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A B S T R A C T

Health economic modeling has become an invaluable methodology for the design and evaluation of clinical and
public health interventions against the human papillomavirus (HPV) and associated diseases. At the same time,
relatively little attention has been paid to a different yet complementary class of models, namely that of
mechanistic mathematical models. The primary focus of mechanistic mathematical models is to better
understand the intricate biologic mechanisms and dynamics of disease. Inspired by a long and successful
history of mechanistic modeling in other biomedical fields, we highlight several areas of HPV research where
mechanistic models have the potential to advance the field. We argue that by building quantitative bridges
between biologic mechanism and population level data, mechanistic mathematical models provide a unique
platform to enable collaborations between experimentalists who collect data at different physical scales of the
HPV infection process. Through such collaborations, mechanistic mathematical models can accelerate and
enhance the investigation of HPV and related diseases.

1. Introduction

The use of health economic models that integrate epidemiological
and clinical data to compare different public health interventions has
become an important part of health technology assessment and policy-
making. Spearheaded by the work of David Eddy in the 1980s [1,2],
cervical cancer was one of the first areas where models were used to
inform policy recommendations, initially on optimal screening strate-
gies. As our knowledge of the etiology and natural history of cervical
cancer has grown, subsequent work has incorporated oncogenic HPV
infection and HPV DNA testing [3–6].

With the introduction of HPV vaccination, health economic models
have become increasingly complex, integrating human sexual behavior,
virus transmission and disease progression in order to evaluate
alternative intervention strategies in different socio-economic settings
across the globe [7–11]. As they developed into an invaluable tool for
the HPV community, these models have also set an implicit gold
standard for a modeling paradigm with immediate policy impact. A
different yet complementary modeling paradigm is that of mechanistic
mathematical models (MMM), whose primary focus is to enhance the
mechanistic understanding of HPV and associated diseases. The fact
that MMMs are generally used to address basic science questions with a

less obvious impact on health policy may be a reason why the HPV
community has, so far, paid relatively little attention to the potential of
the mechanistic modeling paradigm.

In contrast to the HPV field, other biomedical fields have made
extensive use of MMMs over the past decades. In cancer research, for
instance, stochastic models of genetic mutations have been instru-
mental in quantifying the evolutionary dynamics of cancer initiation
[12], and in understanding how cellular dynamics shape population-
level cancer incidence [13]. In the clinic, mechanistic models of tumor
growth help inform surgical procedures [14] and optimize radiation
schedules [15]. Model-based insights into cancer evolution have
motivated the concept of adaptive therapy [16], which is now being
evaluated for clinical trials [17]. Similarly, in the field of HIV/AIDS
research, the combination of MMMs with patient-level data led to
critical insights into early infection dynamics, and model-based
inference of key biologic parameters accelerated the development of
therapeutic strategies [18,19]. Yet another field where MMMs enabled
a breakthrough is that of epithelial stem cell research. Combining
probabilistic models with in vivo lineage tracing experiments, the long-
standing paradigm of epithelial stem cell dynamics has been revised
[20], with critical implications for wound healing [21] and carcinogen-
esis [22].
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Inspired by these successes, we argue here that MMMs constitute a
largely underused platform in HPV research. To motivate this perspec-
tive, we highlight three areas of HPV research where initial modeling
efforts show promise to advance the field.

2. Natural history

According to the prevailing model of HPV natural history the
majority of infected individuals permanently clear the virus within
1–2 years after exposure, and only a small fraction develop persistent
infections with elevated cancer risk [23]. As simple and attractive as it
is, there are a number of experimental findings that are inconsistent
with this model [24]. For instance, longitudinal studies found that HPV
types that have apparently been cleared can reappear after several
negative screens [25–27], and high frequency sampling revealed
stochastic loss and gain of detection on the order of days [28].
Further substantiated by animal models [29] and cohort studies in
immunosuppressed individuals [30] and older women [31], these
findings suggest that instead of being eradicated, HPV may enter a
cycle of latent infection and detectable reactivation. An updated model
of HPV natural history that incorporates latency and reactivation will
require evidence synthesis from molecular, clinical and epidemiological
data sources – a formidable opportunity for MMMs. In particular, we
argue that mechanistic models provide a suitable methodology to
expand the current natural history models, which focus on sexual
behaviors as the primary determinant of HPV incidence, to biological
determinants of HPV reactivation, including systemic and local im-
mune mediators [30,32], obesity [27], sex hormones [33], vaginal
microbial dysbiosis [34], obesity [27] and epithelial homeostasis [35].
Because natural history models constitute the foundation of health
economic modeling [36–38], improving our understanding of natural
history through mechanistic modeling efforts will have clear public
health relevance [39]. Importantly, MMMs will be instrumental in
identifying target pathways for novel interventions directed toward
lifelong control of HPV infections in the millions of HPV-infected
women who will not benefit from prophylactic vaccination. A recent
modeling study on the impact of stochastic stem cell dynamics on HPV
clearance [35] provides a starting point for MMMs in this arena, with
much terra incognita ahead.

3. Vaccination and viral evolution

The introduction of the HPV vaccine raises a number of important
questions about potential ecological and evolutionary consequences.
Three recent modeling studies highlight the potential of MMMs in this
field. Based on an evolutionary ecology model, a first study predicted
that elimination of types targeted by the vaccine could change the
evolutionary trajectory of non-vaccine types and lead to emergence of
new high-risk types [40]. Another study used mechanistic in-host
models to revisit the possibility of replacement of vaccine-types by non-
vaccine types [41]. To date, type replacement has been deemed unlikely
[42] based on the widespread assumption of type independence, which
itself is based on the interpretation of co-infection patterns in the
population. The authors of the modeling study [41] found a competi-
tive model of within-host viral evolution to be compatible with
observed co-infection patterns, and raised the possibility of type
replacement and an increase in population prevalence of non-vaccine
types. A third study found that selective pressures applied by the
vaccine might increase HPV virulence by altering the transmission-
recovery trade-offs [43]. It may take years to decades until the
evolutionary and ecological consequences of the vaccine can be
measured conclusively; in the meantime, in-depth modeling of viral
evolution with MMMs can anticipate potential problems, and through
close collaboration with experimentalists, aid the design of targeted
experimental efforts.

4. HPV-related cancers

Infection with high-risk types of HPV is associated with cancers at
multiple anatomic sites, including the cervix, anus, penis, vagina, vulva
and oropharynx. There is substantial heterogeneity with respect to
HPV incidence, prevalence and transmission by both gender and
anatomic sites, and cancer incidence is consistent with HPV prevalence
at some, but not all, sites [44]. For many of these observations, a
mechanistic explanation is currently missing, providing yet another
opportunity for mechanistic mathematical modeling. Initial attempts at
modeling this complex multi-scale problem have been made at
different scales. At the tissue-level, an ecological model has been
developed to describe the interaction between tissue homeostasis, viral
infection and neoplastic progression [45]. At the host level, modeling
work has provided insights into the role of autoinoculation and its
relevance for HPV transmission models [46]. Importantly, because
relevant data stems from disparate physical scales, mechanistic multi-
scale models will be critical to successfully bridge the gap between
gender- and site-specific biologic mechanism and patterns of HPV
prevalence and cancer incidence at the population-level. A recent study
on the multi-scale dynamics of oral cancer [47] constitutes a first step
towards such an integrated paradigm, opening up a wide field of
opportunities for MMMs.

5. Conclusion and outlook

When evaluating a new paradigm, it is natural to make comparisons
to established frameworks. Therefore, one ought to be mindful about
intrinsic differences between mechanistic and health economic model-
ing. MMMs are usually cast within a basic science framework, and the
benchmark for their quality and relevance should be chosen accord-
ingly. More precisely, the quality of a mechanistic model is best judged
in the light of the hallmarks of good basic science, such as the ability to
identify gaps in knowledge, to challenge long-standing paradigms, to
generate, falsify and corroborate hypotheses, and to spur new experi-
mental research. Needless to say, such objectives are not always aligned
with immediate public health impact. Another key difference between
the two modeling paradigms is the desired degree of complexity. Much
like when working with laboratory models, MMMs are aimed at
elucidating the mechanistic essence of biological processes rather than
providing concrete numerical predictions. Because overly complex
models tend to obscure insight into the first principles of a process, a
good MMM does not distinguish itself by an excessive degree of
complexity. but rather by an economical, transparent and ultimately
insightful description of the natural process.

Considering the example of integrated mathematical oncology [48],
we find that successful mechanistic modeling in the biomedical
sciences thrives in a multi-disciplinary and collaborative setting.
Indeed, generating hypotheses and challenging prevailing theories is
more likely to spur scientific progress if there is the possibility for
targeted data collection and hypothesis testing. The successful applica-
tion of MMMs rarely occurs in isolation, and fruitful modeling work
generally builds on a close interaction with experimentalists.
Unfortunately, establishment of collaborations at the interface of
theory and experiment is rarely straightforward and may require
significant start-up costs to overcome terminological barriers and
formulate a tractable question of interest to both parties. However,
once the collaboration has been successfully launched, the ensuing
cross-disciplinary synergies will likely advance the research program of
all participants.

As illustrated by the above examples, MMMs are often of a multi-
scale nature, synthesizing data and knowledge sources across physical
scales. Indeed, a multi-scale framework enables incorporation of
additional and orthogonal data sets that further constrain and inform
the models at the individual scales. Furthermore, by providing
quantitative bridges between data from disparate physical scales,
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MMMs can be used to facilitate and stimulate collaborative efforts
between experimentalists working at different physical scales of the
same problem. More precisely, MMMs can be used as a catalyst for
multidisciplinary science between, e.g., molecular virologists and
infectious disease epidemiologists, or cancer biologists and clinicians
[48].

If mechanistic modeling efforts in HPV were to follow the trajectory
of mathematical oncology, we would hope to see the models eventually
reach the clinical setting and enable progress towards personalized
approaches in HPV management. Consider, for example, a 60-year-old
woman who had catch-up HPV vaccination at age 27, a combination of
irregularly spaced cytology and HPV DNA tests after age 30, and a
positive DNA test at age 60. As her physician, would you rather advise
her based on a one-size-fits-all guideline, or apply a dynamic risk
projection model that accounts for her personal history as well as
knowledge about the underlying biologic mechanisms? Such is the
broad objective of calls for moving away from agnostic algorithm-based
cervical cancer screening and triage to a risk-based management
paradigm [49] that integrates vaccination and screening into a single
prevention program [50]. We argue that MMMs provide us with a
unique opportunity to accelerate attaining this goal. Let us not miss
this opportunity.
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