in Figure 3c), the LCE tendon temperature stabilized at
~110 ◦C (2-1.6-0.15 curve in Figure 3a). While keeping the initial heating time at 2 s and
the alternate power on time at 0.15 s, the alternate power off time of 1.5 s and 1.4 s were
also used (2-1.5-0.15 and 2-1.4-0.15 curves in Figure 3a). It is shown that the temperatures
for these two strategies decreased after initial 2 s heating, but then gradually increased
again. The contraction stresses of the LCE tendons using these alternate power on and
off strategies are depicted in Figure 3b. It clearly shows that the contraction stress of the
2-1.6-0.15 strategy stabilized at ~390 kPa, while the contraction stresses of the 2-1.5-0.15 and
2-1.4-0.15 strategies gradually increased with time. These results suggest that the 2-1.6-0.15
strategy can provide stable temperature and contraction stress in the LCE tendon.

While heating in an LCE tendon can be accelerated by increasing the electric power,
cooling is a bottleneck for LCE tendons to achieve fast actuation. In order to accelerate
the cooling in LCE tendons, we investigated the temperature decrease in LCE tendons
using three different cooling methods, i.e., natural cooling, fan cooling and compressed air
cooling. In these tests, the LCE tendons were heated up using an electric voltage of 6 V
and current of 4.5 A. When the temperature of an LCE tendon reached 110 ◦C, the electric
power was cut off. The LCE tendon was then cooled down by natural cooling, fan cooling
or compressed air cooling. The LCE tendon temperature versus time using these three
different cooling methods are shown in Figure 4a. Under natural cooling, it takes 102 s for
the LCE tendon temperature to drop from 110 ◦C to 27.3 ◦C. Under fan cooling with a wind
speed of 2.9 MPH (measured using an anemometer, Ambient Weather WM-2), the time
needed for the LCE tendon temperature to drop from 110 ◦C to 27 ◦C decreased to 52.5 s.
Compressed air cooling (Falcon Dust, Model: DPSJB) could further significantly reduce the
time needed for the same temperature drop in an LCE tendon to 5 s. For all these cases, the
LCE tendons restored to their initial length (130 mm) when their temperatures dropped
to room temperature (27 ◦C), as shown in Figure 4b. These results demonstrate cooling
strategies for either accelerating the cooling of LCE tendons for fast actuation or controlling
the actuation in a programmable fashion.
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One of the basic functions of a prosthetic hand is to make different hand gestures, which
requires the independent control of each finger. Here, we embedded one LCE tendon into
each finger, which was confined by three silicone “pulleys”, as shown in Figure 5a. For
simplicity, rubber bands were used as “extensor tendons” for the recovery of the fingers to
their original configurations, as presented in Figure 5a, right frame. When the current was
applied to all five tendons, all five fingers bent to make a “fist” (Figure 5a, right). Other hand
gestures including “thumb up” (Figure 5b), “OK” (Figure 5c), “I love you” (Figure 5d), “weak”
(Figure 5e) and “victory” (Figure 5f) can also be realized by controlling the LCE tendons in the
prosthetic hand. For all of these cases, when the electric power was cut off, the LCE tendons
cooled down and extended, and the prosthetic hand returned to the initial state due to the
restoring force provided by the rubber bands.
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through the LCE tendons to realize various hand gestures, including (a) “fist”, (b) “thumb up”, (c) “OK”, (d) “I love you”,
(e) “weak” and (f) “victory”.

In addition to the hand gestures, the prosthetic hand can perform more complex tasks,
such as picking up and grabbing objects, as shown in Figure 6. Firstly, we demonstrated that
the prosthetic hand was able to hold different shapes of objects. For example, the prosthetic
hand can bend all five fingers to conformally hold a soft paper tube of diameter 30 mm
(Figure 6a), use the tips of the thumb, the middle and little fingers to grab a plastic beaker
(Figure 6b), and coordinate the thumb and index fingers to pick up a maker pen of diameter
20 mm (Figure 6c, Video S2). Furthermore, we also tested the load carrying capability of the
prosthetic hand. As shown in Figure 6d, the prosthetic hand can gently hold a light-weight
plastic tube with a diameter of 35 mm and weight of 2.12 g. Figure 6e demonstrates the
prosthetic hand can carry a water bottle with a weight of 200 g by coordinately bending all
five fingers (also see Video S3). Figure 6f presents a demonstration of lifting a bag with a
weight of 252 g with four fingers (also see Video S4).
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3. Conclusions

In this work, a novel artificial tendon was realized by combining an LCE and an LM
heating element. The responses of the LCE tendon to different electric currents, including
the temperature increase, contraction strain and contraction stress, were characterized.
The strategies of achieving stable temperature and contraction stress in LCE tendons, and
accelerated cooling were also explored. Then, the LCE tendons were integrated with
a wood hand to achieve a biomimetic prosthetic hand that can perform various tasks,
including making complex hand gestures, holding objects of different sizes and shapes,
and carrying weights. Such capabilities of LCE tendons could find applications in not only
prosthetics, but also robotics and soft machines. However, there are still drawbacks of the
current LCE tendons that need further investigation before they can be practically applied,
including slow response, high temperature actuation, and low energy efficiency.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12070736/s1, Video S1: LCE contraction process with 2A current. Video S2: picking up a
marker pen with a diameter of 20 mm, Video S3: holding a bottle of water with a weight of 200 g,
Video S4: lifting a basket with a weight of 252 g.
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