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ABSTRACT: Molecular dynamics (MD) simulations are a popular tool for the study of protein dynamics. Recent machine-
learning-based structure prediction methods, such as AlphaFold, can provide a broad variety of initial protein structures for MD
simulation. Hence, the development of methods to enhance the practicality of MD simulation (such as efficient sampling or
detection of collective variables) is increasingly important. Identifying a small number of elements or features that can describe
biological phenomena from MD trajectories serves as a basis for these methods. In this study, we applied the anomaly detection
method based on sparse structure learning of the element correlation within MD trajectories to identify important features associated
with state transitions. This approach was tested on the correlation of residue−residue distances from the open- and closed-state
simulations of T4 lysozyme and the holo- and apo-state simulations of the PDZ3 domain. This has clear implications for
understanding cooperative motion through its combination with a dimension reduction technique.

1. INTRODUCTION
Molecular dynamics (MD) simulations have become increas-
ingly popular for understanding the mechanism of biomole-
cules. Moreover, it is the only tool that can easily observe the
behavior of biomolecules in atomic spatial resolution and
molecular vibration time resolution.1,2 The primary outcome
of an MD simulation is a time series of atomic coordinates and
velocities known as a “trajectory”. The objective of MD
simulations is to deduce structural, kinetic, or thermodynamic
properties from this trajectory. For example, thermodynamic
properties are usually computed as a time average of physical
quantities obtained from the trajectory, as the execution of MD
simulations can be considered as sampling in phase space.
Advances in computational resources and techniques3−8 have
extended the spatiotemporal limit of MD simulations, enabling
simulations of the entire cellular environment at the atomic
level9,10 or multiple unfolded-to-folded state transitions of a
globular protein, if state-of-the-art supercomputers are
available.11 The growing number of experimentally determined
structures12 and recent advances in machine learning structure
prediction methods13−17 have contributed to the increasing
attention to and applications of MD simulations. However,

there is a gap between the scope of many MD simulations and
those of biologically significant phenomena. Additionally,
extracting meaningful interpretations from the trajectory
remains a crucial task.
Enhanced sampling methods offer powerful solutions for

bridging the spatiotemporal gap between simulations and real
phenomena.18−20 Several approaches have been developed to
improve the efficiency of MD simulations, including umbrella
sampling,21 multicanonical MD,22 replica exchange MD
(REMD),23−26 metadynamics,27−29 and temperature-acceler-
ated MD (TAMD).30 Currently, REMD and metadynamics are
the two most widely adopted methods. The original REMD
method23 employs noninteracting replicas of the system which
are simultaneously simulated at different temperatures, ranging
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from the target temperature to the temperature that enables
the system to cross the free energy barrier. The temperatures
of the replica pairs are periodically exchanged by following the
Metropolis method to achieve random walks along the
temperature space. The REMD family comprises numerous
variations, owing to its high extensibility. Hamilton REMD24 is
a prominent example characterized by replicas with varying
parameters of the energy function and exchanges parameters to
randomly traverse the parameter space. Metadynamics
improves sampling by introducing an explicit evolution of
collective variables (CVs) and a CV-based potential function
with a history-dependent component. TAMD is like
metadynamics in that it uses the time evolution of predefined
CVs, but it distinguishes itself by considering two temper-
atures, one associated with the Cartesian coordinates and the
other with the CVs, with the latter being set to a high
temperature to promote efficient CV space sampling. If the
parameters satisfy the necessary conditions, the simulation can
yield a probability distribution as a function of the CV.
Additionally, variations of REMD use predefined CVs.31 For
many of these promising methods, successful simulation
depends on identifying appropriate CVs capable of accurately
describing relevant phenomena.
The second issue is the interpretation of the trajectory,

which is closely linked to the identification of appropriate CVs.
In many practical scenarios, the selection of CVs is often
guided by a chemical or physical intuition for the target system.
However, this work focused on automatic methods for
extracting CVs from a trajectory. Dimension reduction
techniques are commonly employed for this purpose.32,33

Principal component analysis (PCA) is the most widely used
method.34−37 In PCA, diagonalizing a covariance matrix of the
selected coordinates maximized the fluctuations of the first
component. In general, Cartesian coordinates are used for
PCA after the removal of overall translation and rotation
motion. Other choices of coordinates are internal coordinates
such as dihedral angles,38,39 interatomic distances,40,41 and
potential energy terms.42 Another noteworthy method is time-
lagged independent component analysis (tICA), which was
originally introduced in signal processing and aims to maximize
the time scales of the first component to capture the slower
motions of biomolecules.43−45 Kernel tICA,46 relaxation mode
analysis,47,48 and dynamics mode decomposition49 are other
methods used to discover slow CVs. Methods employing
nonlinear dimensionality reduction methods such as Isomap50

and diffusion maps51,52 were used to analyze MD simulation to
transcend the limits of linear projection methods. Another
noteworthy method used a graph-based approach.53 More
recent CV-finding methods based on deep learning19,32 include
time-lagged autoencoder54 and variational approach to Markov
process network (VAMPnets).55

In most cases, the problems of sampling and interpretation
are closely related to that of CV-finding. The first step of CV-
finding is to determine the set of input coordinates. For the
best use of CV-finding methods, it is desirable to know the
smallest number of coordinates that can describe a specific
biological process. These key coordinates are often called
“order parameters”56 or “features”.57 A small number of key
coordinates is expected to exist, and detecting them is helpful
in many biological processes such as allosteric transitions
including cooperative motions.58 Attempts to identify features
automatically, independent of specific chemical or biological
knowledge of the target system, can be framed as a feature-

finding problem. Previous attempts to achieve this include
functional mode analysis (FMA), which detects collective
motions related to a particular protein function,59 automatic
mutual information noise omission method (AMINO), which
uses a mutual information-based distance metric,56 the sparse
group lasso (SGL) method,60 and molecular systems
automated identification of cooperativity (MoSAIC) method,
which uses the correlation relationship between input
coordinates and clustering algorithm.57 These methods are
classified as preprocesses of CV-finding methods such as PCA
and tICA or of enhanced sampling such as metadynamics and
contribute to improving the accuracy and efficiency of CV-
finding and automation of enhanced sampling methods.
Besides, these “features” themselves are expected to be helpful
in interpreting trajectories.
In this study, we propose a method that applies anomaly

detection61 to MD trajectories to identify important features in
protein dynamics. We assume the following: the structures of a
biomolecule (a protein) at different states are available, and
MD simulations can be performed from the initial structures of
each state, although the transition between them may be
outside the scope of a brute-force MD simulation. This is a
typical situation in today’s MD simulations. Among anomaly
detection methods, our method estimates the sparse structure
or sparse precision matrices from the correlation relationship
of input coordinates with the graphical lasso for two states and
identifies a small number of coordinates with a high “anomaly”
that comes from the difference between two states. We intend
that the few highly anomalous coordinates serve as the
necessary coordinates to describe the differences between the
two states. The feature-finding methods discussed here56−60

can be summarized as approaches that select a small number of
degrees of freedom from a large set, such as distances between
atoms/residues of the protein or sets of dihedral angles of the
protein. Our proposed method shares its use of sparse
relationships with the SGL method60 and its use of correlation
with the MoSAIC method.57 The proposed method is set apart
by its potential to discover important features even from
simulations at a time scale that does not include state
transitions by comparing relatively short trajectories from
different states and to capture accurate correlations by
eliminating pseudocorrelations. To validate these assertions,
we tested our proposed method on two examples involving a
state transition: the open-closed transition of the T4 lysozyme
and the dynamic allostery of the PDZ3 domain.

2. METHODS
2.1. Anomaly Detection Based on Sparse Structure

Learning. The general purpose of anomaly detection is to
identify abnormal patterns or elements in the given data set. In
our study, we identified a small number of elements with
anomalies by comparing two independent multidimensional
time series that contain the same set of elements.61 The
method has two stages: initially, the learnings of the sparse
correlation relationship of elements of each time series are
determined. The correlation of elements in each time series is
approximated as a multidimensional Gaussian distribution
constrained by the sparsity of its precision matrix (inverse
covariance matrix). The precision matrix is estimated through
the maximum a posteriori (MAP) estimation method. If the
i,jth element of the estimated (sparse) precision matrix is
nonzero, the correlation relationship is estimated between the
ith and jth elements of the time series. Subsequently, a small
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number of elements with anomalies are identified by
comparing two sparse correlation relationships. We summar-
ized the method as follows based on the original paper.61

Initially, we introduced the first stage of the method, sparse
structure learning of one time series. Suppose that we have a
time series D = {xM(n)|n = 1, ..., N}, where x = (...xi...) denotes
an M-dimension random variable, xi denotes the ith element of
x, n denotes the index of the discrete time, and N is the
number of sampling snapshots. In the case of application to an
MD trajectory, D corresponds to a trajectory, and x can be
considered a function of Cartesian coordinates of atoms such
as interatomic distances. Without losing the generality, we
assume that each element of x is standardized as

x
x

i
i i

i i, (1)

where xi is the ith element of x, μ is the mean of {xi} defined as
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We assume that the probability distribution function of x is an
M-dimensional Gaussian distribution with mean 0 and variance
Λ−1, p(x) = N(x|0,Λ−1), where ΛM×M is the precision matrix,
|Λ| means the determinant of Λ, and ΣM×M is the variance-
covariance matrix, where the relationship Σ = Λ−1 is satisfied.
We aim to estimate Λ using the MAP estimation based on D.
(Estimation of Λ directly means estimations of p(x) and Σ.)
To make the precision matrix Λ sparse, the prior probability
distribution for Λ must be set. In this case, we define the prior
probability distribution P(Λ) as
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where ρ(⊂[0, 1]) is the parameter that controls the degree of
sparsity of Λ. If ρ is sufficiently near 1, most of the elements of
Λ must be 0. Based on the MAP estimation, the following
maximizing problem is to be solved:
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Subsequently, ignoring constant factors and constant terms, we
redefine the object function f(Λ) for maximization as
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where S is the sample variance-covariance matrix from the data
D, S = [Si,j] = =S x n x n( ( ) ( ))i j N n

N
i j,

1
1 , and C is a constant. []i,j

means the i,j element of the matrix. Then, estimating sparse
correlation of xi means finding Λ that maximizes f(Λ). This
maximization problem can be solved using the block gradient
method,61 and the precision matrix Λ is obtained under the
given value of ρ for the time series D. If the i,j-th element of Λ
is not zero, it means that the correlation relationship between
xi and xj is estimated.
Subsequently, the second stage, the identification of

elements with anomalies, is as follows. Assume that we have
two precision matrices Λ and Λ′ estimated based on two
independent multidimensional time series D and D′ that
contain the same set of elements. The definition of the
anomaly a(x) = (a1, ..., aM) of each element of x is given as

| | |
|
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where x−i = (x1, ..., xi−1, xi+1, ..., xM). Equation 6 represents the
Kullback−Leibler divergence between p(xi|x−i,D) and p(xi|x−i,
D′). Using the assumption that p(x) is a multiple Gaussian
distribution N(x|0,Λ−1), the anomaly of the ith element of x is
obtained as
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where Λ and Λ′ are the precision matrices estimated based on
D and D′, respectively. The multiple Gaussian distributions do
not match the real distribution. However, we justify our
assumption as we are only considering the presence or absence
of correlation between pairs of elements.
2.2. Application of Anomaly Detection to MD

Trajectories. We used the minimum distances of atoms
(except hydrogen atoms) between the two residues as inputs
for the method. The primary outputs of MD simulations are
the time series of Cartesian coordinates of atoms in a system.
However, the direct use of Cartesian coordinates is
inconvenient, because the overall translation and rotation
motion must be removed. Thus, we used minimum atomic
distances (except hydrogen atoms) between residues as inputs.
We refer to these distances as residue−residue distances.
Although all possible pairs should be considered, we subjected
the residue pairs to the subjection of the calculation to restrict
the number of elements being considered. As input pairs, the
union of pairs with residue−residue distances which satisfy the
following conditions in two states before and after transition
were used: Di,j ≤ d and |i − j| > n, where the indices (i, j)
indicate the residue pair (i,j), and Di, j is the residue−residue
distance. For the values of d and n, we adopted 8.0 Å and 10,
respectively, after a few trials.
Our choice of threshold inter-residue distances is worth

mentioning. Several trial-and-error tests were performed to
determine the threshold, including the commonly used
threshold of the residue−residue contact, where the distance
between two atoms except hydrogen atoms of different
residues is less than 4.5 Å. We selected 8.0 Å, because we
aimed to target a relatively large number of residue−residue
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pairs around the normal residue−residue contacts. We believed
that including a larger number of pairs would ensure robust
results. Thus, we adopted a larger distance instead of the usual
threshold. When we adopted the threshold 4.5 Å, these results
were basically consistent with those when the threshold was
8.0 Å, that is, in both cases, as the sparsity increased, nearly the
same residue pairs were identified as those with high anomaly
(Figure S3 shows figures corresponding to Figure 1 when the
threshold was 4.5 Å).
Other choices for internal coordinates should be considered.

We conducted residue−residue interaction energies as one
option. This was inspired by studies such as residue interaction
network analysis.62,63 In this case, we used the time series of
atomic interaction energy decomposed per residue for the
analysis of the simulation of T4 lysozyme: the residue−residue
interaction energies are too coarse to compare to previous
studies (data not shown).41,57,58 Nonetheless, we believe that
there is room to explore better alternatives for selecting
internal coordinates.
To the best of our knowledge, this is the first study to apply

the sparse-structure-learning-based anomaly detection algo-
rithm61 for the analysis of MD trajectories to find important
features. To achieve this, the choice of internal coordinates
needs to be examined.
2.3. MD Simulations and Analyses. All MD simulations

were performed using GROMACS-2022.64,65 The unit cell was
cubic, and the periodic boundary condition was used with a
minimum image convention. Electrostatic interaction was
handled using the smooth particle mesh Ewald method.66

The LINCS algorithm was used for the protein to fix the
lengths of all bonds involving hydrogen atoms, and SETTLE
was used to keep the water molecules rigid.67,68 For proteins,
the AMBER03 force field69 was used, and for water, the TIP3P
model was used.70 The solution was neutralized, and the NaCl
concentration was set at 0.150 M. The number of ions was
determined by the SLTCAP server.71 The equation of motion
was integrated with the leapfrog stochastic dynamics method
and the inverse friction constant of 0.1 ps to keep the system at
300 K. The pressure was maintained at 1 bar using a
Parrinello−Rahman barostat72 at a coupling time of 5.0 ps. To

enlarge a time step at 4 fs, we used the hydrogen mass
repartitioning method,73 and LINCS was set at the sixth order.
For the equilibration of the initial system, a recently proposed
10-step protocol was applied and the final 10th equilibration
step was performed for 1 ns.74 For the production run, the
configuration was stored every 10 ps. For the analyses of
trajectories, the residue−residue distance was calculated using
the MDtraj package.75 Our program conducted sparse
structure learning and anomaly detection. For further analysis,
PCA was conducted on the residue−residue distances that
were identified as high-anomaly residue pairs.
Our intention to apply PCA to the identified features should

be noted. The features obtained by anomaly detection are only
the list of important elements, such as the list of residue−
residue pairs, and we were concerned that these may not
provide a clear or simple explanation of the phenomena. We
intended to combine PCA with the feature-finding method to
capture the important modes and provide a clearer
explanation. Although PCA was the first choice for our
method of dimension reduction, we would like to use other
dimension reduction methods (such as tICA or VAMPnets) in
the future that may provide more clarification, as these
methods are particularly adept at handling dynamic features.
2.4. T4 Lysozyme and PDZ3 Domain. The first target of

our method was the T4 lysozyme, a well-studied system that is
supposed to contain a cooperative motion.41,57,58 T4 lysozyme
contains 164 residues, which perform the open-closed
transition between two domains. Each state has a lifetime of
a few microseconds, and the transition occurs on a nanosecond
time scale. We performed several (see section 3.1) 1-μs-long
MD simulations of T4 lysozyme in water solution. As the
initial structures, an open state structure (PDB ID 150L)76 and
a closed state structure (PDB ID 2LZM)77 were adopted.
The second target was the PSD-95 PDZ3 domain, which

plays an important role in signal transduction. PDZ domains
are highly conserved structural modules that consist of two or
three α-helices and five β-strands. Moreover, in PDZ domains,
the C-terminus of the target protein commonly binds to a
groove between the second β-strand and the second α-helix.
The PDZ3 domain is a well-studied PDZ domain since it is

Figure 1. Sparse structure and residue−residue pairs with the high anomalies of T4 lysozyme. (a) Sparse representation of the correlation of
residue−residue distances of open states and closed states of T4 lysozyme. Each axis indicates the indices of the residues. Each point represents one
residue−residue pair. A line that connects points indicates that a correlation of the corresponding residue−residue distances was found by the
method when the sparsity was set at 0.90. Red indicates the open state and blue indicates the closed state. (b) Residue−residue pairs with high
anomalies between the open and closed states of T4 lysozyme. The density of the points corresponds to the sparsity which was used for anomaly
detection.
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regarded as an example of a dynamic allostery.78−83 Previous
MD simulations suggest that the cooperative mechanism was
observed in the changes induced by ligand peptide binding
similar to the open-closed motion of T4 lysozyme.80 We
conducted three MD simulations, each lasting for 1 μs, of the
PDZ3 domain (residues 306−415) with a ligand peptide
(KQTSV) in solution and unbounded PDZ3 domain in
solution, respectively. As the initial structures for bound and
unbound states, crystal structures with PDB IDs 1BE9 and
1BEF were adopted.84

3. RESULTS
3.1. Open and Closed States of T4 Lysozyme.

Simulations were conducted for each state to compare the
open and closed states, each lasting one μs. We conducted six
simulations in total: three initiated from the open state and
three from the closed state. During the simulations, one
trajectory from the open state rapidly transitioned to the closed
state, leading to two stable open-state trajectories, three stable
closed-state trajectories, and one trajectory containing both
states. For our analysis, we focused on the five stable
trajectories (two open-state and three closed-state) while
excluding the trajectory that underwent the transition. We
conducted the same analyses for all trajectories to check the
robustness of the results. Sparse structure learning of the
correlations of residue−residue distances was performed for
five independent trajectories. Anomaly detection was con-
ducted for the combination of sparse representation of the
correlation of the open- and closed-state trajectories. There-
fore, we have six sets of results. The input pairs of distances
were determined by the following condition: two residues at
which the minimum distance between atoms (except hydrogen
atoms) belonging to each residue is less than 8 Å, and one
residue is separated by 10 or more residues from the other
residue. The input pairs were selected based on the initial
structures, and 972 pairs was input. The residue−residue pairs
with anomalies were detected at various sparsity values
including 0.80, 0.90, 0.91, and 0.92. Initially, we checked the
number of nonzero elements of the sparse representation of
the correlation of residue−residue distances (the number of
possible nonzero elements is approximately 5.0 × 105). When
the sparsity is 0.80, the number is greater than 500 for all six
cases. These are too large for our aim, which is to identify a
small number of features. The following sections focus on the
cases where the sparsity is equal to or greater than 0.90.
Figure 1a shows the results of sparse structure learning of

time series of the residue−residue distances of the correlation
between the open- and closed-state T4 lysozyme. This figure
corresponds to the results of one of six combinations of the
open-state and closed-state simulations (see Figure S4 for
other combinations). Each colored point indicates the
residue−residue pair. The line connecting the points indicates
that the method detected a correlation between the
corresponding residue−residue distances. The blue and red
colors correspond to the closed and open states, respectively.
The number of lines (the number of nonzero elements of the
sparse representation of the correlation) was 122 for the open
state and 121 for the closed state at a sparsity of 0.90. Figure
1b shows the residue−residue pairs with anomalies identified
from the result of Figure 1a using the method described in
section 2.1. The density of the colored points corresponds to
the sparsity used for anomaly detection (0.90, 0.91, and 0.92).
The number of residue−residue pairs was 33, 19, and 14 with

sparsities of 0.90, 0.91, and 0.92, respectively. These values are
small enough for our aim.
The 33 pairs of residues identified at a sparsity of 0.90 are

visualized on the structure of T4 lysozyme (Figure 2). A group

of pairs was observed that connected the first helix (residues
2−12) and the third helix (residues 59−81). Moreover, the
pairs that connect the first helix and the fifth helix (residues
92−107) correspond to the “hinge” region of the open-close
motion of T4 lysozyme. A group of pairs was observed
connecting the loop bridging the first β strand (residues 14−
20) to the second β strand (residues 24−28) and the ninth
helix (residues 136−142). This corresponds to the “mouth” of
the open-close motion. These three groups are the main
groups of the identified pairs. Principal component analysis
(PCA) of the minimum distances of atoms (except hydrogen
atoms) between the identified residue pairs was performed to
recognize the implication of the identified pairs. As input data,
we combined the time series of the residue−residue distances
of the identified pairs from the open- and closed-state
simulations. Figure 3a−c gives the logarithm of the probability
distribution of the open and closed-state trajectories projected
on PC1 vs PC2 space, PC1 vs PC3 space, and PC2 vs PC3
space, respectively. The eigenvalue of PC1 contributed over
80% (Figure 3d).
Figure 4 shows the PC components. The thickness of the

red line is proportional to the absolute value of the element of
the eigenvector, and the direction of the arrow indicates the
sign of the element of the eigenvector. Only PC1 can divide
the open and closed states: the open state located in the area
where PC1 > 0, and the closed state in the area where PC1 < 0
(see Figure 3a,b). PC1 corresponds to the motion of the
opening (closing) of the mouth and shrinking (spreading) of
the hinge region of the open-close motion. The mouth opens
and hinge shrinks in the positive direction (Figure 4a). PC2
represents a combination of two motions: in the positive
direction, the hinge shrinks while the distance between the fifth

Figure 2. Structures of T4 lysozyme with anomaly residue−residue
pairs. (a) The 33 residue−residue pairs with anomalies detected at ρ
= 0.90 are projected on the open-state structure. (b) The same pairs
are projected on the closed-state structure.
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helix and the N-terminal region increases; in the negative
direction, the hinge spreads while the distance between the
fifth helix and the N-terminal region decreases. The hinge
spreads and the fifth helix and N-terminal distance are in the
positive direction (Figure 4b). Where two open and closed
state regions meet in Figure 3a, both values of PC1 and PC2
are small, which means that the mouth begins to close, the
hinge spreads, and the fifth helix and N-terminus begin to
close. This implies that the decreasing of the distance between
the fifth helix and the N-terminal can trigger the mouth
closing/hinge spreading event. Furthermore, the same
implication can be observed in Figure 3b. The PC3
corresponds to the combination of the distancing (closing)
between the fifth helix and the N-terminal and the spreading
(shrinking) motion of the hinge region. The hinge spreads and
the fifth helix and N-terminal close in the positive direction
(Figure 4c). Figure 3b shows that where two state regions
meet the mouth closed, the hinge opened and the distance
between the fifth helix and the N-terminal closed. These
findings were observed for the other five data sets. (Figures
corresponding to Figure 1 can be found in Figure S2.)
3.2. Holo and Apo States of PDZ3 Domain. The PDZ3

domain is an example of allostery without a significant
conformational change in backbone structure. The hidden
dynamical allostery was revealed by Lee et al., where the
removal of the third helix (residues 394−399) at its C-terminal
drastically reduces the binding affinity.78 It has three α-helices
and five β-strands; we refer to them as α1, α2, α3, β1, β2, ...,
respectively. We performed three 1-μs-long MD simulations
for both holo and apo states. We aimed to identify the
residue−residue pairs that characterize the phenomena based

on the trajectories from MD simulations. To achieve this,
anomaly detection analyses based on the sparse structure
learning technique were performed. This analysis used the
same parameters as those used in the T4 lysozyme case.
Anomaly detection was performed for each combination of the
apo- and holo-state trajectories. Specifically, we analyzed three
apo-state trajectories and three holo-state trajectories, resulting
in nine sets of results corresponding to all possible
combinations of these trajectories (9 = 3 × 3). The number
of initial input coordinates (pairs of residue−residue distances)
was 731. We checked the number of nonzero elements of the
sparse representation of the correlation of residue−residue
distances. The number of nonzero elements was sufficiently
small when the sparsity was set to ≥0.80.
Figure 5a shows the sparse representation of the correlation

of residue−residue distances of the holo and apo states of the
PDZ3 domain. This figure corresponds to the results of one of
nine combinations of the apo-state and the holo-state
simulations. (See Figure S4 for other combinations.) The
colored points indicate one residue−residue pair (red and blue
for the holo and apo states, respectively). The line connecting
the red and blue points indicates that the distances of two pairs
are correlated at the holo and apo states, respectively, as in the
case of T4 lysozyme. The number of correlated pairs was 131
at the holo state and 113 at the apo state, when the sparsity
was set at 0.90. Figure 5b shows the residue−residue pairs with
anomalies. The density of the colored points corresponds to
the sparsities of 0.80 and 0.90. The numbers of identified
residue−residue pairs were 183 and 29, respectively.
Figure 6 visualizes 29 residue−residue pairs identified at a

sparsity of 0.90 on two states of PDZ3 domain structures.

Figure 3. Logarithm of probability distribution projected into PC spaces based on T4 lysozyme simulations. The logarithm of probability of
distribution spanned (a) PC1 and PC2, (b) PC1 and PC3, and (c) PC2 and PC3. (d) Contribution of eigenvalues to cumulative PCs. The
contribution of PC1 is 0.83.
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Among them, most connect the loop between β2 and β3
(residue 330−335) with α2 (residue 372−380), while other
pairs connect the loop between β2 and β3 with α3 (residue
394−399), β3 (residue 336−341), and β5 (residue 385−392).
Additionally, pairs connecting α3 with α2, β2, and β3 and the
loop between β2 and β3 and pairs connecting α2 with the loop
between β2 and β3 were observed. These observations show
that our analysis detected the connections between the loop
between β2 and β3, α2, and α3 and the connections in which
they work as a hub. As mentioned in section 2.4, β2 and α2
consist of the groove bound to the ligand peptide, and
experiments revealed that α3 is a relevant region to the
allostery of the PDZ3 domain.78

To further explore the implication of the identified pairs,
PCA was conducted on the distances of the identified pairs. As
input data, we combined the time series of the residue−residue
distances of 29 identified pairs from both holo- and apo-state
simulations. Figure 7a−c gives the logarithm of the probability
distribution of the holo- and apo-state trajectories projected on
PC1 vs PC2 space, PC1 vs PC3 space, and PC2 and PC3
space, respectively. The contribution of PC1 is 0.426, the
cumulative contribution of PC1 and PC2 is 0.626, and the
cumulative contribution of PC1, PC2, and PC3 is 0.723
(Figure 7d).
The PC1, PC2, and PC3 components are visualized in

Figure 8a−c, respectively. The thickness of the red line is
proportional to the absolute value of the element of the
eigenvector, and the direction of the arrow indicates the sign of
the element of the eigenvector. PC1 includes the closing
(distancing) motions between the loop between β2 and β3 to
α2 and the distancing (closing) motion between β3 and α3.
PC2 includes the closing (distancing) motion between the
loop between β2 and β3, β4, and α2. PC3 is a rather minor
motion, such as the N-terminal region. These findings were
observed for the other eight data sets (figures corresponding to
Figure 5 can be found in Figure S5).
PC1 consists of the network within the binding site (α2, the

loop between β2 and β3) and α3. Only PC2 can divide the
holo and apo states clearly: the apo state locates where PC2 is
larger than around −0.2 and the holo state where PC2 is
smaller than around −0.2. This is because PC2 consists of the
network of the distances within the binding site (α2, the loop
between β2 and β3 and β4), and the decrease in the value of
PC2 indicates the core formation of the binding site. PC3
corresponds to the distance between the N-terminal region and
the loop between α1 and β4 and indicates only that in the apo
state the distance sometimes can be longer than that in the
holo state.

4. DISCUSSION
We proposed a new method applying sparse structure learning-
driven anomaly detection61 on the trajectories of MD
simulations to identify an important small number of elements
associated with the transition between two states. Our first
target was the open-close transition of T4 lysozyme. Analysis
of six cases using independent trajectories of the open and
closed states detected 23 to 44 residue−residue pairs with high
anomaly when the sparsity was set at 0.90 (Figure S2). This
small number of pairs is concentrated around the “mouth” and
“hinge” regions of the open-closed motion and implies that our
method can identify the features associated with the transition
motion of two states. PCA was performed for the residue−
residue distances of the identified pairs to further investigate
this implication. PC1 (whose contribution was over 80%)
divides the open and closed states and corresponds to the
cooperative motion of the opening (closing) of the mouth and
shrinking (spreading) of the hinge. This suggests that PCA
provides a single meaningful axis that can describe the
transition motion. Results similar to those of previous studies
were observed.41,57,58 The comprehensive work on opening
and closing motions of T4 lysozyme58 using a large amount of
simulations and the detailed analysis show the open-to-closed
state as follows: (1) distancing between Glu5 and Lys60
leading to the exposure of Phe4, (2) closing between Phe4 in
the first helix and Phe104 in the fifth and third helix, (3)
straightening of the third helix at Phe67, causing the closing

Figure 4. Components of PCs of the identified residue−residue
distances of T4 lysozyme. Components of PC1 (a), PC2 (b), and
PC3 (c) are visualized on the open-state (left) and closed-state
(middle) structures of T4 lysozyme. The thickness of the line is
proportional to the value of the element of the eigenvector, and the
direction of the arrow indicates the sign of the element of the
eigenvector. The diagrams represent simplified structures of T4
lysozyme and the arrows beside the diagrams are the main
components of each PC (right). The direction of the arrows indicates
that the component of PC is positive.
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between Phe4 and Phe67, (4) opening of the mouth (forming
the salt bridges: Glu22-Arg137, Asp20-Arg145, and Glu11-
Arg145) and closing of the hinge (forming the salt bridges:
Arg14-Asp20 and Glu11-Arg14), and (5) the rearrangement of
β1. In our analysis using a sparsity of 0.90, we identified the
distances between the residues in helix 1 and N-terminal
residues (residue pairs: Met1-Arg96 and Met1-Cys97). The
motions were included in the higher PC (PC2 or PC3) in all
six cases. This can be seen corresponding to the second stage
of the scenario. The distances between helix 1 and Phe67 in
helix 3 (residue pairs: Met1-Phe67, Arg8-Phe67, and Ile9-
Phe67) were observed in all cases, which seems to correspond
to the third stage. As expected, the corresponding opening/
closing motion of the mouth and hinge were identified in all six
cases (residue pairs: Glu22-Gln141 and Phe4-Lys60).
The second case is dynamic allostery induced by peptide

binding of the PDZ3 domain. This example is well-studied, and
previous studies using correlation analysis and mutation MD
simulations reported that the interactions between the loop
between β2-β3 and α3 are important.81 As mentioned in
section. 3.2, our analysis identified the correlation of the
distance between the loop between β2-β3 and α2 and distance

α2 and α3. In both cases, our proposed method shows
reasonable results that are consistent with previous findings.
We consider this proposed method a type of “feature-

finding” method.56−60 Such approaches can provide the basis
for methods enhancing the applicability and interpretability of
MD simulations including efficient sampling and CV-finding
methods. A key advantage of our method is its computational
efficiency compared with other feature-finding methods
because it requires fewer resources for simulations. It allows
for the comparison of time-series data from two different
states, enabling the discovery of important features even when
state transitions exceed simulation capabilities or when only
relatively short trajectories are available. For example, our
method, which relies on relatively short simulations (1 μs)
from different states, allows us to obtain the results more easily
than methods that analyze one longer simulation (50 μs)57
which must involve the state transition. Based on the results
from two test cases, our method can not only identify a small
number of important features but also provide clearer insights
for the state transition when combined with dimension
reduction techniques. Additionally, the most time-consuming
part of the analysis, the sparse structure learning of time series,

Figure 5. Sparse structure and residue−residue pairs with high anomalies of the PDZ3 domain. (a) Sparse representation of correlation of residue−
residue distances of the holo state and apo state of the PDZ3 domain. Each axis indicates the indices of the residues. Each point indicates one
residue−residue pair. A line that connects points indicates that the method revealed a correlation of the corresponding residue−residue distances
when the sparsity was set at 0.90. Red indicates the holo state, and blue indicates the apo state. (b) Residue−residue pairs with high anomalies
between the holo and apo states of the PDZ3 domain. The density of the points corresponds to the sparsity which was used for anomaly detection
(ρ = 0.80 and ρ = 0.90).

Figure 6. Structures of the PDZ3 domain with anomaly residue−residue pairs. (a) The 29 residue−residue pairs with anomalies detected at ρ =
0.90 are projected on the stable structure in the holo state. (b) The same pairs are projected on the stable structure in the apo state.
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was completed within a few hours for each case using one
CPU. As a further application, we are considering integrating
our detection method with enhanced sampling techniques,
such as metadynamics or TAMD, which require predefined
collective variables.
Since MoSAIC is also a feature-finding method based on the

correlation relationship between input coordinates, we will
now compare it with our method.57 Overall, the results of
MoSAIC corresponded well with those of our anomaly
detection method and its combination with PCA. In that
study, the same enzyme T4 lysozyme was targeted as in our
research. A 50 μs MD trajectory including the open-closed
transition was adopted for the MoSAIC analyses with
parameters at γ = 0.5 and n = 5. Three main motions were
found as the clusters. Cluster 1 corresponds to the antiparallel
motion of opening/closing motion of mouth and hinge, which
corresponds to PC1 in our analysis. Cluster 2 is related to the
rearrangement around the N-terminal region, which corre-
sponds to the distancing between the N-terminal region and
the fifth helix included in PC2 and PC3 in our analysis. Cluster
3 identified a twisting motion between the β-sheets and the
second helix. Similarly, in our analysis, anomaly detection
identified the set of residue pairs with high anomalies around
the first and second strand and the second helix. Therefore, we
conclude that the results of anomaly detection or the

combination with PCA correspond well to those obtained by
MoSAIC applied to a much longer trajectory.
It may be helpful to mention whether meaningful results

could have been obtained without combining with PCA. In
both cases, the combination of the feature-finding method and
PCA allowed us to obtain a small number (2−3) of modes,
which leads to a convincing explanation of the transition. If
anomaly detection alone had produced a similarly small
number of features by increasing the sparsity ρ, the resulting
information would have less information. For instance, in the
T4 lysozyme case, when the sparsity was increased to 0.92,
three features (the residue−residue pairs) were obtained
(residues 4−63, 4−62, and 4−50). However, they were all
associated with the open/close motion of the mouth of T4
lysozyme, and information about the spreading/shrinking
hinge or the rearrangement of the N-terminal region were
lacking. In the PDZ3 domain case, when ρ was increased up to
0.93, only four residue−residue pairs (residues 335−389, 335−
361, 335−359, and 334−359) remained. These pairs
correspond to the pairs between β3 and β4, between β3 and
β5, and between the loop between β2 and β3 and β4, and we
could not ascertain the implications of α3, which is known to
be important for dynamic allostery. Therefore, it can be
concluded that the combination of the feature-finding method
with dimension reduction techniques, such as PCA, is effective.

Figure 7. Logarithm of probability distribution projected on PC spaces based on PDZ3 domain simulations. The logarithm of probability
distribution spanned along (a) PC1 and PC2, (b) PC1 and PC3, and (c) PC2 and PC3. (d) The contribution of eigenvalues to cumulative PCs.
The contribution of PC1 is 0.426.
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We justify our method for setting the suitable value of ρ:
lowering the sparsity value considerably leads to an excessive
number of features, which makes interpretation difficult, while
increasing by too much risks omitting important features. In
this study, we increased the sparsity value until the number of
selected features reached a reasonable range, typically around a
few dozen. From our trial-and-error, we suggested a sparsity
value of 0.90 as the initial value.
Considering how the sparsity value is set may lead us to the

following insight: adjusting the sparsity enables the selection of
only essential features under high sparsity while allowing the
capture of local motion under low sparsity condition. We think
that the interpretation is correct in some cases. By setting a
higher sparsity value (larger ρ), we can indeed extract only the
most relevant features describing the core biological process

(for example, the open-close motion of mouth in the case of
T4 lysozyme). Conversely, the smaller sparsity allows the
inclusion of additional features, such as the spreading/
shrinking of the hinge or the rearrangement of the N-terminal
region in the case of T4 lysozyme. However, we cannot
establish that the value of sparsity alone can directly quantify
the biological significance of the selected features. Instead, it
provides us with a means to balance interpretability and
completeness by fine-tuning the number of extracted features.
While a higher sparsity highlights only the most dominant
features, a lower sparsity may reveal additional mechanistic
details. Thus, sparsity adjustment serves as a useful tool for
refining our understanding of the system, but biological
validation is still necessary to confirm the functional relevance
of the identified features.

Figure 8. Components of PCs of the identified residue−residue distances of the PDZ3 domain. Components of PC1 (a), PC2 (b), and PC3 (c) are
visualized on the holo-state (left) and the apo-state (middle) structures of the PDZ3 domain, respectively (only protein structures without ligand
peptide are shown). The thickness of the line is proportional to the value of the element of the eigenvector, and the direction of the arrow indicates
the sign of the element of the eigenvector. The diagrams represent simplified structures of the PDZ3 domain and the arrows are the main
component(s) of each PC (right).
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Finally, we mention the applicability of our method to other
systems and its flexibility for the selection of the state. We
believe that our method is applicable to systems that undergo
structural changes, including cooperative motions when the
selected states are relatively stable. In some cases, it is expected
that 1 μs of length will be insufficient to achieve a converged
sparse structure. For example, we also conducted our analysis
for the third target: cavity formation of myeloid differentiation
protein 2 (MD2). The combination of anomaly detection and
PCA captured the cavity-formation motion; however, when the
length of the simulations was set to equal to two other cases,
the sparse structures obtained from the MD2 simulation were
not as robust as those of the T4 lysozyme and PDZ3 domain.
The results suggested, in the case of MD2, 1 μs length was
insufficient to achieve a converged sparse structure (Figures
S6−S8). We present the general approach used to set the
length of the simulation and determine its sufficiency. One
possibility extends the simulation length until a convergence is
reached. The other possibility involves running independent
simulations and assessing the consistency of the obtained
results.

5. CONCLUSION
The use of MD simulation in the studies of biomolecules has
become increasingly prevalent owing to advancements in
experimental structure-determination techniques and machine-
learning-based structure prediction methods. However, inter-
pretation of results and sampling problems remain critical.
Recently, interest has increased in applying machine learning
and associated techniques to sampling and analysis processes.
In most cases, both problems are related to the challenges of
finding collective variables. CV-finding requires deciding the
set of input coordinates, and it leads to interest in capturing a
small number of coordinates (sometimes called “features”) that
can describe a specific biological process. In this Letter, we
introduce a novel approach using an anomaly detection
method based on sparse structure learning to compare MD
trajectories, facilitating the automatic extraction of important
features. The application of this method to the open-close
states of T4 lysozyme and the holo and apo states of the PDZ3
domain illustrates its capability to identify coordinates that
delineate differences in each state and the usefulness of
combining it with dimension reduction methods such as PCA.
Moreover, this method can function as a preprocessing step for
enhanced sampling techniques like metadynamics, thereby
contributing to improved efficiency and automation of studies
using MD simulation.
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