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Summary 
Human melanoma cell line MZ2-MEL expresses several antigens recognized by autologous cytolytic 
T lymphocyte (CTL) clones. We reported previously the identification of a gene, named MAGE-1, 
that codes for one of these antigens named MZ2-E. We show here that antigen MZ2-D, which 
is present on the same tumor, is encoded by another member of the MAGE gene family named 
MAGE-3. Like MAGE-1, MAGE-3 is composed of three exons and the large open reading frame 
is entirely located in the third exon. Its sequence shows 73% identity with MAGE-1. Like MZ2-E, 
antigen MZ2-D is presented by HLA-A1. The antigenic peptide of MZ2-D is a nonapeptide 
that is encoded by the sequence of MAGE-3 that is homologous to the MAGE-1 sequence coding 
for the MZ2-E peptide. Competition experiments using single Ala-substituted peptides indicated 
that amino acid residues Asp in position 3 and Tyr in position 9 were essential for binding of 
the MAGE-1 peptide to HLA-A1. Gene MAGE-3 is expressed in many tumors of several types, 
such as melanoma, head and neck squamous cell carcinoma, lung carcinoma and breast carcinoma, 
but not in normal tissues except for testes. It is expressed in a larger proportion of melanoma 
samples than MAGE-1. MAGE-3 encoded antigens may therefore have a wide applicability for 
specific immunotherapy of melanoma patients. 

M ixed lymphocyte-tumor cell cultures carried out with 
human melanoma cells and lymphocytes from the same 

patient often generate cytolytic T lymphocytes (CTL) 1 that 
lyse the autologous tumor cells (1-4). Using blood lympho- 
cytes of melanoma patient MZ2, a panel of CTL clones has 
been obtained that lyse autologous tumor cell line MZ2-MEL 
(3). These CTL clones were used to select antigen-loss vari- 
ants and this led to the definition of several different antigens 
on the MZ2-MEL melanoma cells (5). Gene MAGE-1 that 
directs the expression of antigen MZ2-E was identified by 
transfecting a cosmid library prepared with the DNA of the 
MZ2-MEL cells into an E- antigen-loss variant and by 
testing the ability of the transfected cells to stimulate anti- 
MZ2-E CTL (6). Gene MAGE-1 is composed of three exons. 
The third exon contains an open reading frame coding for 
a protein of 309 amino acids (7). A MAGE-1 encoded nonapep- 
tide composed of amino acids 161-169 binds to MHC class 

1Abbreviations used in this paper: CHO, Chinese hamster ovary; CTL, 
cytolytic T lymphocyte; tLT-PCK, reverse transcriptase-polymerase chain 
reaction. 

I molecule HLA-A1 to form the complex recognized by the 
anti-MZ2-E CTL (8). Gene MAGE-1 is expressed in many 
melanoma tumors as well as in other types of tumors. No 
expression was detected on normal tissues with the excep- 
tion of testes (7). 

When the expression of gene MAGE-1 was analyzed in 
the MZ2-MEL cell line, two other cDNA species were found 
that crosshybridized with a MAGE-1 probe. The sequences 
of these cDNA proved to be closely similar to that of MAGE-1 
and the corresponding genes were named MAGE-2 and 
MAGE-3 (6). We report here that gene MAGE-3 is respon- 
sible for the expression of another antigen present on the MZ2- 
MEL cell line, namely MZ2-D. 

Materials and Methods 

Cell Lines and Culture Conditions. Melanoma cell line MZ2-MEL 
was derived from patient MZ2, and various clonal sublines were 
obtained (3). MZ2-Mt/L.61, which does not express antigen MZ2-D, 
was obtained by in vitro immunoselection of MZ2-MEL with 
anti-MZ2-D autologous CTL clone 20/38 (5). The derivation of 
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anti-MZ2-D CTL clone 20/38 and its culture conditions have been 
previously described (5). EBV-transformed B cell line BM21 was 
derived from a HLA-A1 individual (9). 

Screening of the Genomic Library and Sequencing. The genomic 
library was constructed in cosmid c2RB with DNA from PBL of 
patient MZ2 as previously described (10). Cosmid 4.12, which con- 
tained the MAGE-3 sequence, was identified by colony hybridization 
with 3~p-labeled oligonucleotide Chinese hamster ovary (CHO)-3 
(6) as described by Lurquin et al. (11). Cosmid 4.12 was digested 
with EcoRI, size-fractionated in agarose gels, blotted on nitrocel- 
lulose filters, and hybridized with 32p-labeled oligonucleotides 
CHO-3 or VDB19 (5'-CGGATGGTTGAATGAGC-3': MAGE-3 
positions 1323-1339 sense). A 5- and 1.9-kb fragment hybridizing 
with CHO-3 and VDB19, respectively, were then subcloned in 
plasmid pTZ18R (Pharmacia Fine Chemicals, Piscataway, NJ) and 
single-stranded DNA was produced. Nucleotide sequence was de- 
termined using the T7 sequencing kit (Pharmacia Fine Chemicals) 
and synthetic primers. Sequence alignments were performed with 
the GeneWorks computer software (IntelliGenetics, Inc./Betagen, 
Mountain View, CA). 

Transfection of COS-7 Cells. Transfection experiments were 
performed by the DEAE-dextran-chloroquine method (12). Briefly, 
1.5 x 104 COS-7 cells were treated with 100 ng of plasmid 
pcDNAI/Amp (Invitrogen Corporation, San Diego, CA) containing 
the HLA-A1 gene and 100 ng of plasmid containing the cDNA 
of MAGE-1, MAGE-3 (cloned in pcDNAI/Amp), or MAGE-2 
(cloned in pcDSRc~). Plasmid pcDSl~ol was a gift of Kevin Moore 
(DNAX, Palo Alto). The COS-7 cells were incubated for 24 h 
at 37~ The medium was then discarded and 1,500 CTL were 
added in 100 #1 of Iscove medium (GIBCO BRL, Gaithersburg, 
MD) supplemented with 10% human serum and 25 U/ml rlL-2 
(Cetus Corp., Berkeley, CA). After 24 h, the supernatant was col- 
lected and its TNF content was determined by testing its cytotox- 
icity for WEHI-164-13 (13) as previously described (14). 

Antigenic Peptides and CTL Assay. Peptides were synthesized 
on solid phase using F-moc for transient NH2-terminal protection 
as described by Atherton et al. (15), and characterized by mass spec- 
trometry. All peptides were >90% pure as indicated by analytical 
HPLC. Lyophilized peptides were dissolved in 0.02 M PBS and 
stored at -20~ Lysis of target cells by CTLs was tested by chro- 
mium release as previously described (16). In the peptide sensitiza- 
tion assay, target cells were SlCr-labeled for 1 h at 37~ and 
washed extensively. 1,000 target cells were then incubated in 96- 
well microplates in the presence of various concentrations of pep- 
tide for 30 rain at 37~ CTLs were then added in an equal volume. 
Chromium release was measured after 4 h at 370C. In the peptide 
competition assay, 106 cells of the BM21 lymphoblastoid cell line 
(HLA-A1 § were labeled with SlCr during 1 h at 370C in the 
presence of a 1:40 dilution of anti-class I mAb W6/32 ascites in 
"Iris Dulbecco buffer. Labeled targets (1,000 cells/well) were in- 
cubated for 15 min at room temperature with various concentra- 
tions of competitor peptides, before addition of the antigenic 
MAGE-3 peptide. Then, after 15 min, cells from CTL clone 20/38 
were added at a lymphocyte to target cell ratio of 10:1. The assay 
was terminated after a 4-h incubation at 37~ 

rnRNA Expression Analysis. Total IkNA was extracted by the 
guanidine-isothiocyanate procedure as described (17). For cDNA 
synthesis, IkNA (2/~g) was diluted with water, 4 #1 of 5 x reverse 
transcriptase buffer (GIBCO BRL), 1 #1 each of 10 mM dNTP, 
2 #1 of a 20 #M solution of oligo(dT), 20 U of RNasin (Promega 
Biotec, Madison, WI), 2 #1 of 0.1 M dithiothreitol, and 200 U 
of MoMLV reverse transcriptase (GIBCO BRL) in a 20-/zl reaction 
volume, and incubated at 420C for 60 rain. One twentieth of the 

cDNA reaction was supplemented with 5/~1 of PCR buffer (Perkin- 
Elmer Cetus Instruments, Norwalk, CT), 0.5/~1 each of 10 mM 
dNTP, 1/~1 each of 20/~M solutions of primers, 1.25 U of Taq 
polymerase (Perkin-Elmer Cetus Instruments) and water to a final 
volume of 50 #1. Primers were 5'-TGGAGGACCAGAGGCCCCC- 
3' (sense, exon 2) and 5'-GGACGATTATCAGGAGGCCTGC-3' 
(anti-sense, exon 3) for MAGE-3, and 5'-GGGACCAGGAGACAC- 
GGAATA-Y (sense, exon 2) and 5'-AGCCCGTCCACGCACCG-3' 
(anti-sense, exon 3) for HLA-A1. PCR was performed for 30 cycles 
(1 rain at 94~ and 4 rain at 72~ for MAGE-3; 1 min at 94~ 
2 min at 68~ and 2 min at 72~ for HLA-A1). The PCR product 
was size-fractionated on a 1% agarose gel. The conditions for PCR 
amplification of MAGE-1 and MAGE-2 were previously described 
(7, 18). The quality of RNA preparations was checked by PCR 
amplification of ~-actin cDNA. 

Results 

CTL clone 20/38, which was derived by stimulating PBL 
of patient MZ2 with the autologous melanoma cell line MZ2- 
MEL, lyses MZ2-MEL cells but not autologous fibroblasts, 
autologous EBV-transformed B cells, or K562 (5). This CTL 
clone recognizes an antigen named MZ2-D, which is different 
from MZ2-E, the antigen encoded by gene MAGE-1. This 
follows from the observation that an MZ2-MEL.E- variant 
selected for resistance to an anti-MZ2-E CTL was still lysed 
by CTL 20/38 (Fig. 1). Conversely, a MZ2-MEL.D- an- 
tigen-loss variant, which was selected in vitro for resistance 
to CTL 20/38, was still lysed by the anti-MZ2-E CTL. 

Anti-MZ2-D CTL Recognize HLA-A1 Melanomas That Ex- 
press MAGE-3. CTL clone 20/38 secreted TNF when put 
in the presence of the MZ2-MEL cells that express antigen 
MZ2-D, but not in the presence of the D-  antigen-loss 
variant (Table 1). To identify the HLA class I molecule pre- 
senting antigen MZ2-D to CTL 20/38, we performed the 
same test with a number of melanoma lines of patients sharing 
one HLA specificity with patient MZ2. This patient carries 
HLA-A1, A29, B37, B44, Cw6, and C.d.10. But we focused 
on melanomas expressing either A1, B37, or Cw6, because 
variant MZ2-MEL.2.2.5, known to have lost HLA-A29, B44, 
and C.d.10, still expressed antigen MZ2-D. 8 of 10 mela- 
noma cell lines derived from HLA-A1 patients stimulated 
CTL 20/38 (Table 1) and several of these tumor cell lines 
were also lysed by this CTL clone (Fig. 2), suggesting that 
HLA-A1 was the dass I molecule presenting antigen MZ2-D. 
The gene coding for MZ2-D did not seem to be MAGE-1 
because several aUogeneic melanomas that stimulated the CTL 
did not express this gene (Table 1). By looking at the pattern 
of expression of genes MAGE-1, -2, and -3, we noticed that 
gene MAGE-3 was expressed by the eight HLA-A1 mela- 
nomas that were recognized by CTL 20/38, whereas the two 
lines that were not recognized did not express this gene. This 
suggested that antigen MZ2-D might be a MAGE-3-encoded 
peptide presented by HLA-A1. 

Expression of MZ2-D by COS Cells Transfected with HLA-A1 
and MAGE-3. To find out whether gene MAGE-3 directed 
the expression of antigen MZ2-D, we transfected COS-7 cells 
with the HLA-A1 gene and either MAGE-1, MAGE-2, or 
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Figure 1. Cytolytic activity of CTL clones 20/38 and 22/13 of patient 
MZ2 on MZ2-MEL cells. Antigen-loss variants MZ2-MEL.2.2 E- and 
MZ2-MEL.61 D - were obtained by in vitro immunoselection with CTL 
22/13 and 20/38, respectively. Lysis of chromium-labeled cells was mea- 
sured after 4 h. 

MAGE-3  c D N A  cloned in an expression vector. After 1 d 
we added C T L  20/38  and 24 h later, the a m o u n t  of  T N F  
present in the supernatant  was assayed by test ing its cytotox- 
icity for WEHI-164-13  cells (Fig. 3). CTL  20/38 was strongly 
st imulated by COS-7  cells transfected w i th  H L A - A 1  and 
MAGE-3,  bu t  no t  by cells transfected w i th  HLA-A1  alone 
or w i th  H L A - A 1  and MAGE-1  or MAGE-2.  We concluded 

that ant igen M Z 2 - D  is a MAGE-3  product  presented by 
HLA-A1.  

We tested the expression of MAGE-3 in antigen-loss variant 
MZ2-MEL.61,  which  had lost the expression of  ant igen 
MZ2-D.  R N A  was reverse transcribed w i th  an ol igo(dT) 
primer, and the c D N A  was amplified w i th  a pair  of  primers 
specific for MAGE-3.  The  level of expression of  MAGE-3  
was considerably lower than that found in the D + MZ2-  
MEL cells. Quant i ta t ive P C R  analysis revealed that D -  cells 
express about  6% of  the level of MAGE-3  mP,  N A  found 
in D + cells (data no t  shown).  This  low level is presumably 
insufficient to provide enough  ant igenic  peptide to ensure 
recogni t ion by C T L  20/38.  

Sequence and Structure of Gene MAGE-3. The  gene coding 
for the MAGE-3  m R N A  was isolated by screening a cosmid 
library prepared w i th  the D N A  of PBL from pat ient  MZ2.  
A cosmid con ta in ing  the gene was identified by  colony hy- 
br idizat ion w i th  an ol igonucleot ide probe corresponding to 
a region where  the MAGE-3  sequence differs significantly 
from that of  MAGE-1 and MAGE-2.  The  sequence of the 
whole gene was determined and aligned to that of  the MAGE-3 
c D N A .  This  allowed us to deduce the structure of gene 
MAGE-3,  which  proved very similar to that of  gene MAGE-1 
wi th  two small exons followed by a large one. The  nucleo- 
tide sequence of MAGE-3 is 73% identical to that of  MAGE-1, 

Table  1. TNF Release by CTL 20/38 Incubated with Allogeneic Melanomas 

Melanoma Expression of HLA-AI* MAGE-1 

TNF release by 
*Expression of CTL 20/38 S 

MAGE-2 MAGE-3 Exp. 1 Exp. 2 

MZ2-MEL + + + + + + + + + + >120 >120 

MZ2-MEL.61D- + + + + + + + + + _+ 1 4 

LY1-MEL + + - + + + >120 >120 

MI-10221-MEL + + + + + + + + >120 

LY2-MEL + + + + + + + + + + 57 

LY4-MEL + - + + + + + >120 

SK23-MEL + - + + + + + + + + 112 

MI665/2-MEL + - - - 3 4 

LB34-MEL + + + + + + + + + + >120 

LB45-MEL + - - - 11 30 

NA6-MEL + - + + + + + 77 98 

MI-13443-MEL + + + + + + + + + + + + + + >120 

LB5-MEL - - _+ + 8 

SK64-MEL . . . .  4 

LB33-MEL - -+ + + + + + + 

LB73-MEL - + + + + + + + 16 

9 

5 

3.5 

* Expression of HLA-A1 was tested by RT-PCR. 
* Expression of MAGE genes was measured by KT-PCR. analysis and scored according to band intensity of PCR. products. 
S 1,500 cells of CTL clone 20/38 and 25 U/ml IL-2 were mixed with 30,000 cells of the different aUogeneic melanomas, except for the two MZ2-MEL 
lines, where 50,000 stimulator cells were used. After 24 h, the amount of TNF present in the supernatant was assayed by testing its cytotoxicity 
for WEHI-164-13. Results are expressed in pg/ml equivalent TNF~. TNF release in the absence of CTL added was <5 pg/ml in the two experiments. 

923 Gaugler et al. 



80  MZ2-MEL 

4 O  

2 0  

0 

. 3  3 3 O  
.1 1 1 0  

i I i i I I 
.3 3 3 0  

. I  I I 0  

I I I ] 
3 

. I  I 

LYI -MEL 

i i i i i i 
3 O  3 3 3 O  

1 1 1 0  

E F F E C T O R  / T A R G E T  RATIO 

SK23- 

,/, 
. 3  3 

.1  1 

Figure 2. Lysis of melanoma target cells by CTL clone 20/38 of pa- 
tient MZ2. Melanoma cell lines MI-13443-MEL, LB34-MEL, LY1-MEL, 
and SK23-MEL were derived from HLA-A1 patients. They all express 
MAGE-3. Lysis of chromium-labeled cells was measured after 4 h. 

and in exon 3 the identity is 82%. The main structural differ- 
ence between the two genes is the presence of two deletions 
in the first intron of MAGE-3, one of 700 bp and one of 
400 bp (Fig. 4). 

The cDNA sequence of MAGE-3 is shown in Fig. 5. Like 
MAGE-1, MAGE-3 contains a large open reading frame in 
the third exon. The MAGE-3 protein is 314 amino acids long 
and presents 66% identity with the MAGE-1 protein which 
is 309 amino acids long. The MAGE-3 protein is devoid of 
a signal sequence but contains a putative short transmem- 
brane domain that is conserved in the MAGE-1 protein (De 
Plaen, E., K. Arden, C. Traversari, J. J. Gaforio, J.-P. Szikora, 
C. De Smet, F. Brasseur, P. van der Bruggen, B. Lethe, C. 
Lurquin, P. Chomez, R. Brasseur, W. Cavenee, and T. Boon, 
manuscript in preparation). 

Identification of the Antigenic Peptide of Antigen MZ2-D. A 
881-bp fragment of MAGE-3 cDNA (nucleotides 1-881 in 
Fig. 5) which did not contain the 3' end of exon 3 proved 
capable of transferring the expression of antigen MZ2-D when 
transfected into COS-7 cells (data not shown). In our attempt 
to find out which part of this fragment coded for the MZ2-D 
antigenic peptide, we were helped by the existence of another 
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Figure 3. Stimulation of CTL 20/38 by COS-7 cells transfected with 
expression vectors containing the cDNA of MAGE-3 and the HLA-A1 
gene as described in Materials and Methods. As controls, COS-7 cells were 
transfected with HLA-A1 gene alone or mixed with the cDNA of MAGE-1 
or of MAGE-2. CTL 20/38 was added and the TNF content of the super- 
natant was tested for its cytotoxicity on WEHI-164-13 cells. 
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Figure 4. Gene structures of genes MAGE-1 and MAGE-3. Exons are 
indicated as boxes, with the sequences encoding the proteins and the anti- 
genic peptides in grey and black, respectively. MAGE-1 and MAGE-3 se- 
quences were aligned and the stippled lines indicate regions that are deleted 
in MAGE-3 relative to MAGE-1. 

member of the MAGE gene family named MAGE-6, which 
presented 99% identity with MAGE-3 (De Plaen, E. et al., 
manuscript in preparation). Despite this nearly complete iden- 
tity, MAGE-6 did not seem to code for antigen MZ2-D be- 
cause it was expressed at a high level in the D- antigen-loss 
variant (data not shown). This was confirmed by transfecting 
into COS-7 cells a fragment of MAGE-6 corresponding to 
the 881-bp fragment of MAGE-3 cDNA; no expression of 
antigen MZ2-D was observed (data not shown). We exam- 
ined the few amino acid differences between MAGE-3 and 
MAGE-6 that were localized in the 881-bp fragment. Six of 
seven substitutions could not be included in a peptide sequence 
carrying a tyrosine. This amino acid residue has been sug- 
gested to serve as anchoring residue for several class I mole- 
cules (19-21) and it is present at position 9 in the MAGE-1 
peptide that binds to HLA-A1 (8). It is interesting to note 
that the last substitution was located in the region homolo- 
gous to the region of MAGE-1 that codes for the MZ2-E 
peptide (8). On this basis, nonapeptide EVDPIGHLY was 
synthesized and corresponds to codons 168-176 of the long 
open reading frame of MAGE-3. This peptide sensitized D- 
cells to lysis by the anti-D CTL clone (Fig. 6). 

Two Residues Involved in the Binding of the MAGE-1 Peptide 
to HLA-AI. The availability of the MAGE-1 and MAGE-3 
peptides, which both bind to HLA-A1 but are recognized 
by different CTL, enabled us to perform competition experi- 
ments in order to identify the residues involved in the binding 
to the HLA-A1 molecule. HLA-A1 positive cells were in- 
cubated with competitor MAGE-1 peptide at various con- 
centrations. Then, the MAGE-3 peptide was added and the 
cells were tested for recognition by anti-D CTL 20/38. As 
shown in Fig. 7, the MAGE-1 peptide was able to inhibit 
the lysis of cells pulsed with the MAGE-3 peptide. We then 
tested a panel of MAGE-1 peptides substituted with alanine 
in single positions. Substitutions of P, T, G, H, and S (residues 
4, 5, 6, 7, and 8) by A did not prevent the peptide from 
competing. In contrast, competition was reduced by the sub- 
stitutions of D by A in position 3 and it was abolished by 
the substitution of Y by A in position 9, indicating that these 
two residues are involved in the binding to HLA-A1 (Fig. 7 A). 

We also tested peptides encoded by the homologous se- 
quence of gene MAGE-2 and of additional genes that belong 
to the MAGE family (Fig. 7 B). The MAGE-2 peptide, which 
does not carry D in position 3, did not compete with the 
MAGE-3 peptide. Replacement of V by D in position 3 of 
the MAGE-2 nonapeptide significantly improved its ability 
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to bind to HLA-A1 (data not shown), confirming the essen- 
tial role of this residue for binding to HLA-A1. In contrast, 
the peptides encoded by MAGE-4a, 4b, 5, and 6, which do 
carry D in position 3 and Y in position 9, were able to com- 
pete. These results suggest that these MAGE genes are poten- 
tial sources of antigens presented by HLA-A1. 

MAGE-3 Expression in Tumors and Normal Tissues. The 
expression of gene MAGE-3 was evaluated in various tumors 
and normal tissues by reverse transcription and PCR ampli- 
fication (RT-PCR) with primers that are specific for this gene. 
Primers located in different exons were chosen so as to pre- 
vent occasional false positives due to DNA contamination 
of the RNA. A panel of tumor cell lines and fresh-frozen 
samples from tumors of various histological types were tested. 
Gene MAGE-3 is expressed in a higher proportion of mela- 
nomas (69%) than gene MAGE-1 (40%). Like MAGE-1, gene 
MAGE-3 is expressed in several tumor types other than mela- 
noma, such as small cell and nonsmall cell lung cancer and 
head and neck squamous cell carcinoma (Table 2). Lower per- 
centages of positive tumors were found in mammary carci- 
nomas and colorectal carcinomas. No renal carcinoma expressed 
MAGE-3. The expression of MAGE-3 was tested in a variety 
of normal adult tissues and in some tissues from fetuses of 
more than 20 wk. All were negative except testes. 

Discuss ion 

The MAGE gene family is composed of at least 12 different 
closely related genes whose sequences show 64 to 85% iden- 
tity with MAGE-1 (De Plaen, E., et al., manuscript in prep- 
aration). All these genes appear to be silent in normal adult 
tissues other than testis. Six of them, namely MAGE-1, -2, 
-3, -4, -6, and -12, are expressed in a significant proportion 
of human tumors of various histological types. Because these 
six genes code for proteins of more than 300 amino acids, 
it was surmised that they should produce many peptides com- 
bining with various HLA molecules to form tumor antigens 
recognized by T lymphocytes. This would be in line with 
the observations made with influenza proteins such as 
nucleoprotein which is known to produce several peptides 
recognized by CTL on different HLA alleles (22-26). On 
the other hand, it was impossible to exclude a priori that, 
because MAGE proteins are self proteins, the diversity of T 
lymphocytes recognizing MAGE-encoded antigens could be 
severely reduced by tolerance. 

Our observation that MAGE-3 codes for an antigen rec- 
ognized on a melanoma by autologous CTL fully confirms 
the notion that multiple antigens are coded by the MAGE 
gene family. Moreover, another antigen encoded by MAGE-1 
and presented by the HLA-C cl.10 molecule has recently been 
identified (van der Bruggen, P., P. Bo~l, and T. Boon, manu- 
script in preparation). Accordingly, we will continue to test 
known antitumor CTL clones for their ability to crossreact 
with tumor cells sharing some HLA alleles with the syn- 
geneic tumor target. By examining the pattern of expression 
of MAGE genes in the crossreacting tumors, we will try to 
identify new antigens encoded by MAGE genes. 

An alternative approach should also prove useful. It is based 
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on the observation that a given class I molecule combines 
only with a restricted set of peptides that carry certain an- 
chor residues at a few crucial positions. These consensus mo- 
tives have been identified for a number of HLA alleles (20, 
27-30). It is possible to identify in the MAGE protein se- 
quences several peptides that should be capable of binding 
to certain HLA molecules. These peptides could then be syn- 
thesized and tested for their binding to the relevant HLA 
molecule, which results in stabilization of these molecules 
(31-33). The peptides that show good binding could then 
be used to stimulate T cells in order to generate CTL reac- 
tive with the peptide/HLA complex. This has been achieved 
for the identification of malaria epitopes recognized by CTL 
(21). However, the lymphocytes restimulated in vitro with 
these peptides came from individuals already immunized 
against malaria. With MAGE peptides, one would have to 
generate primary T cell responses in vitro. This should be 
more difficult, but it has been achieved using peptide-pulsed 
dendritic cells or mutants that are defective for antigen pro- 
cessing like RMA-S or T2 (34-36). 

The antigenic peptide that is encoded by MAGE-3 and that 
binds to HLA-A1 is located at a position homologous to that 
of the MZ2-E peptide in the MAGE-1 protein. Two residues, 
which are shared by both peptides, appear to be essential for 
binding to HLA-A1, namely aspartic acid in position 3, and 
tyrosine in position 9. These residues may constitute a general 
motive for peptide binding to HLA-A1. This would be in 
line with mounting evidence that the COOH-terminal res- 
idue is always an anchor residue for peptide binding to class 
I molecules (20, 27-29). Homologous peptides derived from 
genes MAGE-4 and 6 carry the same motive and were shown 
to bind to HLA-A1. It may therefore be possible to obtain 
CTL that recognize antigens formed by these peptides on 
HLA-A1. The MAGE-6 derived peptide was not recognized 
by the anti-MZ2-D CTL clone, even though it differs from 
the MAGE-3 peptide only at position 8 (L-"V). This leu- 
cine residue in the MAGE-3 peptide is therefore involved in 
the interaction of the peptide with the T cell receptor. 

Antigen MZ2-D encoded by MAGE-3 may prove to be 
a useful target for specific antitumor immunization of mela- 
noma patients. Patients expressing this antigen on their tumor 
cells will be identified by HLA typing and by performing 
reverse transcription and PCR amplification with MAGE-3 
specific primers on small tumor samples frozen immediately 
after surgical removal. The proportion of melanoma patients 
expressing this antigen should be ,o18% in Caucasian 
populations, since 26% of individuals are HLA-A1 positive 
and 69% of melanomas express MAGE-3. This compares 
with ,,o10% of melanoma patients whose tumor expresses 
MAGE-1 encoded antigen MZ2-E. It is noteworthy that all 
melanomas that express MAGE-1 also express MAGE-3. Thus, 
the availability of MAGE-3 in addition to MAGE-1, should 
only increase from 10 to 18% the proportion of patients eligible 
for vaccination. On the other hand, it will be possible to 
attempt to immunize 10% of melanoma patients against both 
the MAGE-1 and the MAGE-3 encoded antigens. This should 
reduce the risk of tumor escape due to the emergence of an- 
tigen-loss variants. 



exonl $ exon2 

MAGE-I CCATTCTGAGGGACC-GCGTA GAGTTCGGCCGAAGGAACCT GACCCAGGCTCTGTGAGGAG GCAAGG'~FFICAGGGGACAG 80 

MAGE-3 .............................. GA~AAGCC GGCCCAGGCTCGGTGAGGAG GCAAGGTTCTGA~ACAG 50 

exonl t ~ o n 2  

on3 

MAGE- 1 GCCAACCCAGAGGACAGGAT TCCCTGGAGGCCACAGAGGA GCACCAAGGAGAAGATCTGC CTGTGGGTCTTCATTGCCCA 160 

MAGE-3 GCTGACCTGGAGGACCAGAG GCCCCCGGAGGAGCACTG ....... AAGGAGAAGATCTGC CAGTGGGTCTCCATTGCCCA 123 

~ exon3 

M S L E Q R  S L H C K P  12 

~GE-IGCTCC~CCCACACTCC~CC~C~CCC~ACGAGAGTCATCA~~AGCAGAGGAGTC~CAC~C~GCC~240 

~GE-3GCTCC~CCCACACTCCCGCC~CCC~ACCAGAG~ATCA~CC~AGCAGAGGAG~AGCAC~C~GCC~I93 
M P L E Q R  S Q H C K P  12 

E E A L E A Q Q E A L G L V C V Q A A T 32 

~ G E - I A ~ G C C C ~ A G G C C C ~ C ~ G A ~ C C C ~ C C ~ T G ~ C A ~ C T  ..................... GCCACC299 

~GE-3 ~G~CC~A~CCCGA~AGA~CCC~CC~GT~CGCA~CTCC~CTAC~A~AGCA~A~C~CC273 

E E G L E A R  G E A L G L V  G A Q A P A  T E E Q E A A 3 9  

S S S S P L V  L G T L E E  V P T A G S T  D P P Q S P Q 5 9  

~GE-ITCCTCC~CTCTCCTC~TCC~CACCC~A~A~CCCAC~C~CAGA~C~CCCAGAG~C~A379 
~GE-3TCCTCC~CTACTCTAGT~G~ACCCTGGGGGA~CC~C~CCGAG~ACCAGA~CTCCCCAGAG~CTCA353 

S S S S T L V  E V T L G E  V P A A E S P  D P P Q S P Q 6 6  

G A S A F P  T T I N F T R  Q R Q P S E G  S S S R E E  85 

~GE-I ~GAGCC~CGCCT~CCCACTACCATC~C~ACTCGACAGA~C~CCCAG~A~ ~CCAGCAGCCG~GA~459 

~GE-3 ~AGCC~CAGCCTCCCCACTACCA~CTACCCTCTC~AGCC~TCCTA~A~AC~CAGC~CC~G~GA~433 

G A S S L P  T T M N Y P L  W S Q S Y E D  S S N Q E E  92 

E G P S T S C I L E S L F R A V I T K K V A D L V G F 112 

MAGE - 1 AGGGGCCAAGCACCTCTTGT ATCCTC-GAGTCCTTGTTCCG AGCAGTAATCACTAAGAAGG TC-GCTGATTTGGT'It]G TTTT 539 

MAGE- 3 AGGGGCCAAGCACCTTCCCT GACCTGGAGTCCGAGTTCCA AGCAGCACTCAGTAGGAAGG TGGCCGAGTTC4~TTCATTTT 513 

E G P S T F P D L E S E F Q A A L S R K V A E L V H F 119 

L L L K Y R A R E P V T K A E M L E S V I K N Y K H C 139 

~GE-IC~C~CTC~TATCGAGCCA~AGCCAGTCAC~CAG~C~AGAG~TCATCAAAAA~AC~GCAC~619 

~GE-3C~CTCCTC~GTATCGAGCCA~AGCC~TCAC~CAG~CTGGGGAG~TCGTC~~CAGT~FFI'593 

L L L K Y R A  R E P V T K  A E M L G S V  V G N W Q Y F I 4 6  

F P E I F G K A S E S L Q L V F G I D V K E A D P T 165 

MAGE - 1 TTTTCCTGAGATCTTCGGCA AAGCCTCTGAGTCCTTGCAG CTGGTC~CATTGACGT GAAGGAAGCAGACCCCACCG 699 

MAGE- 3 CTTTCCTGTGATCTTCAGCA AAGCTTCCAGTTCCTTGCAG CTGGTC'I'FIx3GCATCGAGCT GATGGAAGTGGACCCCATCG 673 

F P V I F S K A S S S L Q L V F G I E L M E V D P I 172 

G H S Y V L V T C L G L S Y D G L L G D N Q I M P K T 192 

~GE-IGCCACTCCTA~TCC~TCACC~CCTA~CTA~A~CC~C~ATAATCAGATCA~CCC~GACA779 

~GE-3GCCAC~TACA~CCACC~CC~CC~TCCTACGA~CC~C~ACAATCAGATCA~CCC~CA753 
G H L Y I F A T C L G L S Y D G L L G D N Q I M P K A 199 

G F L I I V L  V M I A M E  G G H A P E E  E I W E E L S 2 1 9  

~GE-I ~C~CC~AT~TCCT~TCA~A~C~A~GC~CCA~CTCC~A~AGG~TC~A~AGC~AG859 

~GE-3 ~CCTCC~AT~TCGTCCT~CCAT~GC~GAGA~GCGAC~CCCC~A~AG ~ ~ A ~ A G C ~ A G 8 3 3  

G L L I I V L  A I I A R E  G D C A P E E  K I W E E L S 2 2 6  

V M E V Y D  G R E H S A Y  G E P R K L L  T Q D L V Q  245 

~GE-I ~ A ~ A ~ T A ~ A ~ A ~ A G C A C A G ~ C C T A T  ~ A G C C C A ~ G C ~ C T C A C C C ~ G A ~ C A ~ 9 3 9  

~GE-3 ~ A G A ~ T ~ A ~ A ~ G A C A G T A T C ~  ~A~CC~G~GC~CTCACCC~CA~G~CA~913 

V L E V F E  G R E D S I L  G D P K K L L  T Q H F V Q  252 
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E K Y L E Y R Q V P D S D P A R Y E F L W G P R A L A 272 
MAGE- 1 AAAAGTACCTGGAGTACCGG CAGGTGCCGGACAGTGATCC CGCACGCTATGAGTTCCTGT GGC4~TCCAAGGGCCCTCGCT 1019 

MAGE- 3 AAAACTACCTGGAGTACCGG CAGGTCCCCGGCAGTGATCC TGCATGTTATGAATTCCTGT ~TCCAAGGGCCCTCGTT 993 

E N Y L E Y R Q V P G S D P A C Y E F L W G P R A L V 279 

E T S Y V K V L E Y V I K V S A R V R F F F P S L R E 299 
MAGE- 1 GAAACCAGCTATGTGAAAGT CCTTGAGTATGTGATCAAGG TCAGTGCAAGAGTTCGCTTT TTCTTCCCATCCCTGCGTGA 1099 

MAGE-3 GAAACCAGCTATGTGAAAGT CCTGCACCATATGGTAAAGA TCAGTGGAGGACCTCACATT TCCTACCCACCCCTGCATGA 1073 

E T S Y V K V L H H M V K I S G G P H I S Y P P L H E 306 

A A L R E E E E G V 309 

MAGE-I AGCAGCTTTGAGAGAGGAGG AAGAGGGAGTCTGAGCATGA GTTGCAGCCAAGGCCAGTGG GAGGGGGACTGGGCCAGTGC 1179 

MAGE-3 GTGGGTTTTGAGAGAC-GGGG AAGAGTGAGTCTGAGCACGA GTTGCAGCCAGGGCCAGTGG GA~TCTGGGCCAGTGC 1153 

W V L R E G E E 314 

MAGE-I ACCTTCCAC-GGCCGCGTCCA GCAGCTTCCCCTGCCTCGTG TGACATGAGGCCCATTCTTC ACTC--TGAAGAGAGCGGTC 1257 

MAGE-3 ACCTTCCGC-GGCCGCATCCC TTAGTTTCCACTGCCTCCTG TGACGTGAGGCCCATTCTTC ACTCTTTGAAGCGAGCAGTC 1233 

MAGE-I AGTGTTCTCAGTAGTAGGTT TCTGTTCTATTGC43TGACTT GGAGATTTATCTTTGTTCTC ~AATTGTTCAAATGT 1337 

MAGE-3 AGCATTCTTAGTAGTGGGTT TCTGTTCTGTTGGATGACTT TGAGATTATTC'I'I'I~'Iq-rCC TG~AGTTGTTCAAATGT 1313 

MAGE-I "l ' l 'z' l ' l ' l ' l- l"A~GGGATGG~f'I~ AATGAACTTCAGCATCCAAG TTTATGAATGACAGCAGTCA CACA--GTTCTGTGTATATA 1415 

MAGE-3 TCC-~'ITI'AACGGATGGTTG AATGAGCGTCAGCATCCAGG TTTATGAATGACAGTAGTCA CACATAGTGCTGTTTATATA 1392 

MAGE-I GTTTAAGGGTAAGAGTCTTG TGT'I~ATTCAGA'~AA ATCCAT'PCTAT'I~TGAAT 'I~--ATAATAACAGCAGT 1493 

MAGE-3 GTTTAGGAGTAAGAGTCTTG TTTI"I'L~CTCAAATTGGGAA ATCCATTCCATTT'PGTGAAT TGTGACATAATAATAGCAGT 1472 

MAGE-I GGAATAAGTACTT ..... AG AAATGTGAAAAATGAGCAGT AAAATAGATGAGATAAAGAA CTAAAGAAATTAAGAGATAG 1568 

MAGE-3 GGTAAAAGTAT'I~rGCTTAAA ATTGTGAGCGAATTAGCAAT AACATACATGAGAT .... AA CTCAAGAAATCAAAAGATAG 1548 

MAGE-I TCAATTCT'I~CCTTATACCT CAGTCTATTC'PGTAAAATTT TTAAAGATATATGCATACCT GGATTTCCTTGGCTTC,I-I-I~ 1648 

MAGE-3 TTGATTCTTGCCT'IX~TACCT CAATCTATTC'PGTAAAATT- --AAACAAATATGCAAACCA GGATTTCCTTGACTTCTTTG 1625 

MAGE- 1 AGAATGTAAGAGAAATTAAA TC'PGAATAAAGAATTCTTCC TGT 

MAGE-3 AGAATGCAAGCGAAATTAAA TCTGAATAAATAATTCTTCC TCTTC 
1691 

1670 

Figure 5. Comparison of the nucleotide sequence of the MAGE-3 cDNA with that of MAGE-1. Gaps indicated by dashes ( - )  were introduced 
for optimal alignment. The amino acid sequences of the proteins encoded by the large open reading frames are represented. The sequences corresponding 
to the MZ2-E and MZ2-D peptides are underlined. Exons boundaries are indicated by arrows. The MAGE-3 sequence is available from EMBL/Gen- 
Bank/DDBJ under accession number V03735. 

70" 

60- 

50- 
D + - ~  

40- 

30" 

2 0  

10'  

D" ~ 

MAGE-3 peptide EVDPIGHLY 

. . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . .  

0 - I  1 0  0 101 1 0  2 1 0  3 1 0  4 1 0  s 

Peptide concentration (nM) 

Figure 6. Lysis by anti-MZ2-D CTL of cells expressing HLA-A1 in- 
cubated with the MAGE-3-encoded peptide. MZ2-MEL.61 cells (D-) 
were 51Cr-labeled and incubated with CTL 20/38 at an E/T ratio of 10:1 
in the presence of the synthetic MAGE-3 peptide at the concentrations 
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Other types of tumor could also be targets for immuniza- 
tion with antigen MZ2-D: MAGE-3 is expressed in 56% of 
head and neck squamous cell carcinomas, 30% of nonsmall 
cell lung carcinomas, 16% of colorectal carcinomas, and 12% 
of breast tumors. The proportions of these tumors that ex- 
press MAGE-1 are 25, 35, 0, and 17%, respectively (18, 37). 
By contrast with melanomas, some of these tumors express 
only MAGE-1 or only MAGE-3, so that considering the an- 
tigens encoded by both genes increases the proportion of pa- 
tients eligible for immunization. Like MAGE-1, MAGE-3 
is never expressed in kidney tumors, leukemias, and lym- 
phomas. 

The optimal method of immunization to generate efficient 

indicated. Chromium release was measured after 4 h. The arrows indicate 
the level of lysis of D + and D-  MZ2-MEL cells incubated without 
peptide. 



A B 

1 O0 / 

.~ 8 0 

~ 4o 

.01 .1 l 10 100 .Ol .1 t 10 tO0 tO00 

Competitor pep t i de  0 I M )  Competitor peptide ( t tM) 

----O-- EADPI'GHSY (MAGE-I) �9 EADPTGHSY (MAGE- 1 ) 
----O-- AADPTGHSY ----O--- EVVPISHLY (MAGE-2) 

+ EAAPTGHSY ~ EVDPASNTY (MAGE-4al 
EADATGHSY A EVDPTSNTY (MAGE-4b) 

----0--- EADPAGHSY ---O"-- EADPTSNTY (MAGE-5) 
---Ii--- EADPTAHSY �9 EVDPIGHVY fMAGE-6) 
- -13--  EADPTGASY 
- - O - -  EADPTGHAY 
- - O - -  EADPTGHSA 

Figure 7. Competition of the MAGE-3 peptide with single Ala- 
substituted MAGE-1 peptides (A) or with homologous nonapeptides from 
other MAGE genes (B). Chromium-labeled cells of HLA-A1 positive B 
lymphoblastoid cell line BM21 were incubated with the indicated concen- 
trations of competitor peptides (0.03-100/.tM) for 15 min before addition 

CTL responses remains to be determined. Patients could be 
injected with irradiated tumor cells expressing antigen MZ2-D, 
or with the recombinant MAGE-3 protein combined with 
appropriate adjuvants. Effective priming of CTL has been 
reported in mouse systems after immunization with peptides 
either alone, associated with a lipid moiety, or mixed with 
B2-microglobulin (38-41). A precise knowledge of the re- 
sidues involved in the binding to HLA-A1 may help in 
designing peptides with improved capabilities to bind to 
HLA-A1 resulting in better immunogenicity. 

of the antigenic MAGE-3 peptide at a concentration of 0.25 #M. 15 min 
later, cells from anti-MZ2-D CTL clone 20/38 were added at a lympho- 
cyte to target ratio of 10:1. Lysis was measured 4 h later. Results are presented 
as percentages of the control lysis obtained with the MAGE-3 peptide alone, 
which was 67% (A) and 42% (B). In the absence of the MAGE-3 peptide, 
lysis of BM21 cells was 2% (A) and 1% (B). 

Table  2. Expression qf Gene MAGE-3 by Tumoral, Normal, and Fetal Tissues 

Tumors 

Number of MAGE-3 
positive tumors* 

Histological type Cell lines Tumor samples 

Normal tissues 

Histological type 
MAGE-3 

expressmn 

Adult tissues 

Brain 

Melanomas 50/62 (81%) 72/105 (69%) Colon 

Stomach 

Head and neck squamous cell carcinomas - 20/36 (56%) Liver 

Ovary 

Lung carcinomas Skin 

NSCLC* 1/2 14/46 (30%) Lung 

SCLC 18/22 (82%) 2/3 Kidney 

Breast 

Colorectal carcinomas 5/16 5/31 (16%) Testis 

Mammary carcinomas 2/6 16/132 (12%) 

Bladder tumors - 2/6 

Sarcomas 1/4 3/10 

Prostatic carcinomas - 3/20 

Renal carcinomas 0/5 0/38 

Leukemias 2/6 0/20 

Lymphomas 0/6 0/5 

Fetal tissues 

Brain 

Liver 

Spleen 

+ +  

* Expression of gene MAGE-3 was tested by RT-PCR amplification on total RNA, with the primers described in Materials and Methods. These 
primers distinguish MAGE-3 from the 11 other MAGE genes that have been identified. 
* NSCLC, nonsmall cell lung carcinomas; SCLC, small cell lung carcinomas. 
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